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Abstract

Conditional independence testing is a fun-
damental problem in causal discovery and
a particularly challenging task in the pres-
ence of nonlinear dependencies. Here a fully
non-parametric test for continuous data based
on conditional mutual information combined
with a local permutation scheme is presented.
Numerical experiments covering sample sizes
from 50 to 2, 000 and dimensions up to 10
demonstrate that the test reliably generates
the null distribution. For smooth nonlin-
ear dependencies, the test has higher power
than kernel-based tests in lower dimensions
and similar power in higher dimensions. For
highly non-smooth densities the data-adaptive
nearest neighbor approach is particularly well-
suited while kernel methods yield much lower
power. The experiments also show that kernel
methods utilizing an analytical approximation
of the null distribution are not well-calibrated
for sample sizes below 1, 000. Combining the
local permutation scheme with these kernel
tests leads to better calibration but lower
power. For smaller sample sizes and lower
dimensions, the proposed test is faster than
random fourier feature-based kernel tests if
(embarrassingly) parallelized, but the runtime
increases more sharply with sample size and
dimensionality. Thus, more theoretical re-
search to analytically approximate the null
distribution and speed up estimation is de-
sirable. As illustrated on real data, the test
is ideally suited in combination with causal
discovery algorithms.
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1 Introduction

Conditional independence testing lies at the heart of
causal discovery (Spirtes et al., 2000) and at the same
time is one of its most challenging tasks. For observed
random variables X,Y, Z, measuring that X and Y are
independent given Z, denoted as X ⊥⊥ Y |Z, implies
that no causal link can exist between X and Y under
the relatively weak assumption of faithfulness (Spirtes
et al., 2000). A finding of conditional independence is
then more pertinent to causal discovery than a finding
of (conditional) dependence from which a causal link
only follows under stronger assumptions (Spirtes et al.,
2000).

Here the focus is on the difficult case of continuous
variables (Bergsma, 2004). Various conditional inde-
pendence (CI) tests exist if assumptions such as lin-
earity or additivity (Daudin, 1980; Peters et al., 2013)
are justified (for a numerical comparison see Ramsey
(2014)). However, wrong assumptions can lead to in-
correctly detecting CI (type II error, false negative),
but also to wrongly concluding on conditional depen-
dence (type I error, false positive). Recent research
has focused on the general case without assuming a
functional form of the dependencies as well as the data
distributions, that is, the goal is the general defini-
tion of CI implying that the conditional joint density
factorizes: p(X,Y |Z) = p(X|Z)p(Y |Z).

One approach is to discretize or cluster the variable
Z and make use of easier unconditional independence
tests X ⊥⊥ Y |Z = z (Margaritis, 2005; Huang, 2010).
However, this method suffers from the curse of dimen-
sionality for clustering high-dimensional conditioning
sets Z. On the other hand, kernel-based methods
are known for their capability to deal with nonlinear-
ity and high dimensions (Fukumizu et al., 2008). A
popular test is the Kernel Conditional Independence
Test (KCIT) (Zhang et al., 2011) which essentially
tests for zero Hilbert-Schmidt norm of the partial cross-
covariance operator, or the Permutation CI test (Doran
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et al., 2014) which solves an optimization problem to
generate a permutation surrogate on which kernel-two
sample testing can be applied. Kernel methods suffer
from high computational complexity since large ker-
nel matrices have to be computed. Strobl et al. (2017)
present two types of orders of magnitude faster CI tests
based on approximating kernels using random Fourier
features, called Randomized Conditional Correlation
Test (RCoT) and Randomized Conditional Indepen-
dence Test (RCIT). RCoT can be related to kernelized
two-step conditional independence testing (Zhang et al.,
2017). Wang et al. (2015) proposed a conditional dis-
tance correlation (CDC) test based on the correlation
of distance matrices between X,Y, Z which have been
linked to kernel-based approaches (Sejdinovic et al.,
2013). Last, very recent work proposes to apply deep
learning classifiers in combination with permutation
tests (Sen et al., 2017).

Testing for independence requires access to the null
distribution under CI. Strobl et al. (2017) and Wang
et al. (2015) derived asymptotic approximations of
the theoretical null distributions, but such approxi-
mations only hold for larger sample sizes. The alter-
native are permutation-based approaches, where the
null-distribution is generated by computing the test
statistic from permuted samples.

