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Abstract Learning-to-rank techniques have proven to be extremely useful for prioritization problems, where we rank items
in order of their estimated probabilities, and dedicate our limited resources to the top-ranked items. This work exposes a
serious problem with the state of learning-to-rank algorithms, which is that they are based on convex proxies that lead to
poor approximations. We then discuss the possibility of “exact” reranking algorithms based on mathematical programming.
We prove that a relaxed version of the “exact” problem has the same optimal solution, and provide an empirical analysis.
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1 Introduction

We are often faced with prioritization problems — how can we rank aircraft in order of vulnerability to failure? How can
we rank patients in order of priority for treatment? When we have limited resources and need to make decisions on how
to allocate them, these ranking problems become important. The quality of a ranked list is often evaluated in terms of
rank statistics. The area under the receiver operator characteristic curve (AUC, Metz, 1978; Bradley, 1997), which counts
pairwise comparisons, is a rank statistic, but it does not focus on the top of a ranked list, and is not a good evaluation
measure if we care about prioritization problems. For prioritization problems, we would use rank statistics that focus on
the top of the ranked list, such as a weighted area under the curve that focuses on the left part of the curve. Then, since
we evaluate our models using these rank statistics, we should aim to optimize them out-of-sample by optimizing them in-
sample. The learning-to-rank field (also called supervised ranking) is built from this fundamental idea. Learning-to-rank is
a natural fit for many prioritization problems. If we are able to improve the quality of a prioritization policy by even a small
amount, it can have an important practical impact. Learning-to-rank can be used to prioritize mechanical equipment for repair
(e.g., airplanes, as considered by Oza et al, 2009), it could be useful for prioritizing maintenance on the power grid (Rudin
et al, 2012, 2010), it could be used for ranking medical workers in order of likelihood that they accessed medical records
inappropriately (as considered by Menon et al, 2013), prioritizing safety inspections or lead paint inspections in dwellings
(Potash et al, 2015), ranking companies in order of likeliness of committing tax violations (see Kong and Saar-Tsechansky,
2013), ranking water pipes in order of vulnerability (as considered by Li et al, 2013), other areas of information retrieval
(Xu, 2007; Cao et al, 2007; Matveeva et al, 2006; Lafferty and Zhai, 2001; Li et al, 2007) and in almost any domain where
one measures the quality of results by rank statistics. Learning-to-rank algorithms have been used also in sentiment analysis
(Kessler and Nicolov, 2009), natural language processing (Ji et al, 2006; Collins and Koo, 2005), image retrieval (Jain and
Varma, 2011; Kang et al, 2011), and reverse-engineering product quality rating systems (Chang et al, 2012).

This work exposes a serious problem with the state of learning-to-rank algorithms, which is that they are based on convex
proxies for rank statistics, and when these convex proxies are used, computation is faster but the quality of the solution can
be poor.

We then discuss the possibility of more direct optimization of rank statistics for predictive learning-to-rank problems. In
particular, we consider a strategy of ranking with a simple ranker (logistic regression for instance) which is computationally
efficient, and then reranking only the candidates near the top of the ranked list with an “exact” method. The exact method
does not have the shortcoming that we discussed earlier for convex proxies.

For most ranking applications, we care only about the top of the ranked list; thus, as long as we rerank enough items
with the exact method, the re-ranked list is (for practical purposes) just as useful as a full ranked list would be (if we could
compute it with the exact method, which would be computationally prohibitive).

The best known theoretical guarantee on ranking methods is obtained by directly optimizing the rank statistic of interest
(as shown by theoretical bounds of Clemengon and Vayatis, 2008; Rudin and Schapire, 2009, for instance) hence our choice
of methodology — mixed-integer programming (MIP) — for reranking in this work. Our general formulation can optimize
any member of a large class rank statistics using a single mixed-integer linear program. Specifically, we can handle (a
generalization of) the large class of conditional linear rank statistics, which includes the Wilcoxon-Mann Whitney U statistic,
or equivalently the Area Under the ROC Curve, the Winner-Take-All statistic, the Discounted Cumulative Gain used in
information retrieval (Jarvelin and Kekildinen, 2000), and the Mean Reciprocal Rank.

Exact learning-to-rank computations need to be performed carefully; we should not refrain from solving hard problems,
but certain problems are harder than others. We provide two MIP formulations aimed at the same ranking problems. The



first one works no matter what the properties of the data are. The second formulation is much faster, and is theoretically
shown to produce the same quality of result as the first formulation when there are no duplicated observations. Note that if
the observations are chosen from a continuous distribution then duplicated observations do not occur, with probability one.

One challenge in the exact learning-to-rank formulation is the way of handling ties in score. As it turns out, the original
definition of conditional linear rank statistics can be used for the purpose of evaluation but not optimization. We show that a
small change to the definition can be used for optimization.

This paper differs from our earlier technical report and non-archival conference paper (Chang et al, 2011, 2010), which
were focused on solving full problems to optimality, and did not consider reranking or regularization; our exposition for
the formulations closely follows this past work. The technique was used by Chang et al (2012) for the purpose of reverse
engineering product rankings from rating companies that do not reveal their secret rating formula.

Section 2 of this paper introduces ranking and reranking, introduces the class of conditional linear rank statistics that
we work with, and provides background on some current approximate algorithms for learning-to-rank. It also provides an
example to show how ranked statistics can be “washed out” when they are approximated by convex substitutes. Section 2
also discusses a major difference between approximation methods and exact methods for optimizing rank statistics, which
is how to handle ties in rank. As it turns out, we cannot optimize conditional linear rank statistics without changing their
definition: a tie in score needs to be counted as a mistake. Section 3 provides the two MIP formulations for ranking, and
Section 4 contains a proof that the second formulation is sufficient to solve the ranking problem provided that no observations
are duplicates of each other. Then follows an empirical discussion in Section 5, designed to highlight the tradeoffs in the
quality of the solution outlined above. Appendix A.l contains a MIP formulation for regularized AUC maximization, and
Appendix A.2 contains a MIP formulation for a general (non bipartite) ranking problem.

The recent work most related to ours are possibly those of Ataman et al (2006) who proposed a ranking algorithm to
maximize the AUC using linear programming, and Brooks (2010), who uses a ramp loss and hard margin loss rather than a
conventional hinge loss, making their method robust to outliers, within a mixed-integer programming framework. The work
of Tan et al (2013) uses a non-mathematical-programming coordinate ascent approach, aiming to approximately optimize
the exact ranking measures, for large scale problems. There are also algorithms for ordinal regression, which is a related but
different learning problem (Li et al, 2007; Crammer et al, 2001; Herbrich et al, 1999), and listwise approaches to ranking
(Cao et al, 2007; Xia et al, 2008; Xu and Li, 2007; Yue et al, 2007).

2 Learning-to-Rank and Learning-To-Rerank

We first introduce learning-to-rank, or supervised bipartite ranking. The training data are labeled observations { (x;, ¥i) }i=1,
with observations x; € X C R and labels y; € {0,1} for all i. The observations labeled “1” are called “positive
observations,” and the observations labeled “0” are “negative observations.” There are n, positive observations and n_—
negative observations, with index sets S = {i : y; = 1} and S— = {k : yr = 0}. A ranking algorithm uses the
training data to produce a scoring function f : X — ‘R that assigns each observation a real-valued score. Ideally, for a
set of test observations drawn from the same (unknown) distribution as the training data, f should rank the observations in
order of P(y = 1|x), and we measure the quality of the solution using “rank statistics,” or functions of the observations
relative to each other. Note that bipartite ranking and binary classification are fundamentally different, and there are many
works that explain the differences (e.g., Ertekin and Rudin, 2011). Briefly, classification algorithms consider a statistic of the
observations relative to a decision boundary (n comparisons) whereas ranking algorithms consider observations relative to
each other (on the order of n? comparisons for pairwise rank statistics).

Since the evaluation of test observations uses a chosen rank statistic, the same rank statistic (or a convexified version
of it) is optimized on the training set to produce f. Regularization is added to help with generalization. Thus, a ranking
algorithm looks like:

}111-17_1_ RankStatistic(f, {x:, yi}:) + C - Regularizer(f).
€

This is the form of algorithm we consider for the reranking step.

2.1 Reranking

We are considering reranking methods, which have two ranking steps. In the first ranking step, a base algorithm is run over
the training set, and a scoring function fiiia is produced and observations are rank-ordered by the score. A threshold is
chosen, and all observations with scores above the threshold are reranked by another ranking algorithm which produces
another scoring function f. To evaluate the quality of the solution on the test set, each test observation is evaluated first



by finitiai- For the observations with scores above the threshold, they are reranked according to f. The full ranking of test
observations is produced by appending the test observations scored by f to the test observations scored only by fiitial-

2.2 Rank Statistics

We will extend the definition of conditional linear rank statistics (Clemengon and Vayatis, 2008; Clemengon et al, 2008) to
include various definitions of rank. For now, we assume that there are no ties in score for any pair of observations, but we
will heavily discuss ties later, and extend this definition to include rank definitions when there are ties. For the purpose of
this section, the rank is currently defined so that the top of the list has the highest ranks, and all ranks are unique. The rank
of an observation is the number of observations with scores at or beneath it:

Rank(f(xi)) = D Li(x) < fx)-
t=1
Thus, ranks can range from 1 at the bottom to n at the top. A conditional linear rank statistic (CLRS) created from scoring
function f : X — R is of the form

CLRS(f) = zn: 1y,—16(Rank(f(x:)).

i=1
Here ¢ is a non-decreasing function producing only non-negative values. Without loss of generality, we define a, :=
the contribution to the score if the observation with rank ¢ has label +1. By properties of ¢, we know 0 < a1 <ag < --- <

an. Then
n

CLRS Zy'LZlRank(f(x,)) £ - ag. (1)
1=1 =1

This class captures a broad collection of rank statistics, including the following well-known rank statistics:
— ag = ¢: Wilcoxon Rank Sum (WRS) statistic, which is an affine function of the Area Under the Receiver Operator
Characteristic Curve (AUC) when there are no ties in rank (that is, f such that f(x;) # f(xx) Vi # k).
ny(ng +1)

WRS(f) = > Rank(f(x:)) =nyn_ - AUC(f) + 5

i€S,

If ties are present, we would subtract the number of ties within the positive class from the right side of the equation
above. The AUC is the fraction of correctly ranked positive-negative pairs:

D> e <fxl-

€Sy keS_

AUC(f)

n+n

The AUC, when multiplied by constant n4n_, is the Mann-Whitney U statistic. The AUC has an affine relationship
with the pairwise misranking error (the fraction of positive-negative pairs in which a positive is ranked at or below a
negative):

PairwiseMisrankingError(f) = 1 — AUC(f) 11f(xp)> ()] (2)

T ieSL keSS
Some ranking algorithms are designed to approximately minimize the pairwise misranking error, e.g., RankBoost (Fre-
und et al, 2003).

