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Abstract

The goal in semi-supervised learning is to ef-
fectively combine labeled and unlabeled data.
One way to do this is by encouraging smooth-
ness across edges in a graph whose nodes cor-
respond to input examples. In many graph-
based methods, labels can be thought of as
propagating over the graph, where the under-
lying propagation mechanism is based on ran-
dom walks or on averaging dynamics. While
theoretically elegant, these dynamics suffer
from several drawbacks which can hurt pre-
dictive performance.

Our goal in this work is to explore alterna-
tive mechanisms for propagating labels. In
particular, we propose a method based on
dynamic infection processes, where unlabeled
nodes can be “infected” with the label of their
already infected neighbors. Our algorithm
is efficient and scalable, and an analysis of
the underlying optimization objective reveals
a surprising relation to other Laplacian ap-
proaches. We conclude with a thorough set of
experiments across multiple benchmarks and
various learning settings.

1 Introduction

The supervised learning framework underlies much of
the empirical success of machine learning systems.
Nonetheless, results in unsupervised learning have
demonstrated that there is much to be gained from
unlabeled data as well. This has prompted consider-
able interest in the semi-supervised learning [11] set-
ting, where the data includes both labeled and unla-
beled examples. Methods for semi-supervised learning
(SSL) are especially useful for applications in which
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unlabeled examples are ample, but labeled examples
are scarce or expensive.

One of the most wide-spread approaches to SSL, and
our focus in this paper, is the class of graph-based meth-
ods. In these, part of the problem input is a graph
that specifies which input points should be considered
close. Graph-based methods assume that proximity
in the graph implies similarity in labels. There are
many variations on this idea [5, 7, 36, 40], each using
smoothness and graph distance differently. However,
they all share the intuition that the classification func-
tion should be smooth with respect to the graph.

One way for encouraging smoothness is by optimizing
an objective based on the graph Laplacian. This is
prevalent in classic SSL methods such as Label Prop-
agation (LabelProp) [46] and its variants [45, 4, 41],
as well as in recent deep graph embedding methods
[44, 35]. In some cases, the Laplacian objective can
be interpreted as the probability that a random walk
terminates at a certain state. In others, the objective
can be expressed as a quadratic form which can be
optimized by iterative local averaging of labels. The
optimization process can hence be thought of as prop-
agating labels under a certain averaging dynamic pro-
cess, whose steady state corresponds to the optimum.
Due to their elegance, computational properties, and
empirical power, random walks and local averaging
have become the standard mechanisms for propagating
information in many applications. Nonetheless, they
have several shortcomings, which we address here.

First, many of the guarantees of such methods hold
only for undirected graphs. For directed graphs, the
Laplacian is not necessarily PSD, meaning that the
objective is no longer convex, and that the quadratic
smoothness interpretation breaks down. Optimization
in directed graph Laplacians is much harder and far
less understood [42], and sampling is computationally
prohibitive, slow to converge, and unstable [28, 29].

Second, such methods were originally designed for
graphs that approximate the density of the data in
feature space. As such, they can fail when applied to
real graphs, especially large networks with a commu-
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InfProp (accuracy: 0.91, mean: 0.86) LabelProp (accuracy: 0.40, mean: 0.55) ShortPaths (accuracy: 0.79, mean: 0.77)

Figure 1: For graphs with weakly inter-connected components, infection dynamics (our method, left) propagate
labels better than random walks (middle) or shortest paths (right). Labeled nodes are outlined, shapes denote
true labels, and probabilistic predictions are encoded by CMY color values. See supp. material for more details.

nity structure. This is because random walks are prone
to get stuck in local neighborhoods [9], because visit-
ing all nodes can require an expected O(n3) steps [2],
and since the limit distribution can be uninformative
for large graphs [43] or when labels are rare [32].

Third, extending such methods beyond the vanilla
multiclass setting has proven to be quite challenging.
For instance, outputting confidence in predictions is
possible, but leads to extremely low values [41]. La-
bel priors can be utilized, but only in determining the
classification rule, rather than being incorporated into
the model [46]. Most methods for an active semi-
supervised setting are either heuristic [22] or based
on pessimistic worst-case objectives [23]. Finally, sup-
porting structured labels is far from straightforward
and can be computationally demanding [3].

Due to the above, in this work we advocate for con-
sidering alternative mechanisms for propagating labels
over a graph, and propose an approach which ad-
dresses most of the above issues. Our method, called
Infection Propagation (InfProp), views the process of
labeling the graph as a dynamic infection process. Ini-
tially, only the labeled nodes are “infected” with their
known labels. As time unfolds, infected nodes can,
with some probability, infect their unlabeled neigh-
bors. When this happens, the unlabeled nodes inherit
the label of their infector. Labeled nodes can therefore
be viewed as competing over infecting the unlabeled
nodes with their labels. Since the infection process
is stochastic, we can calculate the probability that a
given node was infected by a given label, and label the
node according to this probability.