In the present paper, the proposed approach to testing
CI is founded in an information-theoretic framework.
The conditional mutual information (CMI) is zero if and
only if X ⊥⊥ Y |Z. While some kernel-based measures
can also be related to information-theoretic quantities
(see, e.g., Fukumizu et al. (2008)), the idea here is to di-
rectly estimate CMI by combining the well-established
Kozachenko-Leonenko k-nearest neighbor estimator
(Kozachenko and Leonenko, 1987; Kraskov et al., 2004;
Frenzel and Pompe, 2007; Vejmelka and Paluš, 2008;
Póczos and Schneider, 2012; Gao et al., 2017) with a
nearest-neighbor local permutation scheme.

Their main advantage is that nearest-neighbor statis-
tics are locally adaptive (Fig. 1A): The hypercubes
around each sample point are smaller where more sam-
ples are available. Kernel methods, on the other hand,
in general require carefully adjusted bandwidth pa-
rameters that characterize the length scales between
samples in the different subspaces of X,Y, Z. These
bandwidths are global in each subspace in the sense
that they are applied on the whole range of values for
X,Y, Z, respectively.

Unfortunately, few theoretical results are available for
the complex mutual information estimator. While the
Kozachenko-Leonenko estimator is asymptotically un-
biased and consistent (Kozachenko and Leonenko, 1987;
Leonenko et al., 2008), the variance and finite sample

convergence rates are unknown. Hence, the present
approach relies on a local permutation test that is also
based on nearest neighbors and data-adaptive.

2 Conditional independence test

2.1 Conditional mutual information

CMI for continuous and possibly multivariate random
variables X,Y, Z is defined as

IX;Y |Z

=

���
dxdydz p(x, y, z) log

p(x, y|z)
p(x|z) · p(y|z) (1)

= HXZ +HY Z −HZ −HXY Z , (2)

where H denotes the Shannon entropy and where we
assume that the densities p(·) exist. The task is to
test the conditional independence hypothesis versus
the general alternative:

H0 : X ⊥⊥ Y | Z (3)

H1 : X ✚✚⊥⊥ Y | Z . (4)

From the definition of CMI it is immediately clear that
IX;Y |Z = 0 if and only if X ⊥⊥ Y |Z, provided that the
densities are well-defined. Shannon-type conditional
mutual information is theoretically well-founded and
its value is well interpretable as the shared information
between X and Y not contained in Z. While this does
not immediately matter for a conditional independence
test, causal discovery algorithms often make use of the
test statistic’s value, for example to sort the order in
which conditions are tested (Spirtes et al., 2000). CMI
here readily allows for an interpretation in terms of
the relative importance of one condition over another.
Note that the test statistic values of kernel-based tests
typically depend on the chosen kernel.

2.2 Nearest-neighbor CMI estimator

From the nearest-neighbor entropy estimator by
Kozachenko and Leonenko (1987), Kraskov et al. (2004)
developed an estimator for mutual information that
was generalized to CMI (Frenzel and Pompe, 2007; Ve-
jmelka and Paluš, 2008) based on the CMI definition
in Eq. (2):

�IXY |Z = ψ(k) +
1

n

n�

i=1

[ψ(kzi )− ψ(kxzi )− ψ(kyzi )] (5)

with the Digamma function as the logarithmic deriva-
tive of the Gamma function ψ(x) = d

dx lnΓ(x) and sam-
ple length n1. The only free parameter k is the number

1The estimator is, for example, implemented in Python
in https://github.com/jakobrunge/tigramite.
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Figure 1: (A) The CMIknn estimator and the local
permutation test are data-adaptive making them more
data efficient than fixed bandwidth techniques: The
hypercubes around each sample point are smaller where
more samples are available. (B) Schematic of local
permutation scheme. To destroy the dependencies
between x and y, but preserve those between x and
z, each sample point i’s x-value is mapped randomly
to one of its kperm-nearest neighbors (as measured in
subspace Z). By keeping track of already ‘used’ indices
j, we approximately achieve a random draw without
replacement, see Algorithm 1.

of nearest neighbors in the joint space of X ⊗ Y ⊗ Z
which defines the local length scale (in maximum norm)
�i around each sample point i. Then kxzi , kyzi and kzi
are computed by counting the number of points with
distance strictly smaller than �i (including the refer-
ence point i) in the subspace X ⊗ Z to get kxzi , in
the subspace Y ⊗ Z to get kyzi , and in the subspace
Z to get kzi . The decisive advantage of this estimator
compared to fixed global bandwidth approaches is its
local data-adaptiveness (Fig. 1A).