— ag = £ 14> for predetermined threshold 6: Related to the local AUC or partial AUC, which looks at the area under
the leftmost part of the ROC curve only (Clemengon and Vayatis, 2007, 2008; Dodd and Pepe, 2003). The leftmost part
of the ROC curve is the top portion of the ranked list. The top of the list is the most important in applications such as
information retrieval and maintenance.

- ag = 1y—p): Winner Takes All (WTA), which is 1 when the top observation in the list is positively-labeled and 0
otherwise (Burges et al, 2006).

- ap = = z i : Mean Reciprocal Rank (MRR) (Burges et al, 2006).

- ay = m Discounted Cumulative Gain (DCG), which is used in information retrieval (Jarvelin and Kekaldinen,
2000).

- ay = m - 1> n): DCG@N, which cuts off the DCG after the top N. (See, for instance, Le et al, 2010).

— ay = % for some p > 0: Similar to the P-Norm Push, which uses £, norms to focus on the top of the list, the same way
as an ¢, norm focuses on the largest elements of a vector (Rudin, 2009a).

Rank statistics have been studied in several theoretical papers (e.g., Wang et al, 2013).



2.3 Some Known Methods for Learning-To-Rank

Current methods for learning-to-rank optimize convex proxies for the rank statistics discussed above. RankBoost (Freund
et al, 2003) uses the exponential loss function as an upper bound for the 0-1 loss within the misranking error, 1,<oq) < ™7,

and minimizes
Z Z 6—(f(xi)—f(xk))7 3)
€S, keS_

whereas support vector machine ranking algorithms (e.g., Joachims, 2002; Herbrich et al, 2000; Shen and Joshi, 2003) use
the hinge loss max{0, 1 — z}, that is:

> > max{0,1— (f(xi) — f(xx)} + Cllfl%, )

i€S, keS_

where the regularization term is a reproducing kernel Hilbert space norm. Other ranking algorithms include RankProp and
RankNet (Caruana et al, 1996; Burges et al, 2005).

We note that the class of CLRS includes a very wide range of rank statistics, some of which concentrate on the top of
the list (e.g., DCG) and some that do not (e.g.,WRS), and it is not clear which conditional linear rank statistics (if any) from
the CLRS are close to the convexified loss functions (3) and (4).

Since the convexified loss functions do not necessarily represent the rank statistics of interest, it is not even necessarily
true that an algorithm for ranking will perform better for ranking than an algorithm designed for classification; in fact,
AdaBoost and RankBoost provably perform equally well for ranking under fairly general circumstances (Rudin and Schapire,
2009). Ertekin and Rudin (2011) provide a discussion and comparison of classification versus ranking methods. Ranking
algorithms ultimately aim to put the observations in order of P(y = 1|x), and so do some classification algorithms such as
logistic regression. Thus, one might consider using logistic regression for ranking (e.g., Cooper et al, 1994; Fine et al, 1997;
Perlich et al, 2003). Logistic regression minimizes:

S n (14 emnI ) )

1=1

This loss function does not closely resemble the AUC. On the other hand, it is surprising how common it is within the
literature to use logistic regression to produce a predictive model, and yet evaluate the quality of the learned model using
AUC.

Since RankBoost, RankProp, RankNet, etc., do not directly optimize any CLRS, they do not have the problem with ties
in score that we will find when we directly try to optimize a CLRS.

2.4 Why Learning-To-Rank Methods Can Fail

We prove that the exponential loss and other common loss functions may yield poor results for some rank statistics.

Theorem 1 There is a simple one-dimensional dataset for which there exist two ranked lists (called Solution 1 and Solution
2) that are completely reversed from each other (the top of one list is the bottom of the other and vice versa) such that the
WRS (the AUC), partial AUC@ 100, DCG, MRR and hinge loss prefer Solution 1, whereas the DCG@ 100, partialAUC@ 10
and exponential loss all prefer Solution 2.

The proof is by construction. Along the single dimension x, the dataset has 10 negatives near x=3, then 3000 positives
near =1, then 3000 negatives near =0, and 80 positives near z=—10. We generated each of the four clumps of points wth
a a standard deviation of 0.05 just so that there would not be ties in score. Figure 1 shows data drawn from the distribution,
where for display purposes we spread the points along the horizontal axis, but the vertical axis is the only one that matters:
one ranked list goes from top to bottom (Solution 1) and the other goes from bottom to top (Solution 2).

The bigger clumps are designed to dominate rank statistics that do not decay (or decay slowly) down the list, like the
WRS. The smaller clumps are designed to dominate rank statistics that concentrate on the top of the list, like the partial WRS
or partial DCG.

This theorem means that using the exponential loss to approximate the AUC, as RankBoost does, could give the com-
pletely opposite result than desired. It also means that using the hinge loss to approximate the partial DCG or partial AUC
could yield completely the wrong result. Further, the fact that the exponential loss and hinge loss behave differently also sug-
gests that convex losses can behave quite differently than the underlying rank statistics that they are meant to approximate.
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Fig. 1 An illustrative distribution of data. Positive observations are gray and negative observations are black. Solution 1 ranks observations from
top to bottom, and Solution 2 ranks solutions from bottom to top.

Another way to say this is that the convexification “washes out” the differences between rank statistics. If we were directly
to optimize the rank statistic of interest, the problem discussed above would vanish.

It is not surprising that rank statistics can behave quite differently on the same dataset. Rank statistics are very different
than classification statistics. Rank statistics consider every pair of observations relative to each other, so even small changes
in a scoring function f can lead to large changes in a rank statistic. Classification is different — observations are considered
relative only to a decision boundary.

The example considered in this section also illustrates why arguments about consistency (or lack thereof) of ranking
methods (e.g., Kotlowski et al, 2011) are not generally relevant for practice. Sometimes these arguments rely on incorrect
assumptions about the class of models used for ranking with respect to the underlying distribution of the data. These argu-
ments also depend on how the modeler is assumed to “change” this class as the sample size increases to infinity. The tightest
bounds available for limited function classes and for finite data are those from statistical learning theory. Those bounds
support optimizing rank statistics.

To optimize rank statistics, there is a need for more refined models; however, this refinement comes at a computational
cost of solving a harder problem. This thought has been considered in several previous works on learning-to-rank (Le et al,
2010; Ertekin and Rudin, 2011; Tan et al, 2013; Chakrabarti et al, 2008; Qin et al, 2013).

2.5 Most Learning-To-Rank Methods Have The Problem Discussed Above

The class of CLRS includes a very wide range of rank statistics, some of which concentrate on the top of the list (e.g.,
DCG) and some that do not (e.g.,WRS), and it is not clear which conditional linear rank statistics (if any) from the CLRS
are close to the convexified loss functions of the ranking algorithms. RankBoost is not the only algorithm where problems
can occur, and they can also occur for support vector machine ranking algorithms (e.g., Joachims, 2002; Herbrich et al,
2000) and algorithms like RankProp and RankNet (Caruana et al, 1996; Burges et al, 2005). The methods of Ataman et al
(2006), Brooks (2010), and Tan et al (2013) have used linear relaxations or greedy methods for learning to rank, rather than
exact reranking, which will have similar issues; if one optimizes the wrong rank statistic, one may not achieve the correct
answer. Logistic regression is commonly used for ranking. Logistic regression minimizes: >}~ ; In (1 + e Vit (xi)) . This
loss function does not closely resemble AUC. On the other hand, it is surprising how common it is to use logistic regression
to produce a predictive model, and yet evaluate the quality of the model using AUC.

The fundamental premise of learning-to-rank is that better test performance can be achieved by optimizing the perfor-
mance measure (a rank statistic) on the training set. This means that one should choose to optimize differently for each rank
statistic. However, in practice when the same convex substitute is used to approximate a variety of rank statistics, it directly
undermines this fundamental premise, and could compromise the quality of the solution. If convexified rank statistics are
a reasonable substitute for rank statistics, we would expect to see that (i) the rank statistics are reasonably approximated by
their convexified versions, (ii) if we consider several convex proxies for the same rank statistic (in this case AUC), then they
should all behave very similarly to each other, and similarly to the true (non-convexified) AUC. However, as we discussed,
neither of these are true.

2.6 Ties and Problematic, Thus Use ResolvedRank and Subrank

Dealing with ties in rank is critical when directly optimizing rank statistics. If a tie in rank between a positive and negative
is considered as correct, then an optimal learning algorithm would produce the trivial scoring function f(x) = constant Vx;



Label y; + + - - — +  + - +
Score f(x;) 62 62 58 46 31 31 23 17 1.7
SubRank 7 7 6 5 3 3 2 0 0
ResolvedRank 8 7 6 5 4 3 2 1 0

Fig. 2 Demonstration of rank definitions.

this solution would unfortunately attain the highest possible score when optimizing any pairwise rank statistic. This problem
happens, for instance, with the definition of Clemengon and Vayatis (2008), that is:

RankCV(f(x:)) = Y 1f(x)<f(x0)>
k=1

which counts ties in score as correct. Using this definition for rank in the CLRS:

CLRScv(f) =Y i D L[RankCV(f(xi))=¢] * @e- (6)
=1 =1

we find that optimizing CLRScy directly yields the trivial solution that all observations get the same score. So this definition
of rank should not be used.

