
Saad and Mansinghka

Appendices

A Data-dependent parameters for
Student-T reweighting function

Following (4), the reweighting function G is a product
of p Student-T distributions whose location, scale and
degrees of freedom are data-dependent [24]:

G(xt−p:t−1;Dtk, λG)

=

p∏
i=1

Gi(xt−i;Dtki, λGi)

=

p∏
i=1

T2atki

(
xt−i;mtki, btki

Vtki + 1

atki

)
(9)

λGi = (mi0, Vi0, ai0, bi0)

Dtki = {xt′−i : zt′ = k, 1 ≤ t′ < t}
ntki = |Dtki|

x̄tki =
1

ntki

∑
t′∈Dtki

xt′−i (10)

Vtki = 1/(V −1
i0 + ntki)

mtki = Vtki(V
−1
i0 mi0 + ntkix̄tki)

atki = ai0 + ntki/2

btki = bk0 +
1

2

(
m2
i0V
−1
i0 +

∑
t′ x

2
t′−i −m2

itkV
−1
tki

)
.

B Markov chain Monte Carlo
methods for posterior inference

Here, we provide the details of the MCMC method for
posterior simulation from the nonparametric mixture
model developed in Section 3. As discussed in the main
text, conjugacy of F and πΘ in (3) means we can an-
alytically marginalize parameters {θnk} when defining
the generative process of the TRCRP mixture. The
model in Figure 2a therefore becomes:

α ∼ Gamma(1,1) (11)

λnG ∼ Hn
G n = 1, 2, . . . , N

λnF ∼ Hn
F n = 1, 2, . . . , N

xn−p+1:0
··= (xn−p+1, . . . , x

n
0) n = 1, 2, . . . , N

Pr
[
zt = k | z1:t−1,x

1:N
t−p:t−1, α, λ

1:N
G

]
t = 1, 2, . . . , T

∝ CRP(k|α, z1:t−1)
∏N
n=1G(xnt−p:t−1;Dn

tk, λ
n
G)

where Dn
tk
··=
{
xnt′−p:t′−1 | zt′ = k, 1 ≤ t′ < t

}
and k = 1, . . . ,max (z1:t−1) + 1

xnt
∣∣ {zt = k,x1:N

1:t−1

}
∼
∫
θ
F (·|θ)πΘ(θ|D′ntk, λnF)dθ

where D′ntk ··= {xnt′ | zt′ = k, 1 ≤ t′ < t} .
n = 1, 2, . . . , N

The integration of F against πΘ(θ|D′nzt) in the right
hand-side of the final line evaluates to a Student-T
distribution as in (9), whose updates given D′ntzt and
λnF are identical to those in (10) with i = 0.

Inference on temporal regime assignments
(zt|z1:T\t, . . .). We first describe how to transition
z1:T , assuming the collapsed version of the TRCRP
(11) with N time series. Note that since the hi-
erarchical prior (5) for structure learning results in
M = max(c1:N) independent TRCRP mixtures (con-
ditioned on the assignment vector), it suffices to de-
scribe inference on z1:T in one of the mixtures (which
keeps notation significantly simpler). Given observa-
tions x1:N

−p+1:T , the joint likelihood of model (11) is:

P
(
α, λ1:N

G , λ1:N
F , z1:T ,x

1:N
1:T ; x1:N

−p+1:0, p
)

= Γ(α; 1, 1)

(
N∏
n=1

Hn
G(λnG)

)(
N∏
n=1

Hn
F (λnF)

)
T∏
t=1

[
btCRP(zt | z1:t−1, α)

N∏
n=1

G(xnt−p:t−1;Dn
tzt , λ

n
G)F (xnt | D′ntzt , λnF)

]
(12)

The normalizer at time t is given by:

bt(x
1:N
1:t−1, z1:t−1) (13)

=

(
Kt∑
k=1

CRP(k|α, z1:t−1)