InfProp is motivated by the idea that different graph
types may require different dynamics for efficient prop-
agation of information. It is inspired by propagation
dynamics found in the natural and social worlds, and

draws on the successful application of infection models
in different contexts [25, 20, 14]. InfProp is especially
efficient for graphs with highly intra-connected but
lightly inter-connected components, a characteristic of
many real-world networks. Fig. 1 illustrates this for
a small synthetic random network with three clusters
(see supplementary material for details). As can be
seen, InfProp propagates information correctly, even
when the seed set is very small. In comparison, Label-
Prop provides uninformative and almost uniform pre-
dictions which are prone to error, and shortest paths
over the weighted graph err due to cross-cluster links.

InfProp uses infection probabilities for labeling; these,
however, turn out to be #P hard to compute exactly.
We therefore provide a fully polynomial-time random-
ized approximation scheme (FPRAS). Our solution ex-
ploits an equivalence between the infection process and
shortest paths in random graphs. The resulting algo-
rithm is easy to parallelize, making the method highly
scalable. It also extends to various learning settings,
such as multilabel prediction and active SSL.

In Sec. 5 we analyze the optimization objective un-
derlying the propagation of labels via infection dy-
namics, highlighting an intriguing connection graph
Laplacians. Our analysis shows that InfProp can be
viewed as optimizing a quadratic objective, in which
weights are seed-specific and related in an intricate
manner to the underlying diffusion process. We con-
clude with an extensive set of experiments in multiple
learning settings which demonstrate the effectiveness
of our approach.

2 Propagating Labels with Infections

In this section we present our infection-based method
for semi-supervised learning. We are given as input a
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directed weighted graph G = (V,E,W ), as well as a
subset of labeled nodes S ⊆ V referred to as the seed
set. Each seed node s ∈ S also comes with a true label
ys ∈ Y. We denote the unlabeled nodes by U = V \S,
and set n = |V |, m = |E|, L = |Y|, and k = |S|. In
some settings additional node features are available.
We focus on the transductive setting, where the goal
is to predict the labels of all non-seed nodes u ∈ U .

The core idea of our method is to propagate labels from
labeled to unlabeled nodes using infection dynamics.
The process is initialized with all seed nodes in an
infected state and all unlabeled nodes in a null state ∅.
Then, a stochastic model of infection dynamics is used
to determine how the infectious state of nodes in the
graph changes over time, typically as a function of the
states of neighboring nodes. To support multiple label
classes, we consider competitive infection models. In
these, seeds s ∈ S are initially infected with their true
labels ys, and compete in infecting unlabeled nodes.

The models we consider are stochastic and converge to
a steady state. This means that, after some time point,
the labels of all nodes will not change anymore (we
refer to this as process termination, or steady state).
Since the process itself is stochastic, each instantiation
will result in a different value for the labels at termina-
tion. For a given infection model, let Yv` be the binary
random variable indicating whether node v is infected
by label ` at steady state.1 Since our goal is to rea-
son about the labels of the nodes, it will be natural to
utilize the infection dynamics to generate probabilistic
predictions. For each node v, our method outputs a
distribution over labels fv. Each entry fv` corresponds
to the probability that v had value ` at steady state,
as a function of the seed set S and its labels:

fv`(S, y) = P [Yv` = 1] = E [Yv`] (1)

Note that ` can take values in 1, . . . , L but also ` = 0
for ∅. The entry fv0 therefore describes the (possibly
non-negative) probability that v remained uninfected.

Computing f exactly is known to be #P-hard even for
simple infection models [14]. Hence, like many other
infection-based methods [25, 17, 16], we resort to a
Monte-Carlo approach and estimate f by averaging
over infection outcomes Y . Our final predictor f̂ is:

f̂v`(S, y) =
1

N

∑N

i=1
Y

(i)
v` (2)

where Y
(i)
v` is an indicator for the ith random instance.

In principle, outcomes Y can be evaluated by simu-
lating the infection dynamics. This however is not

1For multilabel tasks, Y is the set of seed node identi-
ties, and f becomes a weighted sum of their labels.

straightforward for several of the models we consider,
such as those with continuous time. In the next section
we describe some infection models, and show how f̂
can be efficiently computed for them using an alterna-
tive graphical representation of the infection process.

We conclude by stating an approximation bound for f .
As we can calculate f̂ efficiently (see next section) this
implies that our method yields an efficient approxima-
tion scheme for the true infection probabilities.

Proposition 1. For every ε, δ ∈ [0, 1], if N ≥
1

2ε2 log 2n(L+1)
δ , then with probability of at least 1 − δ,

Algorithm 2 returns f̂ such that ‖f̂ − f‖max ≤ ε.

Proof. Note that each Yv` is a random variable in
{0, 1}. Furthermore, f̂ is an average of Y , and f is
the corresponding expectation. The result is obtained
by applying the Hoeffding and union bounds.

