
E�cient Bandit Combinatorial Optimization Algorithm with
Zero-suppressed Binary Decision Diagrams

Shinsaku Sakaue Masakazu Ishihata Shin-ichi Minato
NTT Hokkaido University Hokkaido University

Abstract

We consider bandit combinatorial optimiza-
tion (BCO) problems. A BCO instance gen-
erally has a huge set of all feasible solutions,
which we call the action set. To avoid dealing
with such huge action sets directly, we propose
an algorithm that takes advantage of zero-
suppressed binary decision diagrams, which
encode action sets as compact graphs. The
proposed algorithm achieves either O(T 2/3)
regret with high probability or O(

p
T) ex-

pected regret at any T -th round. Typically,
our algorithm works e�ciently for BCO prob-
lems defined on networks. Experiments show
that our algorithm is applicable to various
large BCO instances including adaptive rout-
ing problems on real-world networks.

1 INTRODUCTION

Given finite set E and action set S ✓ 2E , which is
the collection of all subsets that satisfy certain con-
straints, we consider the online combinatorial optimiza-
tion (OCO) problem [2], which is a sequential decision
problem repeated for t = 1, . . . , n. In the t-th round, a
player chooses action Xt 2 S. Then the player incurs
a cost and obtains feedback according to the selected
action Xt. The aim of the player is to minimize the
cost accumulated up to time horizon n by adaptively
choosing an action in each round.

Examples of the OCO include various important prob-
lems on networks: the online shortest path (OSP)
problem [3, 15], the dynamic Steiner tree (DST) prob-
lem [16], and the congestion game (CG) [32, 34]. For
instance, in an OSP on a communication network, E
is the edge set of the network, an action is an s-r path

Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

that connects sender s to receiver r, and action set S
is the set of all s-r paths. The cost of an edge is the
transmission time taken to send a message along the
edge, and it is expected to dynamically change due to
the time-varying congestion or accidents (e.g., cyber
attacks). Thus an s-r path must be chosen adaptively
each time a message is sent from s to r.

The main di�culty with OCO is that the size of an
action set is generally exponential in |E|. To handle
huge action sets, existing methods for OCO problems
assume that an action set has certain properties. For
instance, some methods assume that an action set is
given by m-sets [21], permutations [1], or s-r paths
on a directed acyclic graph (DAG) [15, 35]. An OCO
algorithm that operates e�ciently over the convex hull
of an action set are studied in [10, 27]. However, many
important OCO instances, including OSP, DST, and
CG on undirected networks with limited feedback, are
still missing e�cient algorithms.

1.1 Our Contribution

In this paper, we develop an e�cient and theoreti-
cally guaranteed algorithm for OCO with bandit feed-
back, which we call bandit combinatorial optimization
(BCO); the details of the feedback are described later.
To obtain strong theoretical guarantees, we use the
strategy of COMBAND [9], which achieves O(

p
n) regret

in expectation for BCO problems. We slightly mod-
ify COMBAND to obtain any-time guarantees [6]; we
call the modified algorithm COMBD (COMBAND with
decreasing parameters) to distinguish it from the origi-
nal COMBAND. COMBD achieves either O(T 2/3) regret
with high probability or O(

p
T) expected regret at any

T -th round (T 2 {1, . . . , n}) without knowing n, and
we can select which regret value is to be achieved us-
ing a hyper parameter. The naive implementation of
COMBD, however, is impractical given the huge size
of action sets. More precisely, as we will see later,
COMBD has two costly steps: sampling an action from
the action set and computing unbiased estimators of
loss values for all i 2 E. We address these problems
by taking advantage of zero-suppressed binary decision