N∏
n=1

G(xnt−p:t−1;Dn
tk, λ

n
G)

)−1

,

where Kt = max(z1:t−1)+1. Note that the normalizer
bt(x

1:N
1:t−1, z1:t−1) ensures the reweighted cluster proba-

bilities sum to one. It will also be convenient to define
the predictive density qt at time t of data x1:N

t , which
sums out all possible values of zt:

qt(x
1:N
1:t , z1:t−1) (14)

= bt(x
1:N
1:t−1, z1:t−1)

(
Kt∑
k=1

CRP(k|α, z1:t−1)

N∏
n=1

G(xnt−p:t−1;Dn
tk, λ

n
G)F (xnt | D′ntk, λnF)

)
.

Let the current state of the Markov chain be
(α, λ1:N

G , λ1:N
F , z1:T). We present two algorithms for

sampling the latent regimes assignments. Algorithm 1
is a single-site Metropolis-Hastings procedure that tar-
gets (zt|z1:T\t, . . .) at each step, where we assume that
all data in x1:N

1:T are fully observed. Algorithm 2 is an
SMC scheme to block sample (z1:T | . . .) using particle
learning [9]. Arbitrary observations may be missing,
as they are imputed over the course of inference.

Temporally-Reweighted Chinese Restaurant Process Mixtures for Multivariate Time Series

Algorithm 1: single-site Metropolis-Hastings. This algorithm proposes (zt|z1:T\t, . . .) at each step, assuming
fully observed data x1:N

1:T . Repeat for t = 1, 2, . . . , T :

1. Propose z′t from the multinomial distribution:

Pr[z′t = k | z1:T\t,x
1:N , α] ∝ CRP(k|α, z1:T\t)

N∏
n=1

G(xnt−p:t−1;Dn
Tk\ {xnt } , λnG)F (xnt | D′nTk\ {xnt } , λnF),

(15)

for k ∈ unique(z1:T\t) ∪
{

max(z1:T\t) + 1
}
.

2. Compute the MH acceptance ratio r(zt → z′t), using bt defined in (13):

r(zt → z′t) =

∏
t′>t bt′(z1:t′−1\t ∪ z′t,x1:N

1:t′−1)∏
t′>t bt′(z1:t′ ,x1:N

1:t′−1)
. (16)

3. Set zt ← z′t with probability min(1, r), otherwise leave zt unchanged.

Algorithm 2: block sampling with particle-learning. This algorithm block samples z1:T without any assump-
tions on missingness of observations. Let ont be the “observation indicator” so that ont = 1 if xnt is observed,
and 0 if it missing (n = 1, 2, . . . , N and t = 1, 2, . . . , T). Let J > 0 be the number of particles. Since we
will be simulating missing values over the course of inference, we superscript all data with j to indicate the
inclusion of any imputed values by particle j.

1. Set wj ← 1 for j = 1, 2, . . . , J

2. Repeat for t = 1, 2, . . . , T

2.1. Repeat for j = 1, 2, . . . , J

2.1.1. Sample zjt from the multinomial distribution:

Pr[zjt = k | zj1:t−1,x
1:N,j , α] ∝ CRP(k|α, zj1:t−1)

N∏
n=1

G(xn,jt−p:t−1;Dn,j
tk , λ

n
G)

N∏
n=1

(
F (xnt | D′n,jtk , λnF)

)ont
, (17)

for k = 1, 2, . . . ,max(zj1:t−1) + 1.

2.1.2. Update particle weight using predictive density qt defined in (14):

wj ← wjqt

(
x1:N,j

1:t−1 ∪ {xnt | ont = 1} , zj1:t−1

)
. (18)

2.1.3. For each n such that ont = 0, simulate a value xn,jt ∼ F (· | D′n
tzjt
, λnF).

2.2. If resampling criterion met, then:

2.2.1. Resample (zj1:t,x
1:N,j
1:t) proportionally to wj , j = 1, 2, . . . , J .

2.2.2. Renormalize weights wj ← wj/
∑
j′ w

j′ , j = 1, 2, . . . , J .