We need to encourage our ranking algorithm not to produce ties in score, and thus in rank. To do this, we pessimistically
consider a tie between and positive and a negative as a misrank. We will use two definitions of rank within the CLRS
— ResolvedRanks and Subranks. For ResolvedRanks, when negatives are tied with positives, we force the negatives to be
higher ranked. For Subranks, we do not force this, but when we optimize the CLRS, we will prove that ties are resolved this
way anyway.

The assignment of ResolvedRanks and Subranks are not unique, there can be multiple ways to assign ResolvedRanks or
Subranks for a set of observations.

We define the Subrank by the following formula:

Subrank(f(xi)) = Z 1[f(xk-)<f(xi)]’ Vi = 17 B N
k=1

The Subrank of observation ¢ is the number of observations that score strictly below it. Subranks range from 0 to n — 1 and
the CLRS becomes:

n n

CLRSsubrank (f) = > ¥i > LSubrank(f (xi))=¢—1] - @4 (N

Observations with equal score have tied Subranks.
ResolvedRanks are defined as follows, where the tied ranks are resolved pessimistically. ResolvedRanks are assigned so
that:

1. The ResolvedRank of an observation is greater than or equal to its Subrank.

2. If a positive observation and a negative observation have the same score, then the negative observation gets a higher
ResolvedRank.

3. Each possible ResolvedRank, 0 through n — 1, is assigned to exactly one observation.

The SubRanks and ResolvedRanks are equal to each other when there are no ties in score. We provide one possible
assignment of Subranks and ResolvedRanks in Figure 2 to demonstrate the treatment of ties. We then have the CLRS with
ResolvedRanks as:

n n
CLRSResolvedrank () = Z Yi Z 1[ResolvedRank(f(x;))=£—1] * GL- 3
i=1  £=1
The ResolvedRanks are the quantity of interest, as optimizing them will provide a scoring function with minimal misranks
and minimal ties between positives and negatives.

Note that ties are not fundamental in other statistical uses of rank statistics, such as hypothesis testing. Ties are usually
addressed by fixing them, or assigning the tied observations a (possibly fractional) rank that is the average (e.g., tied ob-
servations would get ranks 7.5 rather than 7 and 8) (see Tamhane and Dunlop, 2000; Wackerly et al, 2002). Ties are not
treated uniformly across statistical applications (Savage, 1957), and there has been comparative work on treatment of ties
(e.g., Putter, 1955). This differs from when we optimize rank statistics, where ties are of central importance as we discussed.



3 Reranking Formulations Using ResolvedRanks and Subranks

Here we produce the two formulations — one for optimizing the regularized CLRS with ResolvedRanks, and the other for
optimizing the regularized CLRS with Subranks.

3.1 Maximize the Regularized CLRS with ResolvedRanks

We would like to optimize the general CLRS, for any choices of the a,’s, where we want to penalize ties in rank be-
tween positives and negatives, and we would also like a full ranking of observations. Thus, we will directly optimize
CLRSResolvedrank (f) + C - Regularizer(f) for our reranking algorithm. Our hypothesis space is the space of linear scor-
ing functions f(x;) = wlx;, where w € R?.

max CLRSResolvedRank(W) - C”WHO
weRd

n n
= max Zyl Z 1[ResolvedRank(wai)):é—l] cag — C”WHO
wERTIT =1

Nonlinearities can be incorporated as usual by including additional variables, such as indicator variables or nonlinear func-
tions of the original variables. We optimize over choices for vector w.

Building up to the formulation, we will create the binary variable ¢;, so that it is 1 for £ < ResolvedRank(f(x;)) + 1
and 0 otherwise. That is, if observation 7 has ResolvedRank equal to 5, then ¢;1, ..., t;6 are all 1 and t;7, ..., t;», are 0. Then

Z(ae — ag_1)tig 9)

£=1

is a telescoping sum for ¢ <ResolvedRank(f(x;))+1. When we define ap = 0, the sum (9) becomes simply GResolvedRank( f (x;)) 41>
or equivalently, the term from (8):

n
Z 1[ResolvedRank(f(x;))=¢—1] * Qe
=1
As in (8) we multiply by y; and sum over observations to produce the CLRSgesolvedrank- Doing this to (9), CLRSgresolvedrank
becomes:

n n
Z Yi Z(aé’ —ag—1)tie where ap = 0.
i=1 (=1

By definition ¢;; = 1 for all 7, so we can simplify the CLRSRgesolvedrank function above to:

Z <§n:(ae —ap—1)tic + a1> =|S4|a1 + Z zn:(ae — ag—1)tie.

€Sy \4=2 i€ESy =2

Note that the differences ay — ay—1 are all nonnegative. When they are zero they cannot contribute to the CLRSgesolvedrank
function. When they are strictly positive there can be a contribution made to the CLRSgesolvedrank function. Thus, we introduce
notation Gy = ag — a¢e—1 and Sy = {¢ > 2 : @ > 0} which are used in both formulations below. The CLRSgesolvedrank

becomes:
IStlar+ > > aetie. (10)
i€S, LES,

We will maximize this, which means that the ¢;,’s will be set to 1 when possible, because the a,’s in the sum are all positive.
When we maximize, we do not need the constant | S |a; term.

We define integer variables r; € [0,n — 1] to represent the ResolvedRanks of the observations.Variables r; and ¢;, are
related in that ¢;, can only be 1 when £ < r; + 1, implying ¢;, < 221'

We use linear scoring functions, so the score of instance x; is w?’x;. Variables z;1 are indicators of whether the score of
observation 7 is above the score of observation k. Thus we want to have z;;, = 1 if wlx; > WTx;€ and z;; = 0 otherwise.
Beyond this we want to ensure no ties in score, so we want all scores to be at least € apart. This will be discussed further
momentarily.




Our first ranking algorithm is below, which maximizes the regularized CLRS using ResolvedRanks.

AMAXy, o e ik, Z Z artie — CZ% subject to (11)
i€ESy LES, J
zikng(xi—xk)—i—l—s, Vi,k=1,...,n, (12)
Zik EWT(xi—xk), Vi,k=1,...,n, (13)
Vi 2 Wwj 14
Vi 2 —wj 5)
ri — 1 > 1+n(ze—1), Vik=1,...,n, (16)
T —Ti>1—nzE VieSy keS_, 17
re—1ri > 1 —nzyg, Vi keSy, i<k, (18)
re—1r; > 1—nze, VikeS_,i<k, (19)
tu < oo, Vi€ Sy e Sy, (20)

—1<w; <1, Vj=1,...,d,
0<r<n-—-1, Vi=1,...,n,
zik €4{0,1}, Vi,k=1,...,n,
tie € {0,1}, Vie Sy, Le Sy,
v; €{0,1}, Vje{l,..d} Q1)

To ensure that solutions with ranks that are close together are not feasible, Constraint (12) forces z;, = 0 if wai —wak <
e, and Constraint (13) forces z;p = 1 if wlx; — wlxg > 0. Thus, a solution where any two observations have a score
difference above 0 and less than ¢ is not feasible. (Note that these constraints alone do not prevent a score difference of
exactly 0; for that we need the constraints that follow.) Constraints (14) and (15) define the ~y;’s to be indicators of nonzero
coefficients w;.

Constraints (16)-(19) are the “tie resolution” equations. Constraint (16) says that for any pair (x;, Xy), if the score of
¢ is larger than that of £ so that z;; = 1, then r; > 7, + 1. That handles the assignment of ranks when there are no ties,
so now we need only to resolve ties in the score. We have Constraint (17) that applies to positive-negative pairs: when the
pair is tied, this constraint forces the negative observation to have higher rank. Similarly, Constraints (18) and (19) apply
to positive-positive pairs and negative-negative pairs respectively, and state that ties are broken lexicographically, that is,
according to their index in the dataset.

We discussed Constraint (20) earlier, which provides the definition of ¢;, so that ¢;; = 1 whenever £ < r; + 1. Also we
force the w;’s to be between -1 and 1 so their values do not go to infinity and so that the € values are meaningful, in that they
can be considered relative to the maximum possible range of w;.

3.2 Maximize the Regularized CLRS with Subranks

We are solving:

max CLRSSubrzmk(W) - CHWHO

weRd
n n
= v{/ré%%(d Zz:; Yi ez:; 1[Subrank(wa7¢))=€—1] cag — C”W”O

Maximizing the Subrank problem is much easier, since we do not want to force a unique assignment of ranks. This means
the “tie resolution” equations are no longer present. We can directly assign a Subrank for observation ¢ by r; = Y _; zi
because it is exactly the count of observations ranked beneath observation ¢; that way the r; variables do not even need to
appear in the formulation.



Here is the formulation:

AMAX, ik, Z Z artie — CZ% subject to (22)
i€Sy LES, J
1 & :

tie < m};zik, Vie Sy, Le Sy, (23)
i <wl(xi—xp)+1—¢, Vi€ Sp,k=1,...,n, (24)
i Z wy (25)
Vi 2 Wy (26)
Zik + 2ki = Ljx, 2%, Vi, k € S, e2))
tie > tiet1, Vi€ Sy L€ Sy \max(l€Sy), (28)
> Y it < an 29)
i€S, LES, =1
zik =0, VieSi k=1,...,n,x; = xg, 30)

—-1<w; <1, Vj=1,...,d,
tie, zik,v; € {0,1}, Vie Sy, Le S, k=1,...,n, j€{l,..d}.

Constraint (23) is similar to Constraint (20) from the ResolvedRank formulation. Since we are maximizing with respect
to the ¢;¢’s, the z;5’s will naturally be maximized by Constraint (23). Thus we need to again force the z;;’s down to O when
wlx; —wTx), < e, which is done via Constraint (24). Constraints (25) and (26) define the «y;’s to be indicators of nonzero
coefficients wj. It is not necessary to include Constraints (27) through (30); they are there only to speed up computation, by
helping to make the linear relaxation of the integer program closer to the set of feasible integer points. For the experiments
in this paper they did not substantially speed up computation and we chose not to use them.