Similar estimators, but for the more general class of
Rényi entropies and divergences, were developed in
Wang et al. (2009); Póczos and Schneider (2012). The
Kozachenko-Leonenko estimator is asymptotically un-
biased and consistent (Kozachenko and Leonenko, 1987;
Leonenko et al., 2008). Unfortunately, at present there
are no results, neither exact nor asymptotically, on the
distribution of the estimator as needed to derive analyt-
ical significance bounds. In Goria and Leonenko (2005),
some numerical experiments indicate that for many dis-
tributions of X, Y the asymptotic distribution of MI is
Gaussian. But the important finite size dependence on
the dimensions DX , DY , DZ , the sample length n and
the parameter k are unknown. Estimator (5) uses the
approximation that the densities are constant within
the epsilon environment. Therefore, the estimator’s
bias will grow with k since larger k lead to larger �-balls
where the assumption of constant density is more likely
violated. The variance, on the other hand, is the more
important quantity in conditional independence testing
and it becomes smaller for larger k because fluctuations
in the �-balls average out.

Some notes on the implementation: Before estimating
CMI, in our implementation the samples are rank-
transformed individually in each dimension: Firstly,
to avoid points with equal distance, small amplitude
random noise is added to break ties. Then, for all n
values x1, . . . , xn, xi is replaced with the transformed
value r, where r is defined such that xi is the rth largest
among all x values. This approach gave good results in
our tests, other implementations may only standardize
the data beforehand.

The main computational cost comes from searching
nearest neighbors in the high dimensional subspaces
which is O(n2) in the worst case, but can be speed up
using KD-tree neighbor search (Maneewongvatana and
Mount, 1999). Hence, the computational complexity
will typically scale less than quadratically with the sam-
ple size. Kernel methods, on the other hand, typically
scale worse than quadratically in sample size if they
are not based on kernel approximations such as via
random Fourier features (Strobl et al., 2017). Further,
the CMI estimator scales roughly linearly in k and D,
the total dimension of X,Y, Z.

2.3 Nearest-neighbor permutation test

Since no theory on finite sample behavior of the CMI
estimator is available, a permutation-based generation
of the distribution under H0 is utilized.

Typically in CMI-based independence testing, CMI-
surrogates to simulate independence are generated
by randomly permuting all x-values in the data
{xi, yi, zi}ni=1. The problem is, that this approach
not only destroys the dependence between x and y,
as desired, but also destroys all dependence between
x and z. Hence, this approach does not actually test
X ⊥⊥ Y | Z. In order to preserve the dependence
between x and z, here a local permutation test uti-
lizing nearest-neighbor search is proposed. To avoid
confusion, the CMI-estimation parameter is denoted
as kCMI and the permutation-parameter as kperm.

The goal of the permutation scheme in Algorithm 1
(Fig. 1B) is to create a sample {x∗

i , yi, zi}ni=1, where x
∗
i

are drawn such that (1) marginals are preserved (drawn
without replacement) and (2) xi is replaced by xj only
if zi ≈ zj (local permutation). The proposed scheme
implements this idea in a straightforward manner that
is computationally not much slower than a total per-
mutation (see Supplementary Material Fig. S1): x∗

i

are drawn among nearest neighbors of the point i in
subspace Z and a list keeps track of already ‘used’
samples. However, we cannot always assure draws
without replacement, e.g., in the extreme case that one
neighbor is shared between two points and kperm = 1.
As described in Algorithm 1, the null distribution is



Conditional independence testing

Algorithm 1 Conditional independence test based on
nearest-neighbor permutation (Fig. 1B).