3. Resample j ∼ Categorical(w1, . . . , wJ) and return (zj1:T ,x
1:N,j
1:T).

Saad and Mansinghka

It is worth discussing the computational trade-offs
between MH Algorithm 1 and SMC Algorithm 2.
In step 1 of Algorithm 1, (15) is recomputed K =
O(max(z1:T)) times. Each assessment requires O(Np)
computations, where the factor of N is the product
over the time series, and the factor of p is the cost of as-
sessing G per (4). In step 2, computing the terms bt′ in
the acceptance ratio (16) requires revisiting O(T) data
points. Therefore a single iteration requires O(TKNp)
computations, so that the cost of a full sweep over all
T time points is O(T 2KNp). Note that it is not nec-
essary to sum over Kt in (13) when computing the bt′

terms in (16), since the data in at most two clusters
will change when proposing zt to zt′ . The sufficient
statistics can be updated in constant time using a sim-
ple dynamic programming approach.

In practice, we consider several computational approx-
imations that simplify the scaling properties of the
single-site MH Algorithm 1. For missing data, rather
than evaluate the full model likelihood (12) on im-
puted data for each t = 1, . . . , T , we instead adopt
a “data-dependent” prior, similar to the strategy de-
scribed by [10] in the context of Bayesian density re-
gression. Namely, letting ont be the indicator for hav-
ing observed xnt , we let the reweighting function G
consider only those data points that have actually been
observed. Therefore, (4) becomes:

G(xt−p:t−1;Dtk, λG) =

p∏
i=1

(Gi(xt−i;Dtki, λGi))
ont−i .

(19)

Second, note that the MH proposal (15) is very similar
to the Gibbs proposal from Algorithm 3 of [25], except
we must account for the temporal coupling so that
the transition is guaranteed to leave (12) invariant.
Empirical evidence suggest that, when using the pro-
posal (15), acceptance ratios center around one. This
observation suggests a good initialization strategy for
the Markov chain (prior to running the full MH algo-
rithm): run several rounds of step 1 always accepting
the proposal zt → z′t without computing (16), which
eliminates the additional O(T) factor.

Unlike the MH Algorithm 1, the SMC algorithm (2)
with requires O(KNp) to assess (17) in step 2.1.1;
the total cost of a complete pass through all T data
points (step 2) and all J particles (step 2.1) is there-
fore O(JTKNp). Note that in SMC, the normalizers
bt need not to be retroactively computed, which is the
key overhead of MH. In addition to its linear scaling
in T , SMC is able to (i) more tractably handle missing
data, and (ii) use a posterior particle filter by sampling
from the conditionally optimal proposal distribution in
step 2.1.1, resulting in significantly lower variance of
the weights [9].

Inference on time series cluster assignments
(cn|c1:N\n, . . .). This section describes an MCMC al-
gorithm for sampling the time series cluster assign-
ments when using the hierarchical CRP structure prior
(5). For notational simplicity, let B ⊆ [N] and define:

Lm(z1:T ,x
B
1:T) =

T∏
t=1

[
btCRP(zt | z1:t−1, α

m)

N∏
n=1

G(xnt−p:t−1;Dn
tzt , λ

n)F (xnt | D′ntzt , λnF)

]
. (20)

The term Lm is a short-hand for the product from
t = 1 to T in the full model likelihood (12) for a
single TRCRP mixture, with latent sequence z1:T ,
data xB1:T , and CRP concentration αm. Second, let
Am = {n | cn = m} be the indices of the time series
currently assigned to cluster m.