E�cient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams

diagrams (ZDDs), which encode action sets as compact
DAGs. We show that the sampling step can be com-
pleted by applying an existing dynamic programming
(DP) method [35] to ZDDs, and we provide a novel DP
method on ZDDs to compute the unbiased estimators.
These methods enable COMBD to be performed on
ZDDs e�ciently, and thus we obtain a novel practical
BCO algorithm, which we call COMBD3 (COMBD with
decision diagrams); its time and space complexities in
each round are proportional to ZDD size. While ZDD
size can grow exponentially in general, it is bounded
in some cases (e.g., a knapsack constraint and an s-r
path constraint on a network with bounded pathwidth)
as in Section 5.1; in such cases the complexities of
COMBD3 are also bounded. In practice, ZDDs tend
to be orders of magnitude smaller than action sets,
which is experimentally confirmed in [29] and our ex-
periments (Section 6); in particular, ZDDs that encode
network-based action sets (e.g., those arise in the OSP,
DST, and CG) are often small. Experimental results
on OSP and DST instances show that COMBD3 is far
more scalable than COMBAND, which deals with action
sets directly. We also apply COMBD3 to CGs on real-
world networks and show that it is useful for practical
adaptive routing problems.

1.2 Problem Statements of BCO

Let [m] := {1, . . . ,m} for any m 2 N. We define
E := [d], and we let S ✓ 2E be an action set; each
X 2 S is called an action. At each t-th round (t 2
[n]), an adversary secretly chooses loss vector `t :=
(`t,1, . . . , `t,d)> 2 Rd and the player chooses action
Xt 2 S. The player then incurs, and observes, the cost
ct = `>t 1Xt , where 1Xt 2 {0, 1}d is an indicator vector
such that its i-th entry is 1 if i 2 Xt and 0 otherwise.
This observation setting is called the bandit feedback
setting; note that the player cannot observe `t. The
aim of the player is to minimize regret RT defined as
follows for any T 2 [n]:

RT :=
TX

t=1

`>t 1Xt � min
X2S

TX

t=1

`>t 1X .

The first term is the cumulative cost and the second
term is the total cost of the best single action selected
with hindsight. Namely, RT expresses the extra cost
that the player incurs against the best single action.
As in [9], we assume maxt2[n],X2S |`>t 1X |  1.

We consider that the player (and the adversary) is
allowed to use a randomized strategy to choose Xt

(and `t). In such cases, RT is a random variable
of a joint distribution p(`1:T , X1:T), where X1:T =
{X1, . . . , XT } and `1:T = {`1, . . . , `T }. Here p is as-
sumed to satisfy the following conditional independence:

p(`1:T , X1:T) =
Q

t2[T]
p(Xt | `1:t�1, X1:t�1)p(`t |

`1:t�1, X1:t�1), where X1:0 = `1:0 = {}. p(`t |
X1:t�1, `1:t�1) corresponds to the adversary’s strat-
egy and p(Xt | X1:t�1, `1:t�1) corresponds to the
player’s strategy. Since the player cannot directly ob-
serve `1:t, the player’s strategy must satisfy p(Xt |
X1:t�1, `1:t�1) = p(Xt | X1:t�1, c1:t�1). Using the joint
distribution p, expected regret RT is defined as

RT := max
X2S

E`1:T ,X1:T⇠p

"
TX

t=1

`>t 1Xt �
TX

t=1

`>t 1X

#
.

The objective of BCO is to design the player’s strategy
p(Xt | X1:t�1, c1:t�1) so that it minimizes RT or RT .
We abbreviate p(Xt | X1:t�1, c1:t�1) by pt(Xt).

2 BACKGROUND

There are three well-studied feedback settings for OCO:
full-information (`t is observable), semi-bandit ({`t,i :
i 2 Xt} is observable), and bandit (ct = `>t 1Xt is
observable). BCO is very challenging since its feedback
is the least informative, and so it continues to be an
attractive research subject [1, 3, 4, 7, 9, 10, 12, 21, 28,
36]; for further previous works on OCO we refer the
readers to [2]. We here show some relevant existing
works focusing on the two features of our algorithm:
e�ciency and any-time guarantees.