Require: Data {xi, yi, zi}ni=1, kperm-nearest neighbor
parameter, number of permutation surrogates B,
conditional mutual information estimator (or other

conditional dependence measure) �I(x; y|z)
1: Estimate �I(x; y|z) of original data
2: Compute lists of nearest neighbors for each sample

point i: Ni = {l ∈ {1, . . . , n} : �zl − zi� ≤ d
kperm

i }
in maximum norm of subspace of z, where d

kperm

i

denotes the distance of sample point zi to its kperm-

nearest neighbor (including i itself, i.e., d
kperm=1
i =

0); each list is then of length kperm
3: for all b ∈ {1, . . . , B} do
4: Initialize empty list U = {} of used indices
5: Initialize empty array x∗ of length n
6: Shuffle lists Ni separately for each i
7: Create random permutation π of {1, . . . , n}
8: for all i ∈ π do
9: j = Ni(0)

10: m = 0
11: while j ∈ U and m < kperm − 1 do
12: m = m+ 1
13: j = Ni(m)

14: x∗
i = xj

15: Add j to U
16: Compute �Ib = �I(x∗; y|z)
17: Compute p-value by p = 1

B

�B
b=1 1[

�Ib ≥ �I(x; y|z)]
where 1 denotes the indicator function

18: return p and test statistic value �I(x; y|z)

estimated by applying the CMI estimator on the per-
mutation surrogates and the p-value is derived as the
fraction of surrogate CMIs larger or equal than the
CMI of the original data.

The CMI estimator holds for arbitrary dimensions of
all arguments X,Y, Z and also the local permutation
scheme can be used to jointly permute all of X’s di-
mensions. In the following numerical experiments, the
focus is on the case of univariate X and Y and uni-
or multivariate Z. Further, the permutation scheme
can also be utilized with other conditional dependence
measures, in the Supplementary Material we show nu-
merical results for random-fourier-based kernel tests
(Strobl et al., 2017).

As for the CMI estimator, the worst case computational
complexity in sample size of this scheme, especially for
very high dimensions, is O(n2) for finding the near-
est neighbors. The subsequent step of creating the
local permutation is O(n) and the CMI estimate again
O(n2). Hence the computational complexity of the
whole approach is quadratically in sample size in the

CMI
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Figure 2: Illustrative simulation of multivariate Gaus-
sian to demonstrate the effect of the nearest-neighbor
permutation parameter kperm. The model (6) is de-
scribed in the text (here only linear dependencies were
used and DZ = 1, n = 250, c = 1, kCMI = 50). (Left
panel) Under H0 the true null distribution of CMI is
depicted as the orange surface (same for all kperm) with
the 95% quantile marked by a red straight line. The
black distributions and markers give the permuted null
distributions and their 95% quantiles for different kperm.
The sample size is n = 250 such that kperm = 250 cor-
responds to a full non-local permutation. (Right panel)
Here the true distribution under H1 is depicted as the
grey surface next to the null distribution and the per-
muted distributions are generated from the dependent
data.

worst case, but we numerically saw a more moderate
scaling thanks to the use of KD-tree neighbor search
(Maneewongvatana and Mount, 1999). The compu-
tational time mostly depends on whether the nearest
neighbor search and the B-loop in Algorithm 1 are
(embarrassingly) parallelized, for example on GPUs.

A theoretical proof that this scheme asymptotically
samples from the null distribution (Type I validity)
is challenging. Recent work (Sen et al., 2017) demon-
strates a proof for the bootstrap case and kperm = 1,
but an extension to the permutation case with larger
kperm is not straightforward. Typically permutations
are preferred for significance testing for smaller sam-
ple sizes which motivated our choice, especially since
the CMI nearest-neighbor estimator requires non-tied
samples. Additionally, larger kperm yield more power
as illustrated in Figs. 2,3.

3 Experiments

3.1 Choosing kCMI and kperm

The approach has two free parameters, kCMI and kperm.
The following numerical experiments indicate that re-
stricting kperm to only very few nearest neighbors al-
ready suffices to reliably simulate the null distribution
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Figure 3: Choice of kCMI and kperm based on experiments with post-nonlinear noise model (6). The sample size
is n = 250 and 1, 000 realizations were generated to evaluate false positives (FPR) and true positives (TPR) for
c = 1 at a 5% significance level. Shown are FPR and TPR for DZ = 1 (left panels) and DZ = 8 (right panels).
False positives are well-calibrated for small kperm and a wide range of kCMI and power is also relatively robust.
More sample sizes shown in Supplementary Figs. S2,S3.

while for kCMI a rule-of-thumb kCMI ≈ 0.1..0.2n is
proposed.