Algorithm 3: Sampling time series cluster as-
signments. Let the current state of the Markov
chain be (α0, c

1:N , α1:M , λ1:N
G , λ1:N

F , z1:M
1:T) with

observations x1:N
1:T . This algorithm resamples

(cn|c1:N\n, . . .). Repeat for n = 1, 2, . . . , N :

1. If cn is not a singleton cluster, i.e. |Acn | > 1,
then generate a proposal sequence by forward
sampling zM+1

1:T from model prior (11), holding
the data xn1:T fixed at the observed values.

2. If cn is a singleton, i.e. |Acn | = 1, then re-use
the current latent regime sequence by setting
zM+1

1:T = zc
n

1:T

3. For m ∈ unique(c1:N\n), compute

pm =

{
|Am|Lm (zm1:T ,x

n
1:T) if cn 6= m,

(|Am| − 1)Lm (zm1:T ,x
n
1:T) if cn = m.

4. Compute the singleton proposal probability:

pM+1 = α0Lm+1

(
zM+1

1:T ,xn1:T

)
5. Sample c′ ∼ Categorical({pm}).
6. Compute the MH acceptance ratio

r(cn → c′) =(
Lc
′
(zc
′

1:T ,x
Ac′

1:T ∪ xn1:T)Lc
n

(zc
n

1:T ,x
Acn

1:T \xn1:T)

Lc′(zc
′

1:T ,x
Ac′

1:T)Lcn(zc
n

1:T ,x
Acn

1:T)

)
(
Lc

n

(zc
n

1:T ,x
n
1:T)

Lc′(zc
′

1:T ,x
n
1:T)

)
. (21)

7. Set cn ← c′ with probability min(1, r), else
leave cn unchanged.

Temporally-Reweighted Chinese Restaurant Process Mixtures for Multivariate Time Series

By proposing the latent regime singleton from the
(conditional) prior in Step 2 of Algorithm 3, transdi-
mensional adjustments such as reversible jump MCMC
[14] need not be considered. Second, when computing
the MH acceptance ratio (21) in step 6, it is not neces-
sary to recompute all the Lm terms at each iteration.
First, writing out the full products (20) results in can-
cellation of several terms in the numerator and denom-
inator of (21). Second the bmt terms that do not cancel
contain several duplicated components, which can be
reused from one transition to the other.

In practice, we find that a similar heuristic to the one
described for Algorithm 1 provides good transitions in
the state space, given the similarities between Algo-
rithm 3 and the Gibbs Algorithm 8 from [25].

Inference on model hyperparameters
(α0, {αm} , {λnG} , {λnF } | . . .). This section describes
the empirical Bayes approach [30] for transitioning
model hyperparameters, using the “griddy Gibbs”
approach from [29]. For each hyperparameter, we
construct a grid of 30 data-dependent logarithmically-
spaced bins as follows:

Outer CRP concentration

grid(α0) = logspace(1/N,N)

TRCRP concentration

grid(αm) = logspace(1/T, T)

Normal-InverseGamma hyperparameters

grid(mn
0) = logspace(min(xn1:T)− 5,max(xn1:T) + 5)

grid(V n0) = logspace(1/T, T)

grid(an0) = logspace(ssqdev(xn1:T)/100, ssqdev(xn1:T))

grid(bn0) = logspace(1, T).

Grids for the Normal-InverseGamma hyperparameters
apply to both λF (n = 1, 2, . . . , N) and λG (windows
i = 1, 2 . . . , p). We cycle through the grid points
of each hyperparameter, and assess the conditional
likelihood at each bin using (6). We find that this
method is both computationally reasonable and finds
good hyperparameter settings. However, alternative
approaches based on slice sampling offer a promising
alternative to achieve fully Bayesian inference over hy-
perparameters.

C Experimental Methods

This section describes the quantitative experimental
methods used for forecasting, clustering, and imputa-
tion pipelines in Section 5. Access to experimental
pipeline code is available upon request.