2.1 Competitive Infection Models for Graph
Labeling

As mentioned above, our SSL method relies on an in-
fection process where nodes of the graph are “infected”
with labels. There are many variants of infection pro-
cesses (see [13]); we describe some relevant ones below.

2.1.1 The Independent Cascade model

Since its introduction in [19], the simple but powerful
Independent Cascade (IC) model has been used exten-
sively. The original IC model, briefly reviewed below,
is a discrete-time, network-dependent interpretation of
the classic Susceptible-Infected-Recovered (SIR) epi-
demiological model [26]. At time t = 0, seed nodes
are initialized to an infected state, and all other nodes
to a susceptible state. If node u is infected at time
step t, then at time t + 1 it attempts to infect each
of its non-infected out-neighbors v ∈ Nei(u), and suc-
ceeds with probability puv. If successful, we refer to
the edge (u, v) as active or activated, mark the infec-
tion time of v as τv = t+1, and set v’s infector to be u,
which we denote by ρ(v) = u. The model is therefore
parametrized by the set of all edge infection probabil-
ities {puv | (u, v) ∈ E} (given as input via puv = Wuv).
Once a node becomes infected, it remains in this state.
As infections are probabilistic, not all nodes are nec-
essarily infected. The process terminates either when
all nodes are infected, or (more commonly) when all
infection attempts at some time step are unsuccessful.

The IC model describes the propagation of a single in-
fectious content. Hence, it can tell us only when and
how a node is infected, but not by what. This mo-
tivated a class of competitive infection models which
support multiple content types. Several competitive
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Algorithm 1 BasicInfProp(G,S, y, p,N)

1: for i = 1, . . . , N do

2: Initialize Y
(i)
u` ← 0 for all u ∈ U, ` ∈ Y ∪∅

3: for (u, v) ∈ E do
4: Wuv ← 1 with probability puv, and ∞ o.w.
5: for s ∈ S do
6: dist[s][ · ]← Dijkstra(G,W, s)
7: for u ∈ U do
8: Y

(i)
u,α(u) ← 1 where α(u) ∈ argmins dist[s][u]

9: Return f̂ = 1
N

∑N
i=1 Y

(i)

IC variants have been proposed [8, 10, 12, 24]. The
common theme in these is that nodes inherit the la-
bel of their earliest infector (with tie-breaking when
needed). All of these are supported by our method.
In the supplementary material we show how our ap-
proach can also be applied to threshold models [25].

2.1.2 Continuous Time Dynamics

While simple and elegant, the IC dynamics are some-
what limited in their expressive power. One impor-
tant generalization is the Continuous-Time IC model
(CTIC) [20]. This model is well suited for SSL as it is
flexible, does not require tie-breaking, and allows for
incorporating node priors. In this model, a successful
infection attempt entails an “incubation period”, after
which the node becomes infected. Hence, if u succeeds
in infecting v at time τu ∈ R+, it draws an incubation
time δuv ∼ D(θuv), and v can become infected at time
τuv = τu+δuv. As in the IC model, v inherits the label
of its earliest infector ρ(v) = argminu τuv. The com-
petitive CTIC model generalizes the competitive IC
model for an appropriate choice of D, where δe is set
to 1 with probability pe, and∞ with probability 1−pe.
We therefore consider a general mixture distribution of
activations and incubation times D(p, θ), where δe is
sampled w.p. pe, and set to ∞ w.p. 1 − pe. Since
infections are determined by the earliest successful at-
tempt, the shortest-paths interpretation and algorithm
(Sec. 2.2.1) hold for the random graph Gδ = (V,E, δ).

2.2 Computing Infections Efficiently

For infection models as in Sec. 2.1, we would like to
calculate predictions f̂ as in Eq. (2). A naive approach
would be to do this by simulating the infection process
N times and averaging. This, however, is inefficient for
discrete-time IC, requires continuous time simulation
for CTIC, and does not apply to general models. We
hence provide an equivalent efficient alternative below.

2.2.1 Infections as Shortest Paths

We now present an alternative view of the sampling
process, which facilitates efficient implementation and
extensions. Consider first the discrete time IC process.
For a single instantiation of the process, recall that if
u succeeded in infecting v, the edge (u, v) is considered
active. We use the set of active edges A ⊆ E (sam-
pled throughout the instantiation until termination)
to construct the active graph GA = (V,E,WA) with
weights WA

e = 1 for e ∈ A and WA
e =∞ for e ∈ E \A.

An important observation is that node v is infected at
termination iff there exists a path in GA from some
seed node s ∈ S to v with finite weight. We refer to
this as an active path. Since v’s actual infection time
τv is set by the earliest successful infection, it is also
the length of the shortest active path from some s ∈ S.