E�ciency: The multiplicative weight update (MWU)
strategy with exponential factors (or Hedge algo-
rithm [14]) is often employed to design e�cient OCO
algorithms. For the full-information OCO, various
e�cient Hedge-based algorithms have been devel-
oped [27, 33, 35]. Our algorithm is related to the
Hedge-based algorithm for OSPs on DAGs [35]; both
their algorithm and ours use the weight pushing tech-
nique [30] as their building block. Full-information
OCO problems whose constraint is characterized by a
polytope are studied in [27], and other full-information
OCO problems called dynamic programming games
are considered in [33]; we are interested in a di↵er-
ent class of constraints that are represented compactly
with ZDDs. Applying the Hedge-based algorithms to
BCO problems is not straightforward since those algo-
rithms require `t in each t-th round, which cannot be
observed in the bandit feedback setting. A common
approach to overcome this di�culty is to use an un-
biased estimator ˆ̀

t of `t, which can be obtained by
computing a co-occurrence probability matrix (CPM);
see, for example, [4, 9, 12]. COMBAND [9] is a gen-
eral BCO algorithm that employs such an approach
and enjoys strong theoretical results. The drawback of
COMBAND is that its computation cost in each round
is generally exponential in d; in particular computing a
CPM requires O(d2|S|) time. To avoid such expensive

Shinsaku Sakaue, Masakazu Ishihata, Shin-ichi Minato

computation, COMBEXP [10] was proposed, which is
basically a bandit counterpart of [27]. COMBEXP scales
up COMBAND by employing a projection onto the con-
vex hull of an action set via KL-divergence. For some
action sets for which the projection can be done e�-
ciently (e.g., m-sets or a set of matchings), COMBEXP
runs faster than COMBAND, while achieving almost the
same regrets. However, it is di�cult to perform the pro-
jection for other action sets (e.g., s-r paths or Steiner
trees); actually it is NP-hard to do the projection in
the case of OSP and DST on undirected networks. On
the other hand, thanks to recent advances in construct-
ing decision diagrams (DDs), optimization techniques
using DDs are attracting much attention [5, 11, 31].
Those techniques are advantageous in that DDs can
e�ciently store all solutions satisfying some complex
constraints; for example, constraints that are hard to
represent as a set of inequalities. The ZDD [29], which
we use in our algorithm, is a kind of DD that is known
to be suitable for storing specific network substructures
(e.g., s-r paths or Steiner trees). Thus our algorithm
with ZDDs, called COMBD3, runs fast in many BCO
instances defined on networks, including OSP, DST,
and CG. To the best of our knowledge, this is the first
OCO algorithm that exploits the compactness of DDs.

Any-time guarantees: When using online optimiza-
tion algorithms in practice, we rarely know how long the
algorithms will continue to be executed in advance; in
other words the value of time horizon n is seldom avail-
able. Given this, the regret values of online algorithms
should be bounded at any T -th round (T 2 [n]) without
using n; such regret bounds are called any-time guar-
antees [6]. How to obtain any-time guarantees has been
studied for ordinary online learning problems [8], OCO
problems with a variant of semi-bandit feedback [26],
and the BCO [6]. However any-time guarantees of
COMBAND [9], which we use to construct our e�cient
BCO algorithm, have not been established;1 in [9] it is
proved to achieve O(

p
n) expected regret at the n-th

round. We prove that COMBAND with slight modifica-
tion, called COMBD, achieves any-time guarantees by
using the techniques shown in [6, 8].

3 OVERVIEW OF OUR METHOD

We provide a high-level sketch of our algorithm. Given
action set S, we first construct a ZDD that stores all
X 2 S compactly; all procedures of our algorithm are
performed on the ZDD, and thus we avoid dealing with
action set S explicitly. As shown later, a ZDD is a

1An any-time guarantee of COMBAND is stated in [6],
but the proof seems to include some mistakes. However,
their proof techniques are still useful, and so we prove
the O(T 2/3) high-probability regret bound of COMBD by
modifying their proof and using the techniques in [8].