Beyond the formulations presented here, we have placed a formulation for optimizing the regularized AUC in the Ap-
pendix A.1 and another formulation for optimizing the general pairwise rank statistic that inspired RankBoost (Freund et al,
2003) in Appendix A.2.

4 Why Subranks Are Often Sufficient

The ResolvedRank formulation above has 2d + n? + n.|S,| 4+ n variables, which is the total number of w, 7, z, t, and

r variables. The Subrank formulation on the other hand has only 2d + n4n + n4|Sy| variables, since we only have w, ~,

z, and t. This difference of n_ - n + n variables can heavily influence the speed at which we are able to find a solution.

We would ultimately like to get away with solving the Subrank problem rather than the ResolvedRank problem. This would

allow us to scale up our reranking problem substantially. In this section we will show why this is generally possible.
Denote the objectives as follows, where we have f(x;) = wai.

n n

GRR(f) = Zyl Z 1[ResolvedRank(f(xl)):Z—1] c Qe — CHW”O

i=1 =1

Gsub(f) == > 4 Y Lisubrank(f(x:))=t—1] - a¢ — C||w]lo.
=1 =1

In this section, we will ultimately prove that any maximizer of Gsyp also maximizes Grg. This is true under a very general
condition, which is that there are no exactly duplicated observations. The reason for this condition is not completely obvious.
In the Subrank formulation, if two observations are exactly the same, they will always get the same score and Subrank -
there is no mechanism to resolve ties and assign ranks. This causes problems when approximating the ResolvedRank with
the Subrank. We remark however, that this should not be a problem in practice. First, we can check in advance whether any
of our observations are exact copies of each other, so we know whether it is likely to be a problem. Second, if we do have
duplicated observations, we can always slightly perturb the x values of the duplicated observations so they are not identical.
Third, we remark that if the data are chosen from a continuous distribution, with probability 1 the observations will all be
distinct anyway. We have found that in practice the Subrank formulation does not have problems even when there are ties.
In the first part of the section, we consider whether there are maximizers of Grr that have no ties in score, in other
words, solutions w where f(x;) # f(xx) for any two observations ¢ and k. Assuming such solutions exist, we then show
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that any maximizer of Ggyp is also a maximizer of Grg. This is the result within Theorem 2. In the second part of the
section, we show that the assumption we made for Theorem 2 is always satisfied, assuming no duplicated observations. That
is, a maximizer of Grr with no ties in score exists. The outline within our technical report (Chang et al, 2011) follows a
similar outline but does not include regularization.

The following lemma establishes basic facts about the two objectives:

Lemma 1 Gsu,(f) < Grr(f) for all f. Further, Gsun(f) = Grr(f) for all f with no ties.

Proof Choose any function f. Since by definition Subrank( f(z;))< ResolvedRank(f(x;)) Vi, and since the a, are nonde-
creasing,

Z L(subrank(f(z;))=¢—1] * @ = Q(Subrank(f(z;))+1) 3D
=1

< G (ResolvedRank(f(x;))+1)

= Z 1[ResolvedRank(f(a:i)):éf1] cap Vi
=1

Multiplying both sides by y;, summing over ¢ and subtracting the regularization term from both sides yields Ggup (f) <
Grr(f). When no ties are present (that is, f(x;) # f(xx) Vi # k), Subranks and ResolvedRanks are equal, and the
inequality above becomes an equality, and in that case, Gsub(f) = Grr(f).

This lemma will be used within the following theorem which says that maximizers of Gsyp are maximizers of Grg.

Theorem 2 Assume that the set argmax fGRR( f) contains at least one function f having no ties in score. Then any f*
such that f* € argmax ;Gsun (f) also obeys f* € argmax ;Grr(f).

Proof Assume there exists f € argmax ¥ GRrr(f) such that there are no ties in score. Since f is a maximizer of Grg and
does not have ties, it is also a maximizer of Ggyp by Lemma 1:

Gsub(f) = Grr(f) = max Grr(f) > max Gsub(f), thus Gsub(f) = max Gsub(f)-

Let f* be an arbitrary maximizer of Gsyp (f) (not necessarily tie-free). We claim that f* is also a maximizer of Grg.
Otherwise,

Grr(f*) < Grr(f) @ Gsub(f) ® Gsub(f¥) (g Grr(f™),

which is a contradiction. Equation (a) comes from Lemma 1 applied to f. Equation (b) comes from the fact that both f and
f* are maximizers of Ggyp. Inequality (c) comes from Lemma 1 applied to /™.

Interestingly enough, it is true that if f maximizes Grr(f) and it has no ties, then f also maximizes Gy, (f). In
particular,

max Gsub(f) < max Grr(f) < Grr(f) = Gsun(f).

Note that so far, the results about Grr and Ggyup hold for functions from any arbitrary set; we did not need to have
f = w'x in the preceding computations. In what follows we take advantage of the fact that f is a linear combination
of features in order to perturb the function away from ties in score. With this method we will be able to achieve the same
maximal value of Grg but with no ties.

Define M to be the maximum absolute value of the features, so that for all ¢, j, we have |z;;| < M.

Lemma 2 If we are given f € argmafoRR(f) that yields a scoring function f(x) = wl'x with ties, it is possible to
construct a perturbed scoring function f that:

i preserves all pairwise orderings, f(xi) > f(x) = f(xi) > f(xx),
ii hasno ties, f(x;) # f(xx) forall i, k.
iii has ||[wllo = ||W]o.

This result holds whenever no observations are duplicates of each other, X; # Xy, Vi, k.

Proof We will construct f(x) = W’ x using the following procedure:
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Step 1 Find the nonzero indices of w: let J := {j : w; # 0}. Choose a unit vector v in RV uniformly at random.
Construct vector u € R to be equivalent to v for u restricted to the dimensions J and O otherwise.
Step 2 Choose real number J to be between 0 and 7, where

. [ marging,
= min § BT min

where in the above expression

(f(xi) = f(xx)) -

marging = _ min _
{i,k: f (xi)>f(xk) }

Step 3 Construct w as follows: w = w + Ju.

With probability one, we will show that f (x) = w1'x preserves pairwise orderings of f but with no ties.
We will prove each part of the lemma separately. ~ ~ . A
Proof of (i) We choose any two observations x; and x; where f(x;) > f(xy), and we need to show that f(x;) > f(x).

Fxi) = f(xr) = (W 4+ 6u)" (xi —xx) = W' (x5 — xx) + 6u’ (xi — xp)
= f(xi) — f(xx) + 6u” (x; — xx) > marging, + du’ (x; — X). (32)
In order to bound the right hand side away from zero we will use that:

1/2

d 1/2 d
llxi — xi|l2 = (Z(x” — a3;)° < (Z(QM)Q = 2MVd. (33)
j=1

Now,

( ) margin
——5 % . 9MVd = mar ing.
Mvd &
Here, inequality (a) follows from the Cauchy-Schwarz inequality, (b) follows from (33) and that ||ul|2 = 1, and (c) follows
from the bound on ¢ from Step 2 of the procedure for constructing f above. Thus du”’ (x; — xk) > —marging,, which
combined with (32) yields

m%mfmﬂ<&ww&fmm<52MJ’

f(xi) — f(xz) > marging + du” (x; — x;) > marging — margin,, = 0.

Proof of (ii) We show that f has no ties f(x;) # f(x) for all i, k. This must be true with probability 1 over the choice of
random vector u.

Since we know that all pairwise inequalities are preserved, we need to ensure only that ties become untied through the
perturbation u. Thus, let us consider tied observations x; and x, so f(x;) = f(xx). We need to show that they become
untied: we need to show | f(x;) — f(xx)| > 0. Consider | f(x;) — f(x)]:

) = )] = (W 4 6w)" (s — 00| = |7 (i = ) + 60" (i = )
= |0} ’uT(xi — xk)’ .

We now use the key assumption that no two observations are duplicates — this implies that at least one entry of vector
X; — X}, is nonzero. Further, since u is a random vector, the probability that it is orthogonal to vector x; — Xy, is zero. So,

with probability one with respect to the choice of u, we have ‘uT (x; — xk)‘ > 0. From the expression above,

‘f(Xz) - f(Xk)| = 19| )uT(xl — XQ)‘ > 0.

Proof of (iii) By our definitions, W = W + du, § < min, 5 |w;|, and u is only nonzero in the components where W is not
0. Each component of u is nonzero with probability 1. For component j where w; # 0, we have |du;| < d|jufl2 < ¢ <
min; .y w; < w; which means |w;] = |w; + duj| > 0. So, for all components where W is nonzero, we also have W
nonzero in those components. Further, for all components where W is zero, we also have W zero in those components. Thus
[wllo = [Iwllo.

The result below establishes the main result of the section, which is that if we optimize Gsyp, we get an optimizer of
GRrr even though it is a much more complex optimization problem to optimize Grg directly.
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Theorem 3 Given f* € argmax ;Gsub(f), then f* € argmax ;Grr(f).
This holds when there are no duplicated observations, x; # x Vi, k where i # k.

Proof We will show that the assumption of Theorem 2, which says that Grr has a maximizer with no ties, is always true.
This will give us the desired result. Let f € argmax +GRrRr(f). Either f has no ties already, in which case there is nothing
to prove, or it does have ties. If so, we can take its vector w and perturb it using Lemma 2. The resulting vector w has no
ties. We need only to show that w also maximizes Grg. To do this we will show Grpg ( f ) > Grr(f).

We know that

GRR(f) = Zyl Z 1[ResolvedRank(f(xz)):Z—l] tae — C”WHO
i=1 =1

= Z QA (ResolvedRank(f(x;))+1) — C”W”Ov
i€S 4

GRR(f) = Zyl Z 1[ResolvedRank(f(xi)):Z—1] “Ge — C”WHO
i=1 £=1

= Z a(ResolvedRank(f(xz))-f—l) - CHVAVHOa
€S,
and ||wl||o = ||W]|o by Lemma 2. We know that a1 < a2 < -+ < ay,. Thus, as long as the ResolvedRanks of the positive
observations according to f are the same or higher than their ResolvedRanks according to f, we are done.