The above formulation allows for replacing time with
graph distances. Let dA(u, v) be the distance from
u to v in GA. Due to the recursive nature of label
assignment, it follows that v inherits its label from the
s ∈ S whose distance to v is shortest. We refer to s as
v’s ancestor, denoted by α(v), and set α(v) = ∅ when
there are no paths from S to v. Infection outcomes
Yv` can now be expressed using distances:

Yv` = 1{` = yα(v)}, α(v) = argmin
s∈S

dA(s, v) (3)

Recall that our motivation here was to compute Y
without simulating the dynamics. Since distances dA
depend on edge activations, it is not yet clear why
Eq. (3) is useful. An important result by [25] shows
that ancestors can be computed over a simpler ran-
dom graph model. Specifically, let Ã ⊆ E be a ran-
dom edge set, where each edge (u, v) ∈ E is sampled
independently to be in Ã with probability puv. Then,
for an appropriately defined GÃ and dÃ, we have:

α(v) = argmin
s∈S

dÃ(s, v) (4)

Thus, to compute each Y
(i)
v` (and hence f̂), it suffices

to sample edges independently, and compute shortest
paths on GÃ, bypassing the need for simulation. Un-
der this view, f can be thought of as an ensemble of
shortest-path predictors, whose weights are set by the
dynamics. Algorithm 1 provides a simple implementa-
tion of this idea for the discrete time IC model. After
sampling edges, the algorithm computes shortest paths
(using Dikjstra) from each s ∈ S to all u ∈ U . Then,
each node u is assigned the label of its ancestor α(u).
This approach applies to a large class of infection mod-
els that admit to a similar graphical form [25].
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2.2.2 Improved Efficiency via Modified
Dijkstra

Recall that for a single infection instance, a node in-
herits its label from the closest seed node. Based on
this, Algorithm 1 offers a direct approach for comput-
ing f , where shortest paths are computed from each of
the k seed nodes to every unlabeled node v ∈ U using
k calls to Dijkstra. While correct, this method suffers
an unnecessary factor of k on its runtime. To reduce
this overhead, we change Dijkstra’s initialization and
updates, so that only a single call would suffice. Al-
gorithm 2 implements this idea for the general CTIC
model (Sec. 2.1.2) and allows for node priors (Sec. 4).
The correctness of the algorithm is stated below, and
a proof is provided in the supplementary material.

Proposition 2. Algorithm 2 correctly computes the
estimated infection probabilities f̂ in Eq. (1).

The worst-case complexity of Dijkstra, and hence of
each iteration in Algorithm 2, is O(m+n log n). Other
implementations of Dijkstra which support further
parallelization or GPUs [30] can also be modified for
our setting. Nonetheless, the practical run time of Al-
gorithm 2 can be, and typically is, much better, for
two reasons. First, note that only the subset of ac-
tive edges are traversed (and sampled on the fly), and
only nodes which are reachable from S are processed.
The infection parameters p therefore induce a trade-
off between the influence diameter of S and the run
time (empirical demonstration in Fig. 3 (left)). Sec-
ond, many settings require “hard” predictions ŷ ∈ Y,
typically set by ŷv = argmax` f̂u`. Hence, for ŷv to be

correct, it suffices that f̂u,yu ≥ f̂u` for all ` ∈ Y, which
does not require the full convergence stated in Propo-
sition 1 (empirical demonstration in Fig. 3 (right)).

In this section we showed how infection outcomes can
be computed efficiently. It is therefore only natural
to ask - what is it that infections optimize? In the
next section we show that f is in fact the solution
to a quadratic optimization objective, whose weights
intricately depend on the infection dynamics.

3 What do infections optimize?

Many SSL methods propose an optimization objec-
tive which encodes some notion of smoothness. For
instance, the classic LabelProp algorithm [46] encour-
ages adjacent nodes to agree on their predicted labels
by minimizing a quadratic penalty term:

flp = argmin
f ′

∑
`

∑
u,v

Wuv(f
′
u` − f ′v`)2 (5)

for predictions f ′ and symmetric weights W , subject
to f ′s` = 1{`=ys} for all s ∈ S. In this section we show

Algorithm 2 InfProp (G,S, y,D, q,N)

1: for i = 1, . . . , N do

2: Initialize Y
(i)
u` ← 0 for all u ∈ U, ` ∈ Y ∪∅

3: for v ∈ U do
4: dist[v]←∞, y[v]← ∅
5: for s ∈ S do
6: dist[s]← 0, y[s]← ys
7: push s into min-queue Q
8: while Q is not empty do
9: pop v from Q . break ties randomly

10: for u ∈ Nei(v) do
11: sample δvu ∼ D(θ, p) . incubation time

12: if δvu =∞ then continue
13: alt← dist[v] + wAvu + qu(y[v]) . penalize

14: if alt < dist[u] then
15: dist[u] = alt

16: y[u]← y[v] . u inherits label from parent v

17: push/update u in Q with dist[u]

18: Y
(i)
u,y[v] ← 1 for all u ∈ U

19: Return f̂ = 1
N

∑N
i=1 Y

(i)

that InfProp has a related interpretation. Specifically,
we show that the InfProp predictions f minimize the
quadratic objective in Eq. (13).