DAG-shaped data structure, and each action is repre-
sented as a path that connects two specified vertices.
Therefore the original BCO instance reduces to an OSP
on the ZDD with bandit feedback. The BCO algorithm,
COMBD, for this problem can be performed e�ciently
on the ZDD by using DP methods. This ZDD-based
algorithm is called COMBD3, and it runs in O(d|V |)
time in each round, where V is the vertex set of the
ZDD. Empirically |V | is much smaller than |S|, and
thus COMBD3 runs dramatically faster than existing
BCO algorithms whose complexity depends on |S|.

In Section 4 we detail COMBD, a BCO algorithm that
takes O(d2|S|) time in general. In Section 5 we explain
COMBD3; we first present the details of ZDDs, and
then introduce the DP methods, with which we can
perform COMBD on ZDDs e�ciently.

Remark 1. At first glance the original BCO instance
may appear to be solved just by applying existing
OSP algorithms [15, 27, 35] to the aforementioned
OSP on ZDDs, however it is not true. The problems
they considered are OSPs with full-information or semi-
bandit feedback, and thus how to obtain the unbiased
estimator ˆ̀

t of `t, which is computationally the most
di�cult part, is unclear in our bandit feedback setting.
We overcome this problem by developing novel DP
methods that enable us to compute a CPM e�ciently
on ZDDs; with the CPM we can compute ˆ̀

t.

4 COMBD: COMBAND WITH
DECREASING PARAMETERS

Algorithm 1 COMBD(↵,S)

1: L̂0,i 0, w1,i 1 (i 2 E)
2: for t = 1, . . . , n do

3: �t t�1/↵

2
, ⌘t+1 �(t+1)

�1/↵

2D2

4: Xt ⇠ pt . output for t-th round
5: ct `>t 1Xt . `t is unobservable
6: Pt(i, j)

P
X2S:i,j2X pt(X) (i, j 2 E)

7: ˆ̀
t ctP

+

t 1Xt

8: L̂t,i L̂t�1,i + ˆ̀
t,i (i 2 E)

9: wt+1,i exp
�
� ⌘t+1L̂t,i

�
(i 2 E)

We here describe COMBD, which is obtained by in-
troducing the decreasing parameters (see, e.g., [8]) to
COMBAND [9].

With COMBD, the player’s strategy pt(Xt) is designed
as in Algorithm 1. In what follows, we define D :=
maxX2S k1Xk for any given S ✓ 2E , where k · k is
the Euclidian norm. We also define � as the smallest
non-zero eigenvalue of EX⇠u[1X1>

X], where u is the
uniform distribution over S. For some cases, the value
of � is proved to be bounded from below [9, 10].

E�cient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams

Given non-negative vector w = (w1, . . . , wd)> 2 Rd

and action set S ✓ 2E , we define the action distribution
as p(X;w,S) := w(X)

Z(w,S)
, where w(X) :=

Q
i2X wi and

Z(w,S) :=
P

X2S w(X). Using the above, we define
the player’s strategy pt(Xt), which appears in Step 4,
as follows:

pt(Xt) := (1� �t)p(Xt;wt,S) + �tp(Xt;1E ,S),(1)

where wt = (wt,1, . . . , wt,d)> is the weight vector de-
fined in Step 9, and �t is the parameter defined in
Step 3; we note that p(Xt;1E ,S) is the uniform dis-
tribution over S. Thus pt is a mixture of two action
distributions with the mixture rate �t.

For any distribution p over S, a matrix P is called a co-
occurrence probability matrix (CPM) if its (i, j) entry
P (i, j) is given by the co-occurrence probability p(i 2
X, j 2 X) :=

P
X2S:i,j2X p(X). Matrix Pt computed

in Step 6 is the CPM of pt, and P
+

t used in Step 7 is
the pseudo-inverse of Pt. From Eq. (1), we have

Pt(i, j) = (1� �t)p(i 2 X, j 2 X;wt,S)+(2)

�tp(i 2 X, j 2 X;1E ,S).

