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Supplementary Material

S1 DERIVATION OF THE EQUATIONS IN SECTION 5.3

We first show how to express Pi,i (i 2 E) with FW and BW:

Pi,i =
X

R2Rr,1:i2X(R)

w(R)

Z(w,S)

=
X

v2V :lv=i

X

R02Rr,v

R002Rc1v,1

w(R0 [ {i} [R
00)

Br
* Z(w,S) = Br

=
X

v2V :lv=i

FvwiBc1v

Br
* Fv =

X

R2Rr,v

w(R) and Bv =
X

R2Rv,1

w(R).

Next, we express Pi,j (i < j) with FW, BW, and BWC as follows:

Pi,j =
X

R2Rr,1:i,j2X(R)

w(R)

Z(w,S)

=
X

v2V :lv=i

X

R02Rr,v

R002Rc1v,1:j2X(R00
)

w(R0 [ {i} [R
00)

Br
* Z(w,S) = Br

=
X

v2V :lv=i

FvwiCc1v,j

Br
* Fv =

X

R2Rr,v

w(R) and Cv,j =
X

R2Rv,1:j2X(R)

w(R).

Thus we obtain the equations in Section 5.3.

S2 PROOFS OF THE THEOREMS

In what follows we prove Theorem 1 and Theorem 2. Section S2.1 presents two concentration inequalities that
are important in the proofs. In Section S2.2 we provide some preliminaries for the proofs. Section S2.3 and
Section S2.4 provide the proofs of Theorem 1 and Theorem 2, respectively. Most of the following discussions are
based on [6, 8], but the proofs cannot be obtained just by combining the existing works. The key to completing
the proofs is Lemma 3 presented later, which is important for bounding the di↵erence between the player’s choice
and the best single action. Lemma 2, which is a variant of [8, Lemma 2.3], plays an important role in the proof of
Lemma 3.

S2.1 Concentration Inequalities

The following concentration inequalities play crucial roles in the subsequent discussion.

Proposition 1 (Azuma-Hoe↵ding inequality). If a martingale di↵erence sequence {Zt}Tt=1
satisfies at  Zt  bt

almost surely with some constants at, bt for t = 1, . . . , T , then the following inequality holds with probability at
least 1� �:

TX

t=1

Zt 

vuut ln(1/�)

2

TX

t=1

(bt � at)2.

Proposition 2 (Bennett’s inequality [13]). If a supermartingale di↵erence sequence {Zt}Tt=1
with respect to a

filtration {Ft}T�1

t=0
satisfies Zt  b with some constant b > 0 for t = 1, . . . , T , then, for any v � 0, we have the

following with probability at least 1� �:

TX

t=1

Var[Zt | Ft�1] � v or
TX

t=1

Zt 
b

3
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1

�
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r
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Algorithm 2 COMBD(↵,S)

1: L̂0,i  0, w1,i  1 (i 2 E)
2: for t = 1, . . . , n do

3: �t  t�1/↵

2
, ⌘t+1  �(t+1)

�1/↵

2D2

4: Xt ⇠ pt . output for t-th round
5: ct  `>t 1Xt . `t is unobservable
6: Pt  (1� �t)Qt + �tU

7: ˆ̀
t  ctP

+

t 1Xt

8: L̂t,i  L̂t�1,i + ˆ̀
t,i (i 2 E)

9: wt+1,i  exp
�
� ⌘t+1L̂t,i

�
(i 2 E)

S2.2 Preliminaries for the Proofs

We here rewrite Algorithm 1 equivalently as in Algorithm 2, which will be helpful to understand the subsequent
discussion. We let K := |S| and µ := 1/K. We define Et[·] := E[· | X1:t�1, `1:t] as the conditional expectation in
the t-th round given the entire history of rounds 1, . . . , t� 1 and the loss vector in round t. Similarly, we define
the conditional variance in round t as Vart[·] := Var[· | X1:t�1, `1:t]. For any vector x = (x1, . . . , xm)> 2 Rm and
p > 0, we define the p-norm of x as kxkp := (

Pm
i=1

|xi|p)1/p, and we often use kxk to express kxk2. For any
matrix P 2 Rm⇥m, we denote its i, j entry as P (i, j). We define the trace of P as tr(P ) :=

Pm
i=1

P (i, i) and
denote the spectral norm of P as kPk, i.e., kPk is the largest singular value of P . For any symmetric matrices
P,Q 2 Rm⇥m, we use P ⌫ Q to express the fact that the smallest eigenvalue of P �Q is non-negative.