While similar in structure, the fundamental difference
between Eqs. (5) and (13) lies in how the weights are
determined. In LabelProp (and variants), edge weights
are given as input, and are typically set according to
some feature-based similarity measure. In this sense,
each Wuv is a local function of the features of u and
v. In contrast, weights in Eq. (13) are set in a global
manner. As we show next, each weight is a function of
the infection dynamics, of the specific seed set S, and,
if available, of the features of all nodes. To demon-
strate this, and to see why Eq. (13) holds, it will be
helpful to analyze InfProp from a spectral perspective.

3.1 A Laplacian Interpretation for InfProp

An interesting property of LabelProp is that its objec-
tive can be expressed via the graph Laplacian. For a
directed weighted graph, the normalized Laplacian is:

Llp = I − W̃ (6)

where W̃ = D−1W , D is diagonal with Duu =∑
vWuv (and W is symmetric). The output of Label-

Prop can be computed by solving the system Llpf
′ = 0

for the unlabeled nodes. We now show that the
infection-based predictions of InfProp also correspond
to the solution of a certain Laplacian system which is
determined by the seed set and the infection dynamics.
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Consider a single infection instance, and denote by
Tuv(S) the random variable indicating whether u was
infected by v for seed S, namely Tuv(S) = 1{u=ρ(v)}.
We refer to the matrix T as the infector matrix. Fur-
ther denote by T the expected infector matrix T (S) =
E [T (S)]. We use this to define the following Laplacian:

L(S) = I − T (S) (7)

Note that L is defined over the same graph G, but need
not be symmetric. We now show that L is indeed a
Laplacian matrix, and that it can be used to infer f .

Lemma 1. The infection-based predictions f in
Eq. (2) are also the solution to the Laplacian system:

L(S)f = b(S) (8)

where:

bu`(S) =
∑
v

b
(S)
vu`, b

(S)
vu` = cov [Tvu(S), Yu`]

For conciseness, we defer the full proof to the supple-
mentary material, and show here a useful special case.

Lemma 2. If T and Y are uncorrelated, then the
infection-based predictions f in Eq. (2) are also the
solution to the homogeneous Laplacian system:

L(S)f = 0 (9)

Proof. We first show that L is a graph Laplacian,
namely that the sum of each row in T is equal to the
corresponding diagonal element in I, which is 1. Since
rows in T have only one non-zero entry of value one,
each row in T is positive and sums to one. Note that
T u· provides a distribution over the infectors of u.

We now prove Eq. (9). By definition, the label of each
node at steady state is set to be that of its infector,
namely Yv` = Yρ(v),` for all v and `, or simply Y = TY .
Using Eq. (2) and applying expectation, we have:

f(S) = E [Y ] = E [T (S)Y ] (10)

When T, Y are uncorrelated, E [TY ] = E [T ]E [Y ],
hence f = T f. Rearranging concludes our proof.

3.2 InfProp as Optimization

We next use the Laplacian insight above to provide an
objective minimized by the InfProp solution. Begin
by noting that for LabelProp, the solution of Eq. (6)
coincides with the solution of the following objective:

flp = argmin
f ′

‖Llpf
′‖2F

= argmin
f ′

∑
`

∑
u

(
f ′u` −

∑
v

W̃uvf
′
v`

)2
(11)

where minimization is only over the unlabeled nodes,
and ‖· ‖F denotes the Frobenius norm. This gives an
alternative quadratic objective which bounds Eq. (5)
and directly expresses the steady-state of LabelProp’s
averaging dynamics. In a similar fashion, we can derive
an equivalent formulation of f in Eq. (8) via:

f(S) = argmin
f ′

‖L(S)f ′ − b(S)‖2F (12)

Expanding and denoting w
(S)
uv = T uv(S) provides the

general objective of our method:

min
f ′

∑
`

∑
u

(
f ′u` −

∑
v

(
w(S)
uv f

′
v` + b

(S)
uv`

))2
(13)

Note that Eq. (13) and Eq. (11) are structurally equiv-
alent up to the bias terms, which disappear under the
conditions of Lemma 2. The critical difference is that
the weights in Eq. (13) are now functions of the dy-
namics and seed set, rather than just scalars given as
input. Through their dependence on T and Y , the
weights and bias terms in Eq. (13) are in fact func-

tions of the dynamics. In this sense, w
(S)
uv quantifies

how well v relays information from S to u, which de-

pends on the entire graph. Similarly, the term b
(S)
uv`

quantifies consistency between the identity of u’s in-
fector (v) and the inherited label (`). This means that
frequent yet indecisive infectors are penalized, while
reliable nodes remain unbiased.