With CPM Pt, the unbiased estimator, ˆ̀
t, of `t is

obtained as in Step 7; strictly speaking, we have

Et[ˆ̀
>
t 1X] = `>t 1X for all X 2 S, where Et[·] is the con-

ditional expectation in the t-th round (see Section S2.2
in the supplementary material for details).

The above COMBD is based on COMBAND [9]; COMBD

with fixed parameters �t =
D
�

q
ln |S|

n(d/D2+2/�) and ⌘t =

1

D

q
ln |S|

n(d/D2+2/�) completely corresponds to the original

COMBAND and achieves O(
p
n) expected regret [9].

Whereas the regret of COMBAND is bounded only at
the n-th round, COMBD achieves the following any-time
guarantees:

Theorem 1. Given any S, COMBD(↵ = 3,S) achieves
RT  O

⇣⇣
d�
D2 +

q
D2

� ln |S|+2

�

⌘
T

2/3
⌘
with probability

at least 1� � for any fixed T 2 [n].

Theorem 2. Given any S, COMBD(↵ = 2,S) achieves
RT  O

⇣⇣
d�
D2 + D2

ln |S|
�

⌘p
T

⌘
for all T 2 [n].

In other words, COMBD achieves either O(T 2/3) regret
with high probability or O(

p
T) expected regret as

an any-time guarantee by setting the value of hyper
parameter ↵ appropriately. The technique of using
decreasing parameters for online optimization problems
is studied in [8], and similar results for BCO problems
are obtained in [6]. However, we note that the proofs of
Theorem 1 and Theorem 2 cannot be obtained simply
by combining those existing results. For details see the
supplementary material.

There are two di�culties when performing COMBD in
practice; the first is sampling from the player’s strategy
pt(Xt) (Step 4), and the second is computing CPM
Pt (Step 6). Naive methods for the two steps require
O(d|S|) and O(d2|S|) times, respectively, where |S| is
generally exponential in d. In the next section, we show
e�cient ZDD-based methods for sampling from any
given action distribution p(X;w,S) and for computing
the CPM of p(X;w,S). Because pt is a mixture of two
action distributions, we can e�ciently sample from pt

and compute the CPM of pt using those methods.

5 COMBD3: COMBD WITH DECISION
DIAGRAMS

As shown above, COMBD requires sampling from ac-
tion distributions and computing CPMs as its building
blocks, which generally require O(d|S|) and O(d2|S|)
computation times, respectively. Moreover, computing
D can also require O(d|S|) time. Those computation
costs can be prohibitive since |S| is generally exponen-
tial in d. As the building blocks, we present e�cient DP
algorithms performed on a ZDD that represents S. We
first detail the ZDDs considered here and then present
the DP methods for sampling an action and computing
CPMs; the sampling method is based on [30, 35], and
the CPM computation is our proposal. D can also be
computed in a DP manner on a ZDD.

5.1 Zero-suppressed Binary Decision
Diagrams (ZDDs)

A ZDD [29] is a compact graph representation of a
family of sets. Given S ✓ 2E , a ZDD for S is a DAG
denoted by GS = (V,A), where V = {0, 1, . . . , |V | �
1} is a set of vertices and A ✓ V ⇥ V is a set of
arcs (directed edges). GS contains one root vertex
r 2 V and two terminal vertices: 0-terminal and 1-
terminal. Without loss of generality, we assume that
V = {0, . . . , |V |� 1} is arranged in a topological order
of GS ; r = |V |�1 holds and the b-terminal (b 2 {0, 1})
is denoted simply by b 2 V . Each non-terminal vertex
v 2 V \{0, 1} is labeled by an integer in E = [d] and has
exactly two outgoing arcs: 0-arc and 1-arc. A vertex
pointed by the b-arc of v is called the b-child of v. We
use lv, a