Consider the untied observations of f, which are {i : f(x;) # f(x) for any k}. Those observations have ResolvedRank (f(x;))
= ResolvedRank( f (x4)) by Lemma 2(i) which says that all pairwise orderings are preserved.

What remains is to consider the tied observations of f, which are {i : f(x;) = f(xx) for some k}. Consider a set
of tied observations X, ..., Xx¢ Where f(xa) = ... = f(x¢). If their labels are all equal, yo = ... = yc, then regardless
of how they are permuted to create the ResolvedRank in either f or f, the total contribution of those observations to the
Grr will be the same. If the labels in the set differ, then f assigns ResolvedRanks pessimistically, so that the negatives all
have ResolvedRanks above the positive (according to the definition of ResolvedRanks). This means that by perturbing the
solution, f could potentially increase the ranks of some of these tied positive observations. In that case, some of the a;’s of
f become larger than those of f. Thus, GRR(f) > GRR(f) and we are done.

The result in Theorem 3 shows why optimizing Ggy1, is sufficient to obtain the maximizer of Grr. This provides the
underpinning for use of the Subrank formulation.

5 Empirical Discussion of Learning-To-Rank

Through our experiments with the Subrank formulation, we made several observations, which we will present empirical
results to support below.

Observation 1: There are some datasets where reranking can substantially improve the quality of the solution.

We present comparative results on the performance of several baseline ranking methods methods, namely Logistic Regres-
sion (LR), Support Vector Machines (SVM), RankBoost (RB), and the P-Norm Push for p = 2 and for the Subrank MIP
formulations at 4 different levels of the cutoff K for reranking. For the SVM, we tried regularization parameters 101,
1072, ..., 107° and reported the best result. We chose datasets with the right level of imbalance so that not all of the top
observations belong to a single class; this ensures that the rank statistics are meaningful at the top of the list. We used several
datasets that are suitable for the type of method we are proposing, namely:

— ROC Flexibility: This dataset is designed specifically to show differences in rank statistics (Rudin, 2009b). Note that this
dataset has ties, but the ties do not seem to influence the quality of the solution. (It is generally possible in practice to use
the Subrank formulation even in the case of ties.) (n = 500, d = 5)

— Abalonel9: This dataset is an imbalanced version of the Abalone dataset where the positive observations belong to class
19. It is available from the KEEL repository (Alcald-Fdez et al, 2011). It contains information about sex, length, height,
and weight, and the goal is to determine the age of the abalone (19). (n = 4174, d = 8)

— UIS from the UMass Aids Research Unit (Hosmer et al, 2013): This dataset contains information about each patient’s
age, race, depression level at admission, drug usage, number of prior drug treatments, and current treatment, and the
label represents whether the patient remained drug free for 12 months afterwards. (n = 575, d = 8)
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— Travel: This dataset is from a survey of transportation uses between three Australian cities (Hosmer et al, 2013). It
contains information about what modes of traffic are used (e.g., public bus, airplane, train, car) which is what we aim
to predict, and features include the travel time, waiting time at the terminal, the cost of transportation, the commuters’
household income level, and the size of the party involved in the commute. (n = 840,d = 7)

— NHANES (physical activity): This dataset contains health information about patients including physical activity levels,
height, weight, age, gender, blood pressure, marital status, cholesterol, etc. (Hosmer et al, 2013). The goal is to predict
whether the person is considered to be obese. (n = 600, d = 21)

— Pima Indians Diabetes, from the National Institute of Diabetes and Digestive and Kidney Diseases, available from the
UCI Machine Learning Repository (Bache and Lichman, 2013): The goal is to predict whether a woman will test positive
for diabetes during her pregnancy, based on measurements of her blood glucose concentration in an oral glucose tolerance
test, her blood pressure, body mass index, age, and other characteristics. (n = 768, d = 8)

— Gaussians: This is a synthetic 2 dimensional dataset, with 1250 points subsampled from a population containing two big
clumps of training examples, each entry of each observation drawn from a normal distribution with variance 0.5, where
the positive clump (3000 points) was generated with mean (0,1), and the negative clump (3000 points) was generated
with mean (0,0). These bigger clumps are designed to dominate the WRS. In addition, there is a smaller 10 point negative
clump generated with mean (10,1) and noise components each drawn from a normal with standard deviation 0.05, and a
positive clump of 200 points generated with mean (0,-3) and noise drawn with standard deviation 0.05. Note that we do
not expect the “flipping” to occur here as it did in Section 2.4 since we are using DCG, which is much more difficult to
distinguish from WRS than a steeper rank statistic. (n = 1250, d = 2)

For the MIP-based methods, we used logistic regression as the base ranker, and the reranker was learned from the top K. We
varied K between 50, 100, 150, and we also used the full list. An exception is made for the Abalone19 data set, for which K
varies between 250, 500 and 750 instead because Abalonel9 is a highly imbalanced data set. We stopped the computation
after 2 hours for each trial (1 hour for the ROC flexibility dataset), which gives a higher chance for the lower- K rerankers to
solve to optimality. Most of the K=50 experiments for the ROC flexibility dataset solved to optimality within 5 minutes. The
reported means and standard deviations were computed over 10 randomly chosen training and test splits, where the same
splits were used for all datasets. We chose to evaluate according to the DCG measure as it is used heavily in information
retrieval applications (Jarvelin and Kekéldinen, 2000). Al-Maskari et al (2007) report that DCG is similar to the way humans
evaluate search results, based on a study of user satisfaction. We used C' = 102 for the ROC Flexibility dataset, and
C = 10~* for the other datasets. Note that for the DCG measure in particular, it is difficult to see a large improvement;
for instance even on the extreme experiment in Section 2.4 the improvement in DCG from flipping the classifier completely
upside down was only 16%.

Table 1 shows the results of our experiments, where we highlighted the best algorithm for each dataset on both training
and test in bold, and used italics to represent test set results that are not statistically significantly worse than the best algorithm
according to a matched pairs t-test with significance level o = 0.05. In terms of predictive performance, the smaller K
models performed consistently well on these data, achieving the best test performance on all of these datasets. On some of
the datasets, we see a ~10% average performance improvement from reranking. (The magnitude is not too much different
as from the experiment in Section 2.4 where the classifier flips upside down.) On the Travel dataset in particular, the K=50
reranking model had superior results over all of the baselines uniformly across all 10 trials.

The work of Chang et al (2012) shows the benefits of carrying the computation to optimality on a specialized application
of MIP learning-to-rank for reverse-engineering product quality rankings.

Observation 2: There is a tradeoff between computation and quality of solution.

If the number of elements to rerank (denoted by K) is too small, the solution will not generalize as well. Theoretical results
of Rudin (2009a) suggest that there is a tradeoff between how well we can generalize and how much the rank statistic is
focused on the top of the ranked list. The main result of that work shows that if the rank statistic concentrates very much at the
top of the list (like, for instance, the mean reciprocal rank statistic) then we require more observations in order to generalize
well. If the number of observations is too small, learning-to-rank methods may not be beneficial over traditional learning
methods like logistic regression. Further, if the number of observations is too small, then the variation from training to test
will be much larger than the gain in training error from using the correct rank statistic; again in that case, learning-to-rank
would not be beneficial.

If the number of elements K is too large, we will not be able to sufficiently solve the reranking problem within the
allotted time, and the solution again could suffer. This reinforces our point that we should not refrain from solving hard
problems, particularly on the scale of reranking, but certain hard problems are harder than others and the computation needs
to be done carefully.
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Again consider Table 1. Note that the K = 50 and K = 100 rerankers perform consistently well on these datasets, both
in training and in testing. However, if K is set too large, the optimization on the training set will not be able to be solved
close to optimality in the allotted time, and the quality of the solution will be degraded. This is an explicit tradeoff between
computation and the quality of the solution.

Observation 3: There are some datasets for which the variance of the result is larger than the differences in the rank statistics
themselves.

These are cases where better relative training values do not necessarily lead to better relative test values. In these cases we
do not think it is worthwhile to use ranking algorithms at all, let alone reranking algorithms. For these datasets, logistic
regression may suffice. The cases where reranking/ranking makes a difference are cases where the variance of the training
and test values are small enough that we can reliably distinguish between the different rank statistics.

We present results on three datasets in Table 2, computed in the same way as the results in Table 1, for which various
things have gone wrong, such as the optimizer not being able to achieve the best result on the training set, but even worse,
the results are inconsistent between training and test. The algorithm that optimizes best over the training set is not the same
algorithm that achieves the best out-of-sample quality. These are cases where the algorithms do not generalize well enough
so that a ranking algorithm is needed. The datasets used here are the Haberman survival dataset from the UCI Machine
Learning Repository (Bache and Lichman, 2013) (n = 300, d = 3), Poly-pharmacy study on drug consumption (Hosmer
et al, 2013) (n = 500, d = 13), and data from the GLOW study on fracture risk (Hosmer et al, 2013) (n = 500, d = 14).

Observation 4: As long as the margin parameter ¢ is sufficiently small without being too small so that the solver will not
recognize it, the quality of the solution is maintained. The regularization parameter C' also can have an influence on the
quality of the solution, and it is useful not to over-regularize or under-regularize.

Note that if € is too large, the solver will not be able to force all of the inequalities to be strictly satisfied with margin . This
could force many good solutions to be considered infeasible and this may ruin the quality of the solution. It could also cause
problems with convergence of the optimization problem. When ¢ is smaller, it increases the size of the feasible solution
space, so the problem is easier to solve. On the other hand, if € is too small, the solver will have trouble recognizing the
inequality and may have numerical problems.

In Table 3 we show what happens when the value of ¢ is varied on two of our datasets. We can see from Table 3 that as ¢
decreases by orders of magnitude the solution generally improves, but then at some point degrades. For the ROC Flexibility
data, the ¢ = 107 setting consistently performed better than the ¢ = 10~ ° setting over all 10 trials in both training and
test. A similar observation holds for UIS, in that the e = 10> setting was able to optimize better than the ¢ = 10~ ° setting
over all 10 trials on the training set.