We study a post-nonlinear noise model similar to Zhang
et al. (2011); Strobl et al. (2017) given by

X = gX(c�b + �X + 1
DZ

�DZ

i=1
Zi)

Y = gY (c�b + �Y + 1
DZ

�DZ

i=1
Zi) , (6)

where Zi, �b, �X , �Y have jointly independent
standard Gaussian distributions, and gX , gY de-
note smooth functions uniformly chosen from
(·), (·)2, (·)3, tanh(·), exp(|| · ||2). Thus, we have
X ⊥⊥ Y | Z = (Z1, Z2, . . .) for c = 0 (H0 true) and
the dependent case X ✚✚⊥⊥ Y | Z for c �= 0 (H1 true).
Zhang et al. (2011); Strobl et al. (2017) used a setup
where Z is independent of X and Y in the dependent
case. Supplementary Fig. S6 gives results for this
model setup, but in causal discovery applications these
are typically dependent. Model (6) is evaluated for
different sample sizes n and dimensions DZ of the
conditioning set. The null distribution for the CMI
test was generated with B = 1, 000 surrogates in
all experiments and 1, 000 realizations were used to
evaluate performance metrics.

Figure 2 illustrates the effect of different kperm for a
linear-only version of the model. If kperm is too large
or even kperm = n, i.e., a full non-local permutation,
the permuted distribution under H0 is narrower than
the true null distribution. As illustrated by the black
markers, this would lead to an increase of false positives
(type-I errors). On the other hand, for the dependent
case under H1, if kperm is very small, the permuted
distribution is positively biased yielding lower power
(more type-II errors). For a range of values of kperm,
the permuted distribution perfectly generates the true
null distribution.

Figure 3 depicts false and true positives for different

kCMI and kperm for a sample size n = 250. The re-
sults indicate that a value kperm ≈ 5..10 yields well-
calibrated tests while not affecting power much. This
holds for a wide range of sample sizes as shown in
Supplementary Figs. S2,S3. Sen et al. (2017) proved
type-I validity for the kperm = 1 bootstrap case in their
scheme which may also serve as a very conservative
option with lower power for the CMI test.

Larger kCMI yield more power and even for kCMI ≈ n/2
the tests are still well calibrated. But power peaks
at some value of kCMI and slowly decreases for too
large values. Still, the dependency of power on
kCMI is relatively robust suggesting a rule-of-thumb
of kCMI ≈ 0.1..0.2n. Note that, as shown in Supple-
mentary Fig. S1, runtime increases linearly with kCMI

while kperm does not impact runtime much. Here the
runtime per CMI estimate is computed assuming that
the scheme is (embarrassingly) parallelized.

3.2 Comparison with kernel measures and
distance correlation

In Fig. 4 we investigate results comparing the CMI
test (CMIknn) to a simpler clustering permutation
scheme (CMIknnclust), KCIT and the two random-
fourier-based approximations RCIT and RCoT intro-
duced in Strobl et al. (2017). The Kolmogorov-Smirnov
(KS) statistic as a metric for type-I errors, as in Strobl
et al. (2017), is utilized to quantify how uniform the
distribution of p-values is. Type-II errors are measured
by the area under the power curve (AUPC). All metrics
were evaluated from 1, 000 realizations of the model
with c = 0.5 and error bars give the bootstrapped
standard errors. Supplementary Figs. S4,S5 depict the
results for false and true positive rate metrics. CMIknn
was run with kperm = 5, B = 1, 000 permutation sur-
rogates, and using the rule-of-thumb kCMI = 0.1n as
well as a fixed kCMI = 50.
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Figure 4: Comparison studies with post-nonlinear noise model (6). Shown are KS (left column), AUPC (center
column), and runtime (right column) for a sample size experiment with DZ = 1 (top row) and DZ = 8 (bottom
row). In all experiments kperm = 5 is used together with two choices kCMI = 0.1n and kCMI = 50. Here results
for the default nff = 25 fourier features for RCIT and RCoT are shown, but calibration (false positive control) is
relatively sensitive to this parameter (Supplementary Fig. S7). CMIknnclust is based on a simple equi-quantile
permutation scheme (only for DZ = 1). Supplementary Fig. S6 gives results for an alternative model with
independent Z.