For convenience, we let ⌘0 = ⌘1 = �
2D2 . For all t 2 [T ], we define distributions u and qt over S, and d⇥ d matrices

U and Qt as follows:

u(X) := p(X;1E ,S) = µ, qt(X) := p(X;wt,S) =
wt(X)P

X02S wt(X 0)
,

U := EX⇠u[1X1>
X ] =

X

X2S
µ1X1>

X , Qt := EX⇠qt [1X1>
X ] =

X

X2S
qt(X)1X1>

X .

Recall that � is the smallest non-zero eigenvalue of U = EX⇠u[1X1>
X ], and that |ct|  1 holds because of the loss

value assumption: maxt2[n],X2S |`>t 1X |  1. The following basic results will be used repetitively in what follows.

Lemma 1 (Basic results). For any X 2 S and t 2 [T ], we have

kP+

t k 
1

�t�
and |ˆ̀

>
t 1X |  D

2

�t�
,(S1)

Et[1
>
Xt

P
+

t 1Xt ]  d,(S2)

PtP
+

t 1X = 1X ,(S3)

Et[ˆ̀
>
t 1X ] = `>t 1X .(S4)

Proof. The first inequality of Eq. (S1) comes from Pt ⌫ �tU , and the second one is obtained from |ct|  1 as
follows:

|ˆ̀
>
t 1X | = |ct1>

Xt
P

+

t 1X |  k1XtkkP+

t kk1Xk 
D

2

�t�
.

Eq. (S2) can be obtained as follows:

Et[1
>
Xt

P
+

t 1Xt ] = Et[tr(P
+

t 1Xt1
>
Xt

)] = tr(P+

t Pt)  d.

The proof of Eq. (S3) is presented in [9, Lemma 14]. Finally, Eq. (S4) is obtained with Eq. (S3) as follows:

Et[ˆ̀
>
t 1X ] = Et[`

>
t 1Xt1XtP

+

t 1X ] = `>t PtP
+

t 1X = `>t 1X .

We also present the following lemma for later use (cf. [8, Lemma 2.3]).
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Lemma 2. For any ⇢1, . . . , ⇢N 2 (�1,1) and 0 < a  b, we have

1

a
ln
X

i2[N ]

e
�a⇢i � 1

b
ln
X

i2[N ]

e
�b⇢i 

✓
1

a
� 1

b

◆
lnN.

Di↵erent from [8, Lemma 2.3], ⇢1, . . . , ⇢N are allowed to be negative, which is actually important in the proof of
bandit feedback setting (see the proof of Lemma 3). Lemma 2 is proved using Hölder’s inequality as follows.

Proof. By Hölder’s inequality (or the property of the p-norm), kxkp  N
1
p�

1
q kxkq holds for any x 2 RN and

1  p  q. Thus, by letting p = 1 and q = b/a, we obtain

X

i2[N ]

e
�a⇢i  N

1� a
b

0

@
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�
e
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a
b
� b

a

1

A
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b

.

Hence we have
0

@
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i2[N ]

e
�a⇢i

1

A

1
a

 N
1
a� 1

b

0

@
X

i2[N ]

�
e
�b⇢i

a
b
� b

a

1

A
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1
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1
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The proof is completed by taking the natural logarithm of both sides and rearranging the terms.

S2.3 Proof for the High-probability Regret Bound

We show the complete proof of Theorem 1. Below is a detailed statement of the theorem.

Theorem 1. Given any X 2 S and any fixed T 2 [n], the sequence of actions {Xt}t2[T ] obtained by COMBD(↵ =
3,S) satisfies the following inequality with probability at least 1� �:

TX

t=1

(`>t 1Xt � `>t 1X) 
✓
3d(e� 2)�

4D2
+

3

2
+D

r
7

�
ln

K + 2

�

◆
T

2/3 + o(T 2/3).

Let ext :=
P

X2S qt(X)1X . As in [6], the proof is obtained by bounding each term on the right hand side of the
following equation:

TX

t=1

(`>t 1Xt � `>t 1X) =
TX

t=1

(`>t 1Xt � ˆ̀>
t ext) +

TX

t=1

(ˆ̀
>
t ext � ˆ̀>

t 1X) +
TX

t=1

(ˆ̀
>
t 1X � `>t 1X),

where X 2 S is an arbitrary action. To bound them, we prove the following three lemmas.