Table 3 Different selections of &

Dataset 10~ T 102 103 10—% 10~ ° 10-F
Roc! tain  31.62E£1.25  31.85£1.26 31.93£1.36 31.84£136 3202£130 31.58£1.26
test 31.59+2.07 31.91+1.57 3210+1.28 3209+1.31 32.21+1.32 31.74+1.26
train  19.70 £1.23 19.73+£1.24 19.80+1.09 19.76£1.27 19.73+£1.17 19.08 £ 1.40
test 18.40+1.09 18.03+1.06 18.34+1.20 18.64+1.51 17.88+1.66 18.23+0.75

UIS

Table 4 shows the training and test performance as the regularization parameter C' is varied over several orders of
magnitude. As one would expect, a small amount of regularization helps performance, but too much regularization hurts
performance as we start to sacrifice prediction quality for sparseness.

Table 4 Training and test performance for varying values of regularization parameter C.

Dataset C=10"1 C =102 C =102 C=10"1% C=10"7° C =106
Roc ‘rain  3L3TE152 3131+£172 3184£1.36 3194£120 3202+£130 31.86+£1.35
test 31.354+1.48 31.30+1.57 32.09+1.31 3206+1.53 32.21+1.32 32.01+1.35
train  19.15 £ 1.24 19.36 £1.02 19.69+1.01 19.76 £1.27 19.80+1.24 19.68 &+ 1.08
test 17.94+1.11 1815+1.54 17.92+1.57 18.64+151 17.944+1.12 17.74+1.76

UIS

! The regularization constant C'is set to 10~ for this dataset.
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Fig. 3 Objective values and optimality gap over time for ROC Flexibility dataset
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Observation 5: Proving optimality takes longer than finding a reasonable solution.

Figures 3 shows the objective values and the upper bound on the optimality gap over time for four folds of the ROC Flexibility
dataset, where K is 100 and C' is 1074, Figure 4 shows the analogous plots for the UIS dataset. Usually a good solution
is found within a few minutes, whereas proving optimality of the solution takes much longer. We do not require a proof of

optimality to use the solution.

6 Conclusion

As shown through our discussion, using a computationally expensive reranking step may help to improve the quality of
the solution for reranking problems. This can be useful in application domains such as maintenance prioritization and drug
discovery where the extra time spent in obtaining the best possible solution can be very worthwhile. We proved an analytical
reduction from the problem that we really want to solve (the ResolvedRank formulation) to a much more computationally
tractable problem (the Subrank formulation). Through an experimental discussion, we explicitly showed the tradeoff between

computation and the quality of the solution.
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Fig. 4 Objective values and optimality gap over time for UIS dataset
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A Appendix

A.1 Formulation to Maximize Regularized AUC

Again we want to have z;;, = 1 if wTx; > wl'x, and z;;, = 0 otherwise. We want to maximize the sum of the z;’s which is the number of
correctly ranked positive-negative pairs. If w”'x; — w” x;, < ¢ then it is not considered to be correctly ranked. So we need to impose that z;j, is
0 when wl'x; — wlx), — e < 0; that is, when 1 plus this quantity is less than 1, z;, is 0. Thus, we impose

zik < 14 wa,- — WTXk — €.
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Table 5 Detailed experimental results on ROC Flexibility

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.

3 IR train  29.12  29.65 31.02 3234 3111 3093 3227 3391 3284 2895 31.21 1.65
2 test 31.52 3216 33.13 2864 2973 3198 31.59 3039 3092 3345 31.35 1.48
?E) SVM train  29.19 29.74 3083 32.15 3127 30.84 3226 3234 3281 2797 30.94 1.57
° test  31.63 3234 33.09 2893 2939 3194 3154 2849 3092 3276 31.10 1.63
& RB train 2834 2753 28.04 31.12 30.02 28.63 28.04 30.82 30.14 27.36 29.00 1.39
z test 3039 3091 2998 2737 2889 29.69 29.50 27.84 2890 32.23 29.57 1.43
A P-norm Push train  29.12 29.64 3085 3246 3137 3093 3227 3375 3281 30.10 3133 1.48

test 3152 3214 3301 29.08 2939 3200 31.59 3025 3091 34.36 31.43 1.61
) K — 50 train ~ 31.35 30.60 31.02 3374 3278 3093 3227 3391 3284 3020 31.96 1.32
é test  33.10 3344 3313 3092 31.70 3198 3159 3039 3092 3445 32.16 1.31
g K =100 train  31.44 30.65 3037 33.82 3252 3093 31.71 33.88 3284 3028 31.84 1.36
3z test  33.12 3352 3259 31.01 3148 3198 3129 3045 3092 3451 32.09 1.31
E K — 150 train  30.63 30.69 31.06 3278 32.13 31.27 3227 3295 33.00 29.78 31.65 1.12
3 test  32.14 33,55 33.19 2932 3067 3233 3159 2940 31.10 34.13 31.74 1.65
s Full MIO train 2692 27.15 27.04 28.14 3090 3099 2641 30.12 2696 29.69 28.43 1.80

test 2876 29.08 29.16 2575 2857 3195 2834 2734 2674 3392 28.96 2.40

Regularization is included as usual. The formulation is:

max Z Z sz—CZ’YJ

W,Y;,2ik Vi k €5y kES.

s.t. szSW (xi—xk)—i-l—a, Vie Sy, ke S,
v; > wj, Yi=1,...,d,
v; > —wj;, Vi=1,...,d,
—1<w; <1, Vj=1,...,d,
zik,v; € {0,1}, Vie Sy, ke S_,j€{1,..d}.

A.2 Ranking for the General Pairwise Preference Case

RankBoost (Freund et al, 2003) was designed to handle any pairwise preference information. Here we present an exact, regularized version of
RankBoost’s objective. Define the labels as m(x;,X) = m;k, Where 7 is 1 if x; should be ranked higher than xg. If m;; = O there is no
information about the relative ranking of < to k. Then we try to maximize the number of pairs for which the model is able to rank x; above x, and
for which the label for the pair is 7;; = 1:

n n
NumAgreedPairs = Z Z Tik L[ f(x;)>F ()]
i=1k=1
We will maximize a regularized version of this, as follows:

n n
PBPILTES) 357
=1k=1 j

st zip <wl(x;—xp)+1—¢, Vik=1,...,n,
—1<w; <1, Vj=1,...,d,
v >w;, Vi=1,....d,
vj > —wj, Vj=1,...,d,
zik,v; € {0,1}, Vi,k=1,...,n, j€{1,..d}.

W, ,m VJ,Z k

By special choices of 7, the pairwise rank statistic can be made to include multipartite ranking (Rajaram and Agarwal, 2005), which can
be similar to ordinal regression. In this case we have several classes, where observations in one class should be ranked above (or below) all the
observations in another class.

1 if observations in Class(x; ) should be ranked above observations in Class(xy ),

Tik = .
¢ 0 otherwise.

If there are only two classes, then we are back to the AUC or equivalently the WRS statistic.

A.3 Experimental Results



Table 6 Detailed experimental results on Abalonel9

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
P LR train 350 356 392 369 356 394 266 419 392 335 3.63 0.43
2 test 3.0 291 303 314 275 332 376 222 253 294 2.96 0.42
‘n"E> SVM train 346 343 346 339 351 299 246 423 385 337 3.41 0.47
o test 294 280 322 318 278 332 422 231 249 292 3.02 0.53
£ RB train  3.73 391 256 332 351 269 234 404 387 4.06 3.40 0.65
% test 247 249 276 289 260 308 3.66 192 213 2.62 2.66 0.49
A Ponorm Push  UAn 344352374340 345 304 244 420 380 333 3.44 0.47
test 297 279 305 308 277 323 433 265 255 286 3.03 0.50
8 K — 250 train 524 452 482 486 537 458 384 557 569 444 4.89 0.58
2 test 288 325 299 333 315 322 341 237 226 391 3.08 0.49
g K = 500 train 449 372 470 4.60 510 401 3.66 504 468 449 4.45 0.50
2 test 285 287 289 312 250 311 336 220 270 3.26 2.89 0.35
§ K — 750 train 379 355 475 394 495 390 357 483 374 427 4.13 0.53
3 test 264 296 280 290 261 325 314 192 247 296 2.76 0.38
S Full MIO train 260 237 229 254 266 214 200 311 279 289 2.54 0.35
test 222 247 247 298 207 278 324 166 199 232 242 0.48
Table 7 Detailed experimental results on UIS
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train 1894  18.64 1799 19.21 1850 17.69 21.46 1938 20.10 16.69 18.86 1.32
2 test 17.11  17.84 17.11 16.87 1872 1799 17.03 18.15 17.40 20.57 17.88 1.11
?E) SVM train 1837 17.83 17.67 1839 1820 17.64 21.17 19.13 20.00 16.18 18.46 1.38
° test 1691 1762 1732 1678 1873 1771 1691 1812 17.18 20.80 17.81 1.21
& RB train 2040 19.13 1959 2040 1846 1831 2197 1930 20.10 16.69 19.44 1.44
z test 16.18 17.77 1833 1630 19.88 17.81 15.64 18.00 1739 19.67 17.70 1.40
A Ponorm Push  UAn 1893 1792 1793 19.18 1849 1768 2155 1942 20.10  16.60 18.78 1.40
test 17.09 1782 17.19 16.86 1873 1796 17.04 1822 1742 20.61 17.89 1.13
3 K =50 train  20.53 2023 2052 21.13 1934 2032 2243 2090 2125 17.81 20.45 1.23
é test 19.40 19.00 16.57 17.94 18.65 19.73 17.15 16.56 16.14 18.87 18.00 1.31
2 K — 100 train 2070 19.66 19.92 2020 1833 19.64 21.78 20.04 2026 17.11 19.76 1.27
2 test 1894 18.69 18.06 18.00 20.60 1948 1542 1893 17.67 20.58 18.64 1.51
E K =150 train  19.91 1897 1937 19.53  18.02 19.79 2032 19.80 20.01 16.90 19.26 1.05
3 test 17.59 1724 1868 17.11 1847 1786 1564 17.01 1634 22.00 17.79 1.73
E Full MIO train  19.06 1899 18.10 1990 1739 1889 21.68 19.03 19.11 16.24 18.84 1.44
test 18.47 17.07 18.08 18.03 1842 1842 17.02 17.38 17.16 18.82 17.89 0.67
Table 8 Detailed experimental results on Travel
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train 3148 26.63 2722 28.60 29.25 28.44 2794 2870 2555 27.81 28.16 1.60
2 test 2394 28.69 2834 2698 26.76 2557 27.88 2695 30.02 28.03 27.32 1.70
‘u‘E: SVM train  31.08 26.13 2675 2823 2858 27.17 2729 2826 2512 2729 27.59 1.61
° test 2341 2774 2784 2693 2637 2456 2722 2658 29.65 27.79 26.81 1.76
g RB train  29.83  25.00 2531 27.01 27.70 2728 26.72 26.63 24.09 26.20 26.57 1.60
2 test 2193 2646 2635 2433 2336 2400 2520 2501 2748 2540 24.95 1.63
= P-norm Push train 3152 2662 27.12 2849 2926 2837 2793 2849 2552 276l 28.09 1.62
test  24.05 2839 2825 26.80 26.78 2551 27.86 26.74 30.00 28.01 27.24 1.66
] K =50 train ~ 31.69 2691 27.18 28.73 2931 2874 28.19 28.83 2558 27.87 28.30 1.63
é test 2426 2920 2848 27.05 26.88 2642 28.15 2697 3046 2824 27.61 1.70
2 K — 100 train ~ 31.19  27.05 27.01 2881 29.62 2875 27.65 2853 2554 2823 28.24 1.56
2 test 2415 29.63 2846 27.01 2631 27.15 26,55 2748 2939 2781 27.39 1.60
_:ﬁ K =150 train  28.76 2628 2539 2795 2924 2750 2690 2828 2499 2593 27.12 1.45
3 test 2099 28.16 2659 26.53 2621 2386 2599 2678 29.19 25.68 26.00 2.26
s Full MIO train 2957 2614 2684 2655 2862 2638 2585 2793 2508 2644 26.94 1.36