Finally, note that the optimization interpretation
above does not offer a better optimization scheme,
since calculating the weights w(S) and b(S) would re-
quire sampling. Hence, our InfProp sampling algo-
rithms from Sec. 2.2 would be a simpler approach.

4 Other Learning Settings

In this section we briefly describe how our method ex-
tends to other learning settings used in our experi-
ments. For more details please see the supp. material.

Incorporating features and priors: Many
network-based datasets include additional node
features or priors. Our method incorporates priors
directly into the CTIC dynamics by penalizing incu-
bation times. Denote by ρv` the prior for labeling v
with `, and let q : [0, 1] → R be a penalty function.
If u succeeds in infecting v with `, the incubation
time δuv is penalized by an additional q(ρv`). For
a monotone decreasing q, high priors induce low
penalties, and vice versa. Although penalties are
deployed locally, they delay the propagation of the
penalized label across the graph in a global manner.
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Figure 2: Results on the CoRA dataset for various learning settings.

Confidence and active learning: Recall that v re-
mains uninfected with probability fv0. Hence, σv(S) =
1− fv0 serves as a natural measure of confidence. We
use this as a selection criteria for an active setting
where the goal is to choose a seed set of size k. The
objective we consider coincides with the well-studied
notion of influence [25], which is monotone and sub-
modular and admits to an efficient greedy approxima-
tion scheme. Our method thus offers a tractable alter-
native to existing active SSL methods [23, 18, 21].

5 Related Work

Methods for SSL are often based on assumptions re-
garding the structure of the unlabeled data. One such
assumption is smoothness, which states that examples
that are close are likely to have similar labels. In
the classic Label Propagation algorithm [46], adjacent
nodes in the graph are encouraged to agree on their
labels via a quadratic penalty. Some variants add reg-
ularization terms [4], allow for label uncertainty [41],
or include normalization and unanchored seeds [45].

The above methods are designed for graphs that ap-
proximate the data density via similarity in feature
space, and are typically constructed from samples.
Recent SSL methods are geared towards tasks where
graphs are an additional part of the input. Motivated
by deep embeddings [31], these methods embed the
nodes of a graph into a low-dimensional vector space,
which can then be used in various ways. When the
data includes only the graph, the embeddings can be
used as input for an off-the-shelf predictor [35]. When
the data includes additional node features, the embed-
ding can act as a regularizer for a standard loss over the
labeled nodes [44, 27]. In contrast to classic methods,
these methods propagate features rather than labels.

An alternative method for utilizing graphs is to con-
sider shortest paths as a measure of closeness. The
authors of [1] show that Laplacians and shortest paths
are special cases of “resistance distances”, and pro-

pose (but do not evaluate) a new regularizer. Other
methods construct ad-hoc graphs whose shortest paths
approximate density-based distances [34, 6]. A recent
work [15] proposes a method for SSL in directed graphs
based on distance diffusion. As they consider distances
from unlabeled to labeled nodes, each instance is com-
putationally intensive, and requires an approximation
scheme. In contrast, we consider distances from la-
beled to unlabeled nodes, which can be computed effi-
ciently. While for a specific setting (symmetric weights
and a certain link function) both models overlap, in
this paper we consider a more general setup.

Our method draws on the rich literature of infection
models and diffusion processes over networks. These
have been used for describing the propagation of in-
formation, innovation, behavioral norms, and others,
and have been utilized in works in influence maximiza-
tion [25], network inference [20], influence maximiza-
tion [25] estimation [17, 16] and prediction [37], and
personalized marketing [14].

6 Experiments

We evaluated our method on various learning tasks
over three benchmark dataset collections, which in-
clude networked data for multiclass learning with fea-
tures [39] and without features [38], and multilabel
learning [33]. The datasets include diverse networks
such as social networks, citation and co-authorship
graphs, product and item networks, and hyperlink
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Figure 3: Activation tradeoff and convergence
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Multiclass (Accuracy /MSE) Multilabel (AUC/Top-1)

CoRA DBLP Flickr IMDb Industry Amazon CoRA IMDb PubMed Wikipedia YouTube

InfProp 0.59 /0.56 0.73 /0.42 0.79 /0.38 0.56 /0.49 0.21 / 0.91 0.79 / 0.56 0.91 /0.67 0.75 /0.36 0.90 /0.77 0.93 / 0.70 0.84 / 0.38

InfProp0.5 0.58 / 0.64 0.74 / 0.46 0.78 /0.38 0.55 /0.49 0.21 /0.90 0.79 /0.57 0.90 / 0.67 0.76 /0.36 0.88 /0.77 0.94 / 0.71 0.84 /0.40

ShortPaths 0.53 / 0.87 0.63 / 0.74 0.65 / 0.70 0.55 / 0.90 0.16 / 1.57 0.69 / 0.49 0.76 / 0.56 0.57 / 0.30 0.76 / 0.67 0.67 / 0.36 0.59 / 0.22