Lemma 3. The following inequality holds with probability at least 1� �:

TX

t=1

(ˆ̀
>
t ext � ˆ̀>

t 1X)  lnK

⌘T
+ (e� 2)

 
d

TX

t=1

⌘t

1� �t
+

D
2

�

vuut1

2
ln

1

�

TX

t=1

⌘2t

�2
t (1� �t)2

!
.

The proof is based on the technique frequently used in the analysis of online optimization algorithms. Specifically,
we define an appropriate potential function and evaluate the progress of the algorithm using it for each round; to
do this we use Lemma 2. Finally we use the concentration inequalities to obtain high-probability bounds as in [6].

Proof. With the weight values wt,i (i 2 E) used in Algorithm 2, we define wt(X) and Wt(X) for any X 2 S and
t 2 [T ] as follows:

w1(X) := 1 and wt(X) :=
Y

i2X

wt,i =
Y

i2X

exp

 
�⌘t

t�1X

t0=1

ˆ̀
t0,i

!
for t � 2,

W1 := K and Wt :=
X

X2S
wt(X)⌘t�1/⌘t =

X

X2S
exp

 
�⌘t�1

t�1X

t0=1

ˆ̀>
t01X

!
for t � 2.
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By Lemma 2, we obtain

1

⌘t
ln
X

X2S
exp

 
�⌘t

t�1X

t0=1

ˆ̀>
t01X

!
� 1

⌘t�1

ln
X

X2S
exp

 
�⌘t�1

t�1X

t0=1

ˆ̀>
t01X

!

✓

1

⌘t
� 1

⌘t�1

◆
lnK,

which can be written as follows using the definitions of wt(X) and Wt(X):

1

⌘t
ln
X

X2S
wt(X)  1

⌘t�1

lnWt +

✓
1

⌘t
� 1

⌘t�1

◆
lnK.

Hence we can bound the di↵erence of potential functions lnW
⌘�1
t

t+1
� lnW

⌘�1
t�1

t as follows (i.e., lnW
⌘�1
t�1

t is the
potential function):

1

⌘t
lnWt+1 �

1

⌘t�1

Wt �
✓

1

⌘t
� 1

⌘t�1

◆
lnK  1

⌘t
ln

Wt+1P
X02S wt(X 0)

=
1

⌘t
ln
X

X2S

wt(X) exp(�⌘t ˆ̀
>
t 1X)P

X02S wt(X 0)

=
1

⌘t
ln
X

X2S
qt(X) exp(�⌘t ˆ̀

>
t 1X)

 1

⌘t
ln
X

X2S
qt(X)

⇣
1� ⌘t

ˆ̀>
t 1X + (e� 2)⌘2t (ˆ̀

>
t 1X)2

⌘

=
1

⌘t
ln

 
1� ⌘t

ˆ̀>
t ext + (e� 2)⌘2t

X

X2S
qt(X)(ˆ̀

>
t 1X)2

!

 �ˆ̀
>
t ext + (e� 2)⌘t

X

X2S
qt(X)(ˆ̀

>
t 1X)2,

where the second inequality comes from e
�x  1� x+ (e� 2)x2 for any |x|  1; note that ⌘t is defined to satisfy

⌘t|ˆ̀
>
t 1X |  ⌘tD

2
/(�t�) = 1. The third inequality is obtained by ln(1 + x)  x for any x � �1. The second term

on the right hand side is bounded from above as follows:

X

X2S
qt(X)(ˆ̀

>
t 1X)2 

X

X2S

pt(X)

1� �t
(ˆ̀

>
t 1X)2 

1>
Xt

P
+

t 1Xt

1� �t
.

Therefore, we have

1

⌘t
lnWt+1 �

1

⌘t�1

lnWt 
✓

1

⌘t
� 1

⌘t�1

◆
lnK � ˆ̀>

t ext + (e� 2)⌘t
1>
Xt

P
+

t 1Xt

1� �t
.

Summing up both sides of the above for t = 1, . . . , T , we obtain the following inequality from W1 = K:

1

⌘T
lnWT+1 

1

⌘T
lnK �

TX

t=1

ˆ̀>
t ext + (e� 2)

TX

t=1

⌘t
1>
Xt

P
+

t 1Xt

1� �t
.