test 23.16 27.82 27.61 2501 2630 2442 2641 26.01 2955 2685 26.31 1.83
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Table 9 Detailed experimental results on NHANES

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train 1450 12.76 1684 13.89 17.18 1584 1462 13.89 1525 12.14 14.69 1.63
2 test 1443 14.16 1031 1463 1033 11.78 1474 1342 1239 1440 13.06 1.74
?E) SVM train  13.04 1142 1580 12.64 16.63 1572 1357 13.17 1499 1131 13.83 1.87
° test 1433 1408 1027 1463 1013 1175 1486 1333 12.12 14.27 12.98 1.79
5 RB train  13.05 12.05 1673 1335 16.84 1520 1293 13.03 13.87 10.40 13.75 2.01
z test 11.95 13.68 9.78 13.06 9.31 10.67 1249 1243 12.67 14.98 12.10 1.75
= P-norm Push train 1443 1253 16.63 1353 1612 1589 1449 1374 1532 11.87 14.46 1.57
test 1428 1439 10.10 1476 1024 11.85 14.88 13.63 1330 1441 13.18 1.82
] K =50 train  15.32  13.04 1790 1496 17.84 17.02 1495 14.64 1577 13.35 15.48 1.69
2 test 1454 1439 1038 1337 11.07 1333 1465 1299 13.11 14.74 13.26 1.50
E’. K =100 train  14.11 11.83  17.52  13.77 1828 1648 1449 1375 15.04 14.95 15.02 1.93
3 test 1358 1425 1029 1276  9.83 1296 1353 1227 1495 12.74 12.71 1.61
_;é K — 150 train 1430 1249 1691 1487 1640 1656 14.83 1389 1477 1227 14.73 1.59
3 test 13.83 1430 1073 1275 1044 1191 1486 13775 1240 14.38 12.94 1.55
E Full MIO train 1336  12.11 1579 1348 1566 1448 14.17 1325 1413 1221 13.87 1.25
test 1446 1475 1042 1483 10.19 11.76 1453 1344 12,19 1437 13.09 1.82
Table 10 Detailed experimental results on Pima
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 IR train 3727 38.05 33.65 33.84 3454 3302 36.10 36.57 3596 3598 35.50 1.66
2 test  32.64 31.77 3670 36.07 34.88 3647 33.85 3222 3422 3294 34.18 1.81
?E) SVM train  36.69 37.74 3352 3359 3429 3293 3608 36.53 3588 3571 35.30 1.61
° test 3191 3193 36.73 3566 34.64 3641 3390 32.19 3424 3277 34.04 1.83
5 RB train  37.65 3695 3429 3436 35.12 3327 3656 3696 3629 36.57 35.80 1.44
z test 3223  31.17 3597 36.14 3426 3540 3337 33.17 34.02 3253 33.83 1.65
= P-norm Push train 3739 3825 33.74 3399 3479 33.11 3620 36.62 36.10 3626 35.64 1.67
test 3264 3170 36.67 3604 3510 36.65 3376 3221 3420 3342 34.24 1.82
2z K =50 train 3741 3836 33.74 3417 3456 3330 3652 36.71 3631 3639 35.75 1.67
2 test 3270 3218 3628 3636 3491 3737 33.07 3386 3450 33.19 34.44 1.76
E’. K =100 train ~ 37.58 37.99 3354 33.67 3475 33.10 35.10 3630 3622 36.07 35.43 1.69
3 test  31.41 30.77 3382 3593 3542 3557 3234 3397 33.03 333] 33.56 1.87
é K =150 train  37.25 3797 33.00 3353 34.14 3135 3535 3640 3554 3399 34.85 1.96
3 test 3250 3175 3593 36.03 3562 37.05 3222 3238 3298 30.74 33.72 221
E Full MIO train  37.16 37.69 33.78 3398 34.07 3199 3514 3621 3171 3595 3477 2.03
test 3248 3185 36.06 3560 3502 3519 3340 3250 31.10 33.35 33.65 2.01
Table 11 Detailed experimental results on the Gaussians data set
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train  69.23 6826 67.17 68.13 7538 7275 68.76 67.18 6724 68.39 69.25 2.70
2 test 6489 65.62 66.88 6549 59.25 61.51 6461 66.58 66.65 6541 64.89 245
?E) SVM train 6930 6827 67.15 68.19 7539 7274 6890 67.18 6724 6838 69.28 2.70
° test 6492 6564 6690 6559 5926 6152 6481 66.58 66.65 6541 64.73 2.45
5 RB train  71.14 7053 69.43 7051 76.05 7428 7021 70.04 69.70 7122 71.31 2.15
2 test 67.58 68.68 6836 67.81 6249 6478 6691 6840 69.40 69.36 67.13 2.06
= P-norm Push train 6922 6821 67.19 68.12 7539 7275 68.69 67.18 6726 6838 69.24 2.70
test 6486 6545 6686 6546 59.26 6151 6447 6657 66.65 6538 64.65 243
2z K =50 train 7132 7056 6936 7128 7657 7459 7169 70.16 70.03 71.61 71.72 222
2 test 6857 69.10 7038 6845 6299 6526 67.82 69.73 69.81 68.22 68.03 2.27
E K =100 train 7127 7043 69.61 71.39 7656 7459 71.61 7033 70.06 71.81 71.76 2.18
3 test 6848 69.12 7025 6826 63.05 6511 6758 69.81 69.82 67.64 67.91 227
é K =150 train  71.01 70.55 69.08 7141 7645 7454 7176 6995 6941 71.67 71.58 230
3 test  67.31 6937 7034 6846 6255 6541 68.01 6838 69.92 68.11 67.79 2.30
E Full MIO train  62.81 6350 61.76 65.16 70.67 6656 62.53 64.68 64.62 64.69 64.70 253
test 6128 61.58 6234 60.50 5583 5589 59.76 59.87 61.02 60.81 59.89 2.26
Table 12 Detailed experimental results on Haberman Survival
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 IR train 1345 1192 1494 1398 13.18 13.08 1247 1288 1228 11.17 12.94 1.07
2 test 11.45 1379 10.69 12.01 13.02  13.13 1347 1284 13.24 14.58 12.82 1.15
?E) SVM train  13.43 1196 15.02 13.83 13.16 13.19 1252 1282 1234 11.18 12.95 1.06
° test 1142 1379 1070 11.52 13.08 13.06 1278 12.82 12.58 14.56 12.63 1.15
5 RB train 1435 13,55 1648 13.83 13.84 13.81 1395 1447 13.89 11.33 13.95 1.24
2 test 11.29  13.08 9.60 11.85 12,13 12,62 1239 1133 12.74 13.01 12.01 1.06
= P-norm Push train  13.44 1191 1488 14.00 13.18 13.11 1250 1292 1226 11.17 12.94 1.06
test 11.51 13.66 10.72 1198 1294 13.14 12.84 1280 12.24 14.55 12.64 1.09
- K =50 train  13.68  11.91 1492 1412 1295 13.00 1254 1439 1249 11.02 13.10 1.19
5 test 10.10  13.82 1062 1199 1292 13.07 1348 11.88 1393 14.60 12.64 1.47
< K =100 train  14.16  12.13 1494 1445 1298 13.03 11.87 1285 12.63 11.14 13.02 1.20
e test 11.65 13.05 1052 1224 1295 1319 13.67 12.81 13.23 14.66 12.80 1.13
= Full MIO train 1390 1245 1492 1392 1291 1326 1253 1282 1297 11.63 13.13 0.92
test 11.62 1326 1060 1144 12,62 1282 1247 1276 12.61 1442 12.46 1.05
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Table 13 Detailed experimental results on Polypharm