Figure 4 demonstrates that CMIknn is better calibrated
with the lowest KS-values for almost all sample sizes
tested. A simpler permutation scheme used only for
DZ = 1 (orange lines) based on shuffling x within
equi-quantile bins of z (here with 20 bins) becomes ill-
calibrated for larger n. While the number of bins can
be adapted to the sample size, this is difficult for higher
dimensional Z. KCIT and RCIT (solid red and green
lines) are especially badly calibrated for smaller sample
sizes or higher dimensions DZ and RCoT (solid blue
line) better approximates the null distribution only for
n > 500. Note that this is also expected (Strobl et al.,
2017) since the analytical approximation of the null
distribution for RCIT and RCoT requires large sample
sizes. The power as measured by AUPC is, thus, only
comparable for n > 500 and CMIknn has the highest
power throughout. For DZ = 8, on the other hand,
RCoT has slightly higher power than CMIknn. For
the model setup with independent Z (Supplementary
Fig. S6), CMIknn has again similar or higher power.

If the computationally expensive scheme of CMIknn
is (embarrassingly) parallelized, the CMIknn test is

faster than RCIT or RCoT for not too large sample
sizes due to efficient KD-tree nearest-neighbor search
procedures (Maneewongvatana and Mount, 1999), es-
pecially for smaller kCMI (right column in Fig. 4).
KCI is not shown here because it is orders of mag-
nitude slower. A major computational burden of
RCIT and RCoT is the kernel bandwidth computa-
tion via the median Euclidean distance heuristic. In
https://github.com/ericstrobl/RCIT the median
is computed from the first 500 samples only, leading to
the “kink” in the runtime for RCIT and RCoT. The
runtime of RCIT and RCoT depends quadratically on
the number of random Fourier features used (here the
default of 25 for subspace Z and 5 for subspaces X and
Y was used), for more results see Fig. S7. CMIknn’s
runtime increases more sharply with sample size, espe-
cially for kCMI = 0.1n.

Figure 5 explores more cardinalities of the conditioning
set. KCI and RCIT are not well-calibrated for higher di-
mensions while RCoT and CMIknn better approximate
the null. The power of CMIknn and RCoT decreases
with dimensionality with CMIknn being more power-
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Figure 5: Numerical experiments as in Fig. 4 for different condition dimensions DZ with fixed n = 1000.
Supplementary Fig. S6 gives results for an alternative model with independent Z.

ful for smaller dimensions and RCoT more powerful
for larger dimensions. For the model setup with in-
dependent Z (Supplementary Fig. S6), the power of
both approaches is rather insensitive to dimensional-
ity. CMIknn’s runtime starts lower, but increases more
sharply with DZ than RCIT and RCoT.

The results indicate that the analytical approximations
of the null distribution utilized in RCIT and RCoT do
not work well for small sample sizes below n ≈ 1000.
The dashed blue and green lines in Supplementary
Fig. S6 explore the option to combine the kernel statis-
tics with the nearest-neighbor permutation test. While
then RCIT and RCoT loose their computational ad-
vantage, the tests are now well-calibrated. Their power
is still mostly lower than that of CMIknn, especially
for RCIT.

Until now rather smooth dependencies of X and Y
on the conditioning variables were considered. Fig-
ure 6 depicts a more nonlinear relationship. For
an extremely oscillatory sinusoidal dependency like
X = c�b+sin(λZ)+ �X and Y = c�b+sin(λZ)+ �Y for
λ = 30 (all noise terms N (0, 1)), shown in Fig. 6, kperm
needs to be set to a very small value in order to control
false positives. CMIknn well detects dependence for
this case (true positives equal 1) while the analytical
versions of RCIT and RCoT do not work at all (false
positives are 1) and the permutation-based versions
have much lower power than CMIknn even if we vary
the number of Fourier features. Note that higher values
take much longer, see Fig. S7.

In Supplementary Tab. S1 the results from Wang et al.
(2015) are repeated proposing the conditional distance
correlation (CDC) test together with results from RCoT
and the CMI test. The experiments are described in
Wang et al. (2015). Examples 1–4 correspond to condi-
tional independence and Examples 5–8 to dependent
cases. CMIknn has well-calibrated tests except for
Example 4 (as well as Example 8) which is based on

discrete Bernoulli random variables while the CMI test
is designed for continuous variables. For Examples 5–8
CMIknn has competitive power compared to CDC and
outperforms KCIT in all and RCoT in all but Exam-
ple 5 where they reach the same performance. Note
that the CDC test is based on a computationally ex-
pensive local bootstrap scheme since the asymptotics
break down for small sample sizes.