On the other hand, we have

1

⌘T
lnWT+1 =

1

⌘T
ln
X

X02S
exp

 
�⌘T

TX

t0=1

ˆ̀>
t01X0

!
� 1

⌘T
ln exp

 
�⌘T

TX

t0=1

ˆ̀>
t01X

!
= �

TX

t=1

ˆ̀>
t 1X .

Therefore, we obtain

(S5)
TX

t=1

(ˆ̀
>
t ext � ˆ̀>

t 1X)  lnK

⌘T
+ (e� 2)

TX

t=1

⌘t
1>
Xt

P
+

t 1Xt

1� �t
.
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The second term on the right hand side can be bounded from above by using the Azuma–Hoe↵ding inequal-
ity (Theorem 1) for the martingale di↵erence sequence ⌘t

1��t
(1>

Xt
P

+

t 1Xt � Et[1
>
Xt

P
+

t 1Xt ]) as follows. First, note
that we have

Et[1
>
Xt

P
+

t 1Xt ]  d and 0 
⌘t1

>
Xt

P
+

t 1Xt

1� �t
 ⌘tD

2

(1� �t)�t�

by Lemma 1. Thus, by the Azuma-Hoe↵ding inequality, the following holds with probability at least 1� �:

TX

t=1

⌘t1
>
Xt

P
+

t 1Xt

1� �t
 d

TX

t=1

⌘t

1� �t
+

D
2

�

vuut ln(1/�)

2

TX

t=1

⌘2t

�2
t (1� �t)2

.

Hence we have the following inequality with probability at least 1� �:

TX

t=1

(ˆ̀
>
t ext � ˆ̀>

t 1X)  lnK

⌘T
+ (e� 2)

 
d

TX

t=1

⌘t

1� �t
+

D
2

�

vuut ln(1/�)

2

TX

t=1

⌘2t

�2
t (1� �t)2

!
.

Lemma 4 ([6]). The following inequality holds with probability at least 1� �:

TX

t=1

(`>t 1Xt � ˆ̀>
t ext)  2

TX

t=1

�t +
1

3

✓
2 +

Dp
��T (1� �T )

◆
ln

1

�
+

vuut2

✓
T +

3D2

�

TX

t=1

�t

(1� �t)2

◆
ln

1

�
.

Proof. Let z :=
P

X2S µ1X and x̄t := Et[1Xt ] = (1 � �t)ext + �tz. We obtain the proof by using Bennett’s
inequality (Theorem 2) for the martingale di↵erence sequence

Yt := `>t 1Xt � ˆ̀>
t ext � Et[`

>
t 1Xt � ˆ̀>

t ext]

= `>t 1Xt � ˆ̀>
t ext � `>t x̄t + `>t ext

= `>t 1Xt � ˆ̀>
t ext + �t`

>
t (ext � z).

We first bound the values of |Yt| and Vart[Yt]. By Qt � 1

1��t
Pt and Jensen’s inequality extex>

t � Qt, we have

(ˆ̀
>
t ext)

2  c
2

t1
>
Xt

P
+

t QtP
+

t 1Xt 
1>
Xt

P
+

t 1Xt

1� �t
 D

2

��t(1� �t)
,

and hence

|Yt|  1 +
Dp

��t(1� �t)
+ 2�t  2 +

Dp
��T (1� �T )

.

The variance of Yt is bounded as follows:

Vart[Yt]  Et[(`
>
t 1Xt � ˆ̀>

t ext)
2] = Et[c

2

t (1� 1>
Xt

P
+

t ext)
2]  Et[(1� 1>

Xt
P

+

t ext)
2]

= Et[1� 21>
Xt

P
+

t ext + ex>
t P

+

t 1Xt1
>
Xt

P
+

t ext]

= 1� 2x̄>
t P

+

t ext + ex>
t P

+

t ext

= 1� 2

1� �t
x̄>
t P

+

t (x̄t � �tz) +
1

(1� �t)2
(x̄t � �tz)

>
P

+

t (x̄t � �tz)

= 1� 1� 2�t
(1� �t)2

x̄>
t P

+

t x̄t +
�
2
t

(1� �t)2
(z � 2x̄t)

>
P

+

t z

 1 +
�
2
t

(1� �t)2
(z � 2x̄t)

>
P

+

t z

 1 +
3�tD2

(1� �t)2�
,
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where the third inequality comes from 1� 2�t � 0, and the last inequality is obtained by Lemma 1 with kzk  D

and kx̄tk  D. Therefore, from Bennett’s inequality, the following inequality holds with probability at least 1� �:

TX

t=1

(`>t 1Xt � ˆ̀>
t ext + �t`

>
t (ext � z))  1

3

✓
2 +

Dp
��T (1� �T )

◆
ln

1

�
+

vuut2

✓
T +

3D2

�

TX

t=1

�t

(1� �t)2

◆
ln

1

�
.