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train  17.69  20.69 20.52 1993 18.63 19.69 2149 1799 1735 20.27 19.43 1.42
2 test 18.60 15.65 1584 1640 18.60 17.41 1474 17.82 20.12 17.14 17.23 1.63
?E) SVM train  17.57 20.69 20.15 19.85 1824 19.60 2146 1748 17.06 2026 19.24 1.53
° test 1851 1684 1754 1693 1847 1734 1467 19.63 20.11 17.09 17.71 1.56
5 RB train  17.65 20.52 20.10 1997 17.81 1975 21.03 1690 17.15 20.25 19.11 1.55
z test 1898 1559 1699 16.10 1851 17.01 14.89 1935 1990 16.67 17.40 1.70
A Ponorm Push  UAn 1730 19431980 1871 1676 1930 2053 1934 1898 17.16 18.73 1.25
test 2036 1734 17775 1887 1933 1696 1566 17.51 17.95  18.79 18.05 1.33
3 K =50 train 1771 19.64 1995 1891 19.65 1948 2064 19.05 1937 17.68 19.21 0.93
2 test  20.25 1630 17.02 16.71 18.18 17.58 1547 1755 1649 18.20 17.37 1.33
E’. K =100 train ~ 17.09 1929 19.60 18.41 16.89 1940 20.64 18.07 19.54 17.38 18.63 1.25
3 test 19.88 1682 17.53 1839 1696 1653 1569 1740 1757 19.13 17.59 1.25
é K — 150 train  17.11 1778 1775 1777 1643 1921 1899 1876 19.54 17.05 18.04 1.04
3 test 1993 16.15 13.85 17.70 17.55 1797 14.21 17.81 16.84  19.54 17.16 1.99
E Full MIO train 1695 18.71 19.40  17.21 16.94 1835 2033 1848 1926 1592 18.16 1.36
test 2005 1650 1741 17.68 1873 1462 1584 1692 1616 1828 17.22 1.57
Table 14 Detailed experimental results on Glow500
Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
3 LR train  14.66 17.70 18.65 1744 1844 1784 1695 1651 16,57  17.87 17.26 1.16
2 test 1832 1545 16.06 17.11 1478 17.68 17.64 1690 1745 1543 16.68 1.18
?E) SVM train 1394 17.13 18.67 1692 1757 1780 16.18 1541 1507 1652 16.52 1.41
° test 1848 1583 1559 17.11 1631 17.63 1821 1790 1891 16.59 17.26 1.15
5 RB train 1434 17.77 18.65 18.12 1791 1722 1794 1631 16.42 17.65 17.23 1.25
z test 18.48 1644 1677 1629 1632 1771 16.83 17.37 1720 16.67 17.01 0.69
= P-norm Push train 1410 17.67 1896 1736 1852 17.97 1656 15.66 16.19 17.22 17.02 1.44
test 1835 1592 1568 17.56 1541 18.07 18.65 18.01 18.45 1628 17.24 1.27
] K =50 train 1562 1885 1920 19.02 19.21 18.65 1830 1731 1674 19.12 18.20 1.24
2 test 16.89 1523 17.18 1643 17.03 1833 17.65 17.30 17.15 14.68 16.79 1.09
E’. K =100 train 1530 18.27  18.51 1832 1942 1830 17.86 16.18 1693 17.89 17.70 1.22
3 test 17.38 1682 1539 17.69 16.18 1850 19.06 1574 19.68 14.59 17.10 1.66
é K =150 train 1453 1785 18.69 1790 1881 1725 1687 1585 1553 1753 17.08 1.40
3 test 19.26 1485 1558 1673 16.07 1740 17.27 1828 16.70 15.65 16.78 1.33
E Full MIO train ~ 13.51 17.51 1746 1646 1840 1697 16.71 1635 16.64 1694 16.69 1.28
test 1647 1559 1574 1578 1554 1726 1572 1812 1936 1522 16.48 1.35
Table 15 Detailed experimental results on ROC Flexibility, with different c and ¢ values.
Runs Statistics
Parameter values 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
c=10-1 train  29.12  29.65 31.02 3234 31.11 3093 3227 3391 3284 2995 31.31 1.52
- test  31.52 3216 33.13 28.64 29.73 3198 31.59 3039 3092 3345 31.35 1.48
¥ c—10-2 train ~ 30.35 30.18 2791 33.80 31.82 3093 3227 3271 32.84 30.28 31.31 1.72
S test 3178 3242 29.64 3097 3035 3198 31.59 28.83 3092 3451 31.30 1.57
I c—10-3 train 3144 30.65 3037 33.82 3252 3093 31.71 33838 32.84 30.28 31.84 1.36
w test  33.12 33,52 3259 31.01 3148 3198 3129 3045 3092 3451 32.09 1.31
g c—10-4 train  31.50 30.69 31.06 33.14 3274 3093 3227 3393 3284 3035 31.94 1.20
= test  33.17 3355 3319 2959 31.65 3198 31.59 3048 3092 3452 32.06 1.53
Il _ .n—5 train 3150 30.69 31.06 3386 3274 3093 3227 3393 3284 3035 32.02 1.30
X €7 10 test  33.17 33,55 3319 31.08 31.65 3198 31.59 3048 3092 34.52 32.21 1.32
c—10-6 train 30.63 30.60 31.06 3386 32.13 3093 3227 3393 3284 3035 31.86 1.35
test  32.14 33,55 33,19 31.08 30.67 3198 31.59 3048 30.92 34.52 32.01 1.35
c—qo-1 (rain 3145 3069 3106 3305 3008 3093 3227 3365 3284 3024 31.62 1.25
test 32,12 33,55 33,19 2921 2821 3198 31.59 29.62 3092 3447 31.59 2.07
? c—10-2 train  30.63 30.69 31.06 33.05 3274 3093 3227 3392 3284 3035 31.85 1.26
o test 3214 3355 3319 2911 31.65 3198 31.59 3049 3092 3452 31.91 1.57
F c—10-3 train ~ 30.63 30.69 31.06 33.84 3274 3093 3227 3393 3284 30.35 31.93 1.36
o test  32.14 33,55 3319 31.03 31.65 3198 31.59 3048 3092 34.52 32.10 1.28
=} e =104 train  31.44  30.65 3037 3382 3252 3093 31.71 33838 3284 30.28 31.84 1.36
~ test 3312 3352 3259 31.01 3148 3198 3129 3045 3092 3451 32.09 1.31
Il _ .n—5 train 3150 30.69 31.06 3386 3274 3093 3227 3393 3284 3035 32.02 1.30
< £= 10 test  33.17 33,55 3319 31.08 31.65 3198 31.59 3048 3092 34.52 32.21 1.32
c—10-6 train  31.38  30.19 31.06 3374 3155 3093 31.93 3390 3284 2827 31.58 1.68
B test  33.07 33.04 33.19 3092 29.61 3198 3148 3041 3092 3275 31.74 1.26
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Table 16 Detailed experimental results on UIS, with different ¢ and ¢ values.

Runs Statistics

Parameter values 1 2 3 4 5 6 7 8 9 10 Mean  Std. Dev.
= 10-1 train 1894 18.64 1799 19.21 1850 2025 2146 1938 20.10 17.08 19.15 1.24
- test 17.11  17.84 17.11 1687 1872 1872 17.03 18.15 1740 20.44 17.94 1.11
* c=10-2 train 1939 1886 19.75 19.85 1856 1945 2140 1932 19.63 1739 19.36 1.02
= ) test 1821 1839 17.14 17.84 2071 1678 16.05 1844 1720 20.70 18.15 1.54
I c=10-3 train 20.17 1992 1947 1980 1881 20.16 2146 1982 1971 1753 19.69 1.0T
w test 1844 1830 17.43 17.23 19.83 1873 1615 1609 1631 20.67 17.92 1.57
g c—10-4 train 2070 19.66 1992 2020 1833 19.64 21.78 20.04 2026 17.11 19.76 1.27
— test 1894 18.69 18.06 18.00 20.60 19.48 1542 1893 17.67 20.58 18.64 1.51
Il _ .n_5 train 2055 19.03 1973 2083 19.00 1946 22.16 20.02 2048 17.61 19.89 1.24
X ¢= 10 test 18.84 1871 1698 1749 1853 1817 16.67 1721 1673 20.12 17.94 1.12
c—10-6 train  20.67 1995 19,51 19.83 1888 1922 21.70 19.76 19.70 17.55 19.68 1.08
test 1841 1752 1680 17.90 1830 1993 1538 1592 1625 20.96 17.74 1.76
e = 10-1 train 2022 1926 19.37 2045 1886 1990 21.87 19.88 20.08 17.10 19.70 1.23
B test 1878 17.65 17.07 17.80 1878 19.71 1722 1838 18.11 20.53 18.40 1.09
M c—10-2 train 2022 19.61 19.64 2043 1815 1954 22.17 19.88 20.04 17.61 19.73 1.24
o test 1828 1856 1845 17.39 1947 17.11 1671 1842 1646 19.44 18.03 1.06
'ﬁ c— 10-3 train 2097 1930 20.06 19.65 18.61 20.07 21.35 20.10 2026 17.63 19.80 1.09
o test 17.98 18.00 18.01 1746 20.04 18.67 1645 1791 1826 20.60 18.34 1.20
g e — 104 train 2070 19.66 1992 2020 1833 19.64 21.78 20.04 2026 17.11 19.76 1.27
— test 1894 18.69 18.06 18.00 20.60 19.48 1542 1893 17.67 20.58 18.64 1.51
Il _ ,n—5 train 2043 1981 19.53 1998 1847 20.09 21.55 1995 2032 17.20 19.73 1.17
o T 10 test 17.06 1874 1670 1795 19.08 19.08 1503 17.83 1645 20.86 17.88 1.66
c—10-6 train  20.16 1837 19.53 1815 1850 18.81 2146 1938 20.10 1632 19.08 1.40
test 1823 1824 17.66 1823 1872 1951 17.03 18.15 1740 19.12 18.23 0.75