C.1 Flu forecasting

The full CDC flu datasets used in this paper are avail-
able at https://github.com/GaloisInc/ppaml-cp7/tree/
master/data. Flu populations were constructed from
the following csv files: USA-flu.csv, USA-tweets.csv,
and USA-weather.csv. In each of US Regions 1 through
10, we held out data from weeks 2014.40 through
2015.20, and produced forecasts with a 10 week hori-
zon on a rolling basis. Tweet and minimum tempera-
ture covariates were used. More precisely, for a region
r (such as US Region 10) a forecaster F for week t
extending h weeks into the future is a function:

Fr,t,h :
{
xflu,r

1:t−2,x
cov,r
1:t

}
7→
{
xflu,r
t:t+h

}
. (22)

The forecastors iterated over regions r = 1, 2, . . . , 10,
weeks t = 2014.40, 2014.41, . . . , 2015.20, and horizons
h = 1, 2, . . . , 10. Note that the two week delay in the
latest flu data is expressed by only having data up to
t−2 when forecasting at week t. Second, xcov contains
arbitrary missing values (see for example the tweets
time series from Figure 2b). When forecasting, covari-
ate values are only available up to the current week
t, not the entire course of the forecast horizon. Nine
forecasting methods were used in the paper, shown in
Figure 6. Below are further details on each forecaster:

Constant. This method returns a constant prediction
based on the most recently observed flu value xflu

t−2 over
the entire course of the horizon.

Linear extrapolation. This method fits a straight
line through the three most recently observed flu val-
ues, xflu

t−4:t−2, and returns predictions by extrapolating
the line for h weeks.

GP (SE+PER+WN). This method is a Gaussian
process whose covariance kernel is a sum of squared ex-
ponential, periodic, and white noise components. Hy-
perparameter inference was conducted using the open
source implementation from the Venture platform [34;
https://github.com/probcomp/Venturecxx]. MH sam-
pling on data-dependent hyperparameter grids were
run for a burn-in period of 10000 iterations. Pre-
dictions were obtained by drawing 500 independent
curves from the posterior predictive distribution, eval-
uated jointly at the forecast weeks.

GP (SE×PER+WN). Identical to above, except to
using a covariance kernel with a product of squared ex-
ponential and periodic components, plus white noise.
The change in covariance kernel resulted in little quan-
titative and qualitative differences.

Facebook Prophet. We used the open-source
python implementation of Facebook Prophet [36;
https://facebook.github.io/prophet]. We specified the
data sampling rate as weekly. The method requires

https://github.com/GaloisInc/ppaml-cp7/tree/master/data
https://github.com/GaloisInc/ppaml-cp7/tree/master/data
https://github.com/probcomp/Venturecxx
https://facebook.github.io/prophet

Saad and Mansinghka

no additional specification or tuning. The predictor
returns point estimates, as well as upper and lower
confidence intervals, at the held-out weeks.

Seasonal ARIMA. We used the R implementation
of seasonal ARIMA from the forecast package [17;
https://cran.r-project.org/web/packages/forecast]. The
model is parameterized as ARIMA(p, d, q)(P,D,Q)m,
where p is the non-seasonal AR order, d is the non-
seasonal differencing, q is the non-seasonal MA order,
P is the seasonal AR order, D is the seasonal differenc-
ing, Q is the seasonal MA order, and m is the sampling
frequency per period. For each of the 10 flu seasons,
we used auto.arima to perform model selection. We
manually specified the weekly sampling rate by set-
ting m = 52, and set D = 1 to specify 1 flu season
per year. The program optimize all other parameters
using non-stepwise grid search, which is significantly
slower to fit than stepwise search, but is both more
extensive and more appropriate for data with seasonal
behavior (according to the package documentation).
While auto.arima can in principle support covariate
data using the xreg parameter, we were unable to suc-
cessfully use xreg due to missing data in the matrix of
external regressors (tweets and weather) at the held-
out weeks. The predictor returns point estimates, as
well as upper and lower confidence intervals, at the
held-out weeks.