4 Real data application

CMIknn is well suited for large-scale causal discovery in
combination with efficient discovery algorithms (Spirtes
et al., 2000) avoiding high-dimensional conditioning by
iterative tests. Here we demonstrate CMIknn together
with a time series version of the PC causal discovery
algorithm (Runge et al., 2017)2 to investigate dependen-
cies between hourly averaged concentrations for carbon
monoxide (CO), benzene (C6H6), total nitrogen oxides
(NOx), nitrogen dioxide (NO2), as well as temperature
(T), relative humidity (RH) and absolute humidity
(AH) taken from De Vito et al. (2008)3. The time se-
ries were detrended using a Gaussian kernel smoother
with bandwidth σ = 1440 hours and the analysis was
limited to the first three months of the dataset (2160
samples). After accounting for missing values the effec-
tive sample size is n = 1102. The CMIknn parameters
are kCMI = 200 and kperm = 5 with B = 1, 000 permu-
tation surrogates. The causal discovery algorithm was
run including lags from τ = 1 up to τmax = 3 hours.
The resulting graph at a 10% false discovery-level shown
in Fig. 7 indicates that temperature and relative humid-
ity influence Benzene which in turn affects NO2 and
CO concentrations. The edge colors depict the CMI
test statistic values which demonstrates another advan-
tage of information-theoretic measures: The CMI value

2Software is available online under
https://github.com/jakobrunge/tigramite.

3http://archive.ics.uci.edu/ml/datasets/Air+Quality
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Figure 6: Example of sinusoidal dependence leading to
strongly oscillatory structure (top panel for λ = 10).
The two center panels depict FPR and TPR at α =
0.05 for CMIknn and the two bottom panels for RCIT
and RCoT for different numbers of random fourier
features nff. Here the analytical versions of RCIT and
RCoT (solid lines) do not work at all (FPR equal to
1). If RCIT and RCoT are combined with the local
permutation test (dashed lines) for kperm = 5, they
become better calibrated, but still have much lower
power than CMIknn.

is well-interpretable as the magnitude of information
flow between components of the system.

5 Conclusion

The paper presents a novel fully non-parametric condi-
tional independence test based on a nearest neighbor
estimator of conditional mutual information. Its main
advantage lies in the ability to adapt to highly localized
densities due to nonlinear dependencies. This feature
results in well-calibrated tests with reliable false pos-
itive rates. Numerical experiments for sample sizes
n = 50 to n = 2, 000 and dimensions of the conditional
set of DZ = 1..10 were evaluated. The experiments
suggest that a permutation nearest-neighbor parameter
of kperm = 5 provides well-calibrated tests while not
affecting power much, but smaller values can serve as
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AH
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0.0 0.1 0.2 0.3
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Figure 7: Causal discovery with CMIknn and the algo-
rithm proposed in Runge et al. (2017) on time series of
air pollutants and various weather variables. The node
color gives the strength of auto-CMI, i.e., the lag-1
CMI of a variable with itself, and the edge color the
cross-CMI with the link labels denoting the time lag in
hours. Significance based on 10% false discovery-level.

a more conservative option. The power of CMIknn
was found higher than advanced kernel based tests
such as KCIT or its faster random Fourier feature
versions RCIT and RCoT for smaller dimensions and
similar for higher dimensions. CMIknn is preferable
especially for highly non-smooth densities due to its
local data-adaptiveness. For not too large sample sizes
CMIknn has a shorter runtime since efficient nearest-
neighbor search schemes can be utilized, but its runtime
increases more sharply with sample size and dimension-
ality than the fourier-feature based kernel tests. Here
approximate nearest-neighbor techniques could speed
up computation. The permutation scheme leads to
a higher computational load which, however, can be
easily parallelized, for example on GPUs. Nevertheless,
more theoretical research is desirable to obtain approx-
imate analytics for the null distribution in the large
sample limit. For small sample sizes below n ≈ 1, 000
our results demonstrate that a permutation-approach
is inevitable also for kernel-based approaches.
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