LabelProp 0.41 / 0.74 0.60 / 0.59 0.33 / 0.90 0.50 / 0.63 0.14 / 0.99 0.85 /0.57 0.86 / 0.48 0.77 /0.36 0.82 / 0.64 0.78 / 0.31 0.71 / 0.18

Adsorption 0.42 / 0.99 0.54 / 0.99 0.72 / 0.99 0.56 / 0.99 0.14 / 0.99 0.73 / 0.52 0.86 / 0.60 0.71 / 0.32 0.80 / 0.69 0.89 / 0.57 0.79 / 0.28

MAD 0.45 / 0.99 0.20 / 1.00 0.75 / 0.99 0.58 / 0.99 0.16 / 1.00 0.73 / 0.52 0.47 / 0.30 0.70 / 0.32 0.79 / 0.70 0.00 / 0.05 0.81 / 0.31

DeepWalk 0.29 / 0.86 0.77 / 0.62 0.49 / 0.73 0.50 / 0.56 0.17 / 0.92 0.60 / 0.13 0.80 / 0.53 0.61 / 0.32 0.57 / 0.42 0.94 /0.88 0.60 / 0.24

Table 1: Results for experiments on data without features.

graphs (see supplementary material for dataset sum-
mary statistics).

Our experimental setup follows the standard graph-
based semi-supervised learning evaluation approach.
Specifically, in each instance we draw a seed set of size
k uniformly at random, acquire its labels, and then
use the graph and labeled seed set to generate labels
for all nodes. We repeat this procedure for 10 random
seed set selections and for various values of k (where k
is set to be a fixed proportion of the number of nodes
in the graph) and report average results.

We compared our method to current state-of-the-art
baselines, which include spectral methods as well as
deep embedding methods. For tasks which do not in-
clude features, these included LabelProp [46], Ad-
sorption [4], MAD [41], and the feature-agnostic
deep method DeepWalk [35]. For tasks which do
include features, we compared to the prior-supporting
spectral method LLGC [45], the recent feature-based
deep method Planetoid [44], LabelProp as a
graph-only baseline, logistic regression (LogReg) as
a features-only baseline, and a baseline where labels
are set by shortest paths in G (ShortPaths). For
the active setting (Fig. 2), we compared our approach
(Greedy) to METIS [22], to choosing high-degree
nodes (HiDeg), and to random seeds (Rand).

For our method (InfProp) we used exponential incu-
bation times δ ∼ Exp(θ). As in many works (e.g.,
[25, 15]), we used θuv = 1/du for all node pairs
(u, v) ∈ E, where du is the out-degree of u. We set
the number of random instances to N = 1, 000. Fig.
3 (right) demonstrates accuracy and convergence as a
function of N . We show results for two variants: Inf-
Prop, where we set activation probabilities to p = 1
for all edges, and InfProp0.5, where p = 0.5. In addi-
tion to providing a confidence measure, InfProp0.5 is
much faster, while on average achieving 0.99% of the
performance of InfProp. Fig. 3 (left) demonstrates
the tradeoff in accuracy and runtime when varying p.

The methods we consider naturally output probabilis-
tic “soft” labels as predictions. We therefore evaluate
performance using both probabilistic (for multi-class)
or order-based (for multi-label) performance measures,
as well as performance measures for “hard” labels,

which were generated by choosing the label with the
highest value. Tables 1 and 2 include results for all
datasets for k = 1% of the data. Fig. 2 shows results
for various values of k on the CoRA dataset (which
appears in all benchmarks). As shown, InfProp con-
sistently performs well across all settings.

7 Conclusions

In this work we presented an SSL method where la-
bels propagate over the graph using dynamic infection
models. These models have a strong connection to
short-path ensembles and to graph Laplacians, allow
for efficient computation, and show empirical poten-
tial. Our work was motivated by the idea that different
graph types may require different dynamics, which led
us to consider alternatives to random walks and aver-
aging dynamics. We used a competitive CTIC variant,
but other infection models (and other dynamics in gen-
eral) can be considered. The choice of dynamics can
serve as a means for expressing prior knowledge and
for encoding structure and dependencies.

The models we use have very few tunable parameters.
Nonetheless, one can consider highly parametrized
models. Such parameters can be used to control in-
fection probabilities, be node or label specific, relate
to features, and even adjust the dynamics themselves.
The stochastic nature of the models and the nonlinear-
ity of the dynamics makes learning these parameters
a challenging task, which we leave for future work.

(Acc. / MSE) CiteSeer CoRA PubMed

InfProp 0.47 / 0.72 0.62 / 0.59 0.74 / 0.46

InfProp0.5 0.48 / 0.74 0.60 / 0.57 0.72 / 0.41

ShortPaths 0.39 / 0.73 0.44 / 0.72 0.68 / 0.51

LogReg 0.44 / 0.78 0.37 / 0.81 0.45 / 0.65

LabelProp 0.39 / 0.77 0.38 / 0.78 0.40 / 0.67

LLGC 0.45 / 0.71 0.49 / 0.69 0.44 / 0.67

Planetoid2 0.41 / 0.94 0.53 / 0.89 0.68 / 0.64

Table 2: Results on data with features.