Multi-output GP This method is a single-input
(time) multiple-output (flu, tweets, and weather data)
Gaussian process. We used the the open source MAT-
LAB implementation of sparse convolved Gaussian
process for multi-output regression from the multigp

package [3; https://github.com/SheffieldML/multigp].
We used the following configuration options:

i multigpOptions('ftc');

ii options.kernType='ggwhite';

iii options.optimizer='scg';

iv options.nlf=1,

to specify (i) full estimation without running likeli-
hood approximations; (ii) a Gaussian-Gaussian kernel
with white noise; (iii) scaled conjugate gradient opti-
mization; and (iv) one latent function. Moreover, the
options.bias and options.scale parameters were
initialized to their empirical values from the training
set. Optimization was run until convergence for all
forecastors. This method is the only baseline which
can handle arbitrary patterns of missing data, thereby
making use of the weather and tweet signals when fore-
casting predictions at time t. However, the absence
of a periodic kernel in the convolved GP implementa-
tion made it difficult to capture the seasonal dynam-
ics. Predictions were obtained by sampling 500 inde-

pendent normal random variables from the posterior
predictive distribution evaluated at the forecast weeks.

HDP-HSMM. This method is the hierarchical
Dirichlet process semi-Markov model; experiments
were run using the open-source python package pyhsmm
[19; https://github.com/mattjj/pyhsmm]. While the
HDP-HSMM cannot handle missing values in the
training data, it can handle missing data over the
course of the prediction horizon. Therefore, flu and
weather time series were modeled jointly, leaving out
the tweets. We used the WeakLimitHDPHSMM model,
with a Poisson duration distribution and Gaussian ob-
servation distribution. Default configurations of all
hyperparameters of these distributions and the HDP-
HSMM concentration were taken from examples made
available by the authors. MCMC inference with 1000
steps of burn-in was used. Predictions were obtained
by drawing 100 independent curves from the posterior
predictive evaluated at the forecast weeks.

Univariate TRCRP mixture. This method only
considered the flu time series using model (2). We used
a window size of p = 10 weeks, and S = 64 parallel
MCMC runs with a burn-in period of 5000 iterations.
Predictions were obtained by drawing 500 independent
curves from the posterior predictive distribution eval-
uated at the forecast weeks.

Multivariate TRCRP mixture. This method con-
sidered flu, weather and tweet time series using the
model in Figure 2a. We used a window size of p = 10
weeks, and S = 64 parallel MCMC runs with a burn-
in period of 5000 iterations. Missing covariate data
was handled using the approximation given in (19).
Using the hierarchical structure prior (5) resulted in
little to no quantitative difference. The three time
series are dependent, which was reflected in their pos-
terior dependence probability (7) being 1 across all
64 independent chains. Predictions were obtained by
sampling 500 independent curves from the posterior
predictive distribution evaluated at the forecast weeks.
An open-source implementation of the method used in
this paper is at https://github.com:probcomp/trcrpm.

C.2 Flu imputation

We constructed a single population of 10 flu time se-
ries for US Regions 1 through 10. Missing data was
dropped independently in each time series by remov-
ing consecutive windows of length 10 at a rate of 5%.
The full and dropped datasets used for benchmarking
are shown in Figure 8. Below are further on details on
each of the five imputation methods:

Mean imputation. This method returns the per-
series mean as the imputed value for each data point.

https://cran.r-project.org/web/packages/forecast
https://github.com/SheffieldML/multigp
https://github.com/mattjj/pyhsmm
https://github.com:probcomp/trcrpm

Temporally-Reweighted Chinese Restaurant Process Mixtures for Multivariate Time Series

Linear interpolation. This method constructs
a straight line between every pair of time points
t1 < t2 which have at least one missing observa-
tion between them. The interpolation method used
was pandas.Series.interpolate from the python
pandas package at https://pandas.pydata.org.

Cubic interpolation. The cubic interpolation rou-
tine used was scipy.interpolate.interp1d from the
python scipy package at https://scipy.org.