The proof is completed by |`>t (ext � z)|  2.

Lemma 5 ([6]). The following inequality holds for all X 2 S simultaneously with probability 1� �:

TX

t=1

(ˆ̀
>
t 1X � `>t 1X)  1

3

✓
1 +

D
2

�T�

◆
ln

K

�
+

vuut2D2

�
ln

K

�

TX

t=1

1

�t
.

Proof. We fix X 2 S arbitrarily. The proof is obtained by using Bennett’s inequality for the martingale di↵erence

sequence ˆ̀>
t 1X � `>t 1X ; note that Et[ˆ̀

>
t 1X � `>t 1X ] = 0 holds by Lemma 1. First, the absolute value and

variance of ˆ̀
>
t 1X � `>t 1X are bounded as follows:

|ˆ̀
>
t 1X � `>t 1X |  1 +

D
2

�t�
,

Vart[ˆ̀
>
t 1X � `>t 1X ]  Et[(ˆ̀

>
t 1X)2]  Et[1

>
XP

+

t 1Xt1
>
Xt

P
+

t 1X ]  1XP
+

t 1X 
D

2

�t�
.

Hence, by Bennett’s inequality, we have

TX

t=1

(ˆ̀
>
t 1X � `>t 1X)  1

3

✓
1 +

D
2

�T�

◆
ln

K

�
+

vuut2D2

�
ln

K

�

TX

t=1

1

�t

with probability at least 1� �/K. Taking the union bound over all actions X 2 S, we obtain the claim.

Using the above three lemmas, we prove Theorem 1 as follows.

Proof of Theorem 1. Note that we have �t =
t�1/3

2
and ⌘t =

�
D2 �t =

�t�1/3

2D2 . By using Lemma 3, we have the
following with probability at least 1� �/(K + 2):

TX

t=1

(ˆ̀
>
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t 1X)  lnK

⌘T
+ (e� 2)

 
d
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⌘t
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+

D
2

�
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2
ln

K + 2

�
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�2
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!
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�
T

1/3 + (e� 2)

 
3d�

4D2
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r
2T ln
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�

!
.

We also obtain the following inequality with probability at least 1� �/(K + 2) by using Lemma 4:
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p
2Dp
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2
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.
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Furthermore, we have the following inequality with probability at least 1�K�/(K + 2) by using Lemma 5:

TX

t=1

(ˆ̀
>
t 1X � `>t 1X)  1
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Summing up both sides of the three inequalities and taking the union bound, we obtain the theorem.

S2.4 Proof for the Expected Regret Bound

We now show the proof of Theorem 2; the detailed statement is as follows.

Theorem 2. Given any X 2 S, the sequence of actions {Xt}t2[T ] obtained by COMBD(↵ = 2,S) satisfies the
following inequality for all T 2 [n]:
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Let ext :=
P

X2S qt(X)1X . The proof is obtained by bounding each term on the right hand side of the following
equation for any X 2 S:
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where the second equality comes from Lemma 1. To bound these terms, we prove the following two lemmas.

Lemma 6. The following inequality holds:
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Proof. As in the proof of Lemma 3, we have Eq. (S5):
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Taking the expectation of both sides, we obtain

E
"

TX

t=1

Et[ˆ̀
>
t ext � ˆ̀>

t 1X ]

#
 lnK

⌘T
+ (e� 2)E

"
TX

t=1

⌘t

1� �t
Et[1

>
Xt

P
+

t 1Xt ]

#

 lnK

⌘T
+ (e� 2)d

TX

t=1

⌘t

1� �t
,

where the second inequality is obtained by Lemma 1.

Lemma 7. The following inequality holds:
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Proof. Since |`>t 1X |  1 holds for any X 2 S, we have
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Summing up both sides for t = 1, . . . , T and taking the expectation, we obtain the claim.

We now prove Theorem 2 as follows.

Proof of Theorem 2. Recall that we have �t =
t�1/2

2
and ⌘t =

�
D2 �t =

�t�1/2

2D2 . The proof is readily obtained by
Eq. (S6), Lemma 6 and Lemma 7 as follows:
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