Acknowledgments. This work was supported by
the Blavatnik Computer Science Research Fund and
an ISF Centers of Excellence grant.

2Results differ from [44] since their evaluation is based
on a specific seed, chosen by a different procedure, evalu-
ated on 1000 samples, and early-stopped differently.
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Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining (2003), ACM, pp. 137–
146.

[26] Kermack, W. O., and McKendrick, A. G.
A contribution to the mathematical theory of epi-
demics. Proceedings of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering
Sciences 115, 772 (1927), 700–721.

[27] Kipf, T. N., and Welling, M. Semi-
supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907
(2016).

[28] Lin, F., and Cohen, W. W. The multi-
rank bootstrap algorithm: Self-supervised polit-
ical blog classification and ranking using semi-
supervised link classification. In Proceedings of
the Second International Conference on Weblogs
and Social Media, ICWSM 2008, Seattle, Wash-
ington, USA, March 30 - April 2, 2008 (2008).

[29] Lofgren, P., Banerjee, S., Goel, A., and
Comandur, S. FAST-PPR: scaling personal-
ized pagerank estimation for large graphs. In
The 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27,
2014 (2014), pp. 1436–1445.

[30] Mart́ın, P. J., Torres, R., and Gavilanes,
A. Cuda solutions for the sssp problem. In In-
ternational Conference on Computational Science
(2009), Springer, pp. 904–913.

[31] Mikolov, T., Sutskever, I., Chen, K., Cor-
rado, G. S., and Dean, J. Distributed repre-
sentations of words and phrases and their com-
positionality. In Advances in neural information
processing systems (2013), pp. 3111–3119.

[32] Nadler, B., Srebro, N., and Zhou, X. Semi-
supervised learning with the graph laplacian: The
limit of infinite unlabelled data. Advances in neu-
ral information processing systems 21 (2009).

[33] Nandanwar, S., and Murty, M. N. Struc-
tural neighborhood based classification of nodes
in a network. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (2016), KDD ’16,
pp. 1085–1094.

[34] Orlitsky, A., et al. Estimating and comput-
ing density based distance metrics. In Proceedings
of the 22nd international conference on Machine
learning (2005), ACM, pp. 760–767.

[35] Perozzi, B., Al-Rfou, R., and Skiena, S.
Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining (2014), ACM, pp. 701–710.

[36] Rifai, S., Dauphin, Y., Vincent, P., Bengio,
Y., and Muller, X. The manifold tangent clas-
sifier. In NIPS (2011), vol. 271, p. 523.

[37] Rosenfeld, N., Nitzan, M., and Glober-
son, A. Discriminative learning of infection mod-
els. In Proceedings of the Ninth ACM Interna-
tional Conference on Web Search and Data Min-
ing (2016), WSDM ’16, pp. 563–572.

[38] Saha, T., Rangwala, H., and Domeniconi,
C. Flip: active learning for relational network
classification. In Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases (2014), Springer, pp. 1–18.

[39] Sen, P., Namata, G. M., Bilgic, M.,
Getoor, L., Gallagher, B., and Eliassi-
Rad, T. Collective classification in network data.
AI Magazine 29, 3 (2008), 93–106.

[40] Sindhwani, V., Niyogi, P., and Belkin, M.
Beyond the point cloud: from transductive to
semi-supervised learning. In Proceedings of the
22nd international conference on Machine learn-
ing (2005), ACM, pp. 824–831.



Nir Rosenfeld, Amir Globerson

[41] Talukdar, P. P., and Crammer, K. New reg-
ularized algorithms for transductive learning. In
Joint European Conference on Machine Learning
and Knowledge Discovery in Databases (2009),
Springer, pp. 442–457.

[42] Vishnoi, N. K., et al. Lx= b. Foundations
and Trends in Theoretical Computer Science 8,
1–2 (2013), 1–141.

[43] von Luxburg, U., Radl, A., and Hein, M.
Getting lost in space: Large sample analysis of
the resistance distance. In Advances in Neural In-
formation Processing Systems (2010), pp. 2622–
2630.

[44] Yang, Z., Cohen, W. W., and Salakhutdi-
nov, R. Revisiting semi-supervised learning with
graph embeddings. In Proceedings of the 33rd
International Conference on International Con-
ference on Machine Learning (2016), ICML’16,
pp. 40–48.

[45] Zhou, D., Bousquet, O., Lal, T. N., We-
ston, J., and Schölkopf, B. Learning with
local and global consistency. In NIPS (2003),
vol. 16, pp. 321–328.

[46] Zhu, X., Ghahramani, Z., Lafferty, J.,
et al. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML (2003),
vol. 3, pp. 912–919.