Amelia II. This method uses the R package amelia

[16; http://cran.r-project.org/web/packages/Amelia] for
multiple imputation. We used 100 samples per missing
data point. Imputation errors were averaged over the
multiple imputations.

Multivariate TRCRP mixture. A window of p =
10 weeks was used, with S = 64 parallel MCMC runs
and a burn-in period of 5000 iterations. 100 predic-
tive samples from each of the chains were obtained us-
ing (8), and imputation errors were averaged over the
multiple imputations. Joint imputations of Regions 1
through 10 are are shown Figure 8.

C.3 Sensitivity of imputation performance to
the TRCRP mixture window size

We further studied how imputation performance of the
TRCRP mixture varied as we changed the window size
p. Figure 7 shows the outcome of this sensitivity anal-
ysis. In all cases, the sampler was run for a burn-in of
5000 iterations with S = 16 chains. While imputation
is generally not highly sensitive to p, median imputa-
tion values degrades slightly with increasing p and the
variance of imputation errors increases. (At higher p,
the MCMC chains need a significantly higher number
of iterations to mix well than at lower p.)

The reason that small p works well for jointly imputing
the 10 time series in Figure 8 is that the multivariate
TRCRP mixture shares statistical strength across time
series. Namely, when imputing a missing value xn0

t at
time t for time series n0, the relevant variables for pre-
dicting the hidden state zt are (i) the history xnt−p:t−1

of the current time series; and (ii) values {xnt | n0 6= n}
of other time series at time t. The latter effect is the
dominant one in this imputation problem, leading to
less sensitivity to p than might be expected.

C.4 Clustering GDP time series

The clustering results from Figure 4 were obtained by
using a TRCRP with a window of p = 5 years. The
nine clusters that are shown were obtained by aver-
aging dependence probabilities over S = 60 posterior
samples (using a burn-in of 5000 iterations), and ex-
tracting groups of variables whose dependence proba-

01 02 04 06 08 12 14 18 22 24 32

TRCRP Mixture Window Size p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
bs

ol
ut

e
Im

pu
ta

tio
n

E
rr

or
s

Figure 7: Sensitivity of imputation performance to
TRCRP window size p.

bilities (7) exceeded 80%. All time series in Figure 4
are linearly rescaled to [0, 1] for plotting purposes only.

While clustering is an unsupervised task that is chal-
lenging to evaluate quantitatively (especially for real-
world data, where there is no “ground-truth”), qual-
itative comparisons to k-medoids clustering with the
dynamic time warping metric on the same GDP time
series are shown and discussed in Figure 9.

C.5 Expanded results on clustering cell
phone subscription time series

In addition to clustering GDP series from Figure 4, we
applied the TRCRP prior with hierarchical extension
(5) to cluster historical cell phone subscription data.
The outcome of the clustering is shown in Figure 10,
where we show all 170 time series in the left most fig-
ure, along with three representative clusters from one
posterior sample. Each cluster corresponds to coun-
tries whose change point in cell phone subscribers from
zero to non-zero fell in a distinct window: 1985-1995
in cluster 1, 1995-2000 in cluster 2, and 2000-2005 in
cluster 3. We also compare renderings of the the pair-
wise dependence probability matrix with the pairwise
cross-correlation matrix. Refer to the caption of Fig-
ure 10 for additional details.

https://pandas.pydata.org
https://scipy.org
http://cran.r-project.org/web/packages/Amelia

Saad and Mansinghka

R01.%ILI

R02.%ILI

R03.%ILI

R04.%ILI

R05.%ILI

R06.%ILI

R07.%ILI

R08.%ILI

R09.%ILI

2008 2009 2010 2011 2012 2013 2014 2015
Year

R10.%ILI

(a) Original flu time series

2008 2009 2010 2011 2012 2013 2014 2015
Year

(b) Time series after dropping data

R01.%ILI

R02.%ILI

R03.%ILI

R04.%ILI

R05.%ILI

R06.%ILI

R07.%ILI

R08.%ILI

R09.%ILI

2008 2009 2010 2011 2012 2013 2014 2015
Year

R10.%ILI

(c) Jointly imputed time series using TRCRP mixture (p = 10)

Figure 8: Full, missing, and imputed flu time series over eight years in US Regions 1 through 10.

Temporally-Reweighted Chinese Restaurant Process Mixtures for Multivariate Time Series

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

(a) k = 1

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

Year

M6

(b) k = 6

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

(c) k = 2

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

Year

M6

Year

M7

(d) k = 7

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

(e) k = 3

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

Year

M6

Year

M7

Year

M8

(f) k = 8

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

(g) k = 4

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

Year

M6

Year

M7

Year

M8

Year

M9

(h) k = 9

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

(i) k = 5

Year

G
D

P
 P

e
r

C
a
p
it

a

M1

Year

M2

Year

M3

Year

M4

Year

M5

Year

M6

Year

M7

Year

M8

Year

M9

Year

M10

(j) k = 10

Figure 9: Outputs of k-medoids clustering on the GDP per capita time series for all 170 countries in the
Gapminder dataset, with k = 1, 2, . . . , 10. Distances are computed using the dynamic time warping (DTW)
metric, a common similarity measure between a pair of time series [6]. For each k, we randomly initialized the
medoids and ran the algorithm to convergence (medoids are shown in red, and time series assigned to that medoid
in gray). Using k-medoids requires hand-tuning the number of latent clusters k, whereas the proposed method
(whose posterior clustering is shown in Figure 4 of the main text), places a non-parametric Bayesian prior over
this parameter. Moreover, when compared to the clusters detected by the proposed method, those detected
by k-medoids with DTW appear qualitatively less distinct, and have more repetitive and duplicated temporal
patterns (especially apparent at higher k). Finally, k-medoids outputs a fixed cluster assignment for each time
series in the population; these assignments are sensitive to the random initialization and cannot be aggregated
in a principled way. In contrast, inference in the proposed method assigns probabilistic cluster assignments that
can be averaged coherently using (7) to express posterior uncertainty.

Saad and Mansinghka

1980 1985 1990 1995 2000 2005 2010

ce
ll

ph
on

e
su

bs
cr

ip
tio

ns

All 170 cellphone time series

1980 1985 1990 1995 2000 2005 2010

Changepoints
1985-1995

Cell phone cluster 1

Canada
France
Italy
Japan
South Korea
USA

1980 1985 1990 1995 2000 2005 2010

Changepoints
1995-2000

Cell phone cluster 2

Brazil
China
Jordan
Poland
Romania
Uruguay

1980 1985 1990 1995 2000 2005 2010

Changepoints
2000-2005

Cell phone cluster 3

Afghanistan
Bangladesh
Chad
Ghana
Nepal
Sudan

(a) Three posterior clusters in the TRCRP mixture correspond to three non-overlapping change point windows.

(b) Pairwise dependence probability heatmap (c) Pairwise cross-correlation heatmap

Figure 10: Discovering changepoint patterns in cell phone subscriptions for 170 countries in the Gapminder
dataset. (a) The three clusters (extracted from one posterior sample) correspond to three regimes each with
non-overlapping change point windows, annotated by red boxes. The representative countries in each cluster
have similar adoption times of cell phone technology, a feature which differs across the clusters. (b) and (c) The
matrix of dependence probabilities (averaged over 60 posterior samples using (7)) and the matrix of pairwise
cross-correlations (bottom) between all pairs 170 time series. Each row and column is a time series, and the color
of a cell (a value between 0,1) indicates the posterior dependence probability, resp. cross-correlation coefficient
(significant at the 0.05 level with Bonferroni correction). The TRCRP mixture detects more refined dependence
structures than those captured by linear statistics.