b
v, and cbv to denote v’s label, b-arc, and b-

child, respectively; consequently a
b
v = (v, cbv) holds. We

use Rv,u (v, u 2 V) to denote a set of routes (directed
paths) from v to u onGS , where route R 2 Rv,u is a set
of arcs: R ✓ A. Given route R, we define X(R) ✓ E

as X(R) := {lv 2 E | (v, c1v) 2 R}; intuitively, when
proceeding along R, we add lv to X(R) if (v, v0) 2 R

is a 1-arc. Then, GS satisfies

S = {X(R) | R 2 Rr,1}.(3)

Shinsaku Sakaue, Masakazu Ishihata, Shin-ichi Minato

start

goal

𝟏 𝟐

𝟑

𝟒 𝟓

 𝟏
 𝟐

 𝟑

 𝟓

 𝟑

 𝟒

1 0

root vertex

terminal vertices

Figure 1: The left figure is an example network with
edge set E = {1, . . . , 5}. The right figure is a ZDD
that stores all paths from the start to the goal; each
non-terminal vertex v is labeled lv 2 E, and 0-arcs
and 1-arcs are indicated by dashed and solid lines,
respectively. Note that we have S = {X(R) | R 2
Rr,1} = {{1, 4}, {2, 5}, {1, 3, 5}, {2, 3, 4}}.

Thus, GS represents action set S as a set of all routes
from its root r to the 1-terminal. Note that, once GS
is obtained, D = maxX2S

p
|X| is easily computed by

a DP method to find R 2 Rr,1 that maximizes |X(R)|.

In general, a ZDD is assumed to be ordered and reduced.
GS is ordered if v > u) lv < lu holds for all v, u 2
V \{0, 1}. A non-terminal vertex v is redundant if c1v =
0: its 1-arc directly points to the 0-terminal. Any
redundant vertex v can be removed by replacing all
(u, v) 2 A with (u, c0v) without loss of property (3). A
non-terminal vertex v is said to be sharable if there
exists another vertex v

0 such that lv = lv0 and cbv = cbv0

(b 2 {0, 1}): v and v
0 have the same label and children.

Any sharable vertex v can be removed by replacing
(u, v) 2 A with (u, v0). GS is said to be reduced if
no vertex is redundant or sharable. In this paper, we
assume GS is ordered and reduced. Figure 1 shows an
example of such a ZDD. We also provide a summary
of notations and symbols for ZDDs in Table 1, which
will be helpful to understand the following discussion.

ZDDs are known to be able to store various families of
sets compactly in many applications. As we will see
later, the time and space complexities of COMBD3 in
each round are both O(d|V |), and thus it runs fast if the
ZDD is small. Although |V | is generally exponential in
d, we can bound |V | theoretically in some cases. We
here present two examples of such cases:

Knapsack constraints: Suppose that each i 2 E is
associated with a positive integer bi and that a budget
value B > 0 is given. We here consider an action
set that arises from the knapsack constraint: S =
{X ✓ E |

P
i2X bi  B}. In this setting, the ZDD

maintains at most B kinds of states for each i 2 E

Table 1: Notations and symbols for ZDDs

GS = (V,A) ZDD storing S
r = |V |� 1 2 V root vertex

0, 1 2 V 0- and 1-terminals
lv 2 E label of v 2 V

a
b
v 2 A b-arc outgoing from v (b 2 {0, 1})

cbv 2 V b-child of v (b 2 {0, 1})
Rv,u ✓ 2A set of all routes connecting v to u

X(R) ✓ E subset of E represented by route R

(see, [5] for details) and thus the resulting ZDD size
is at most O(dB). Consequently, our COMBD3 runs
in O(d2B) time in each round. This complexity result
matches that of the state-of-the-art full-information
OCO algorithm [33], even though our bandit setting is
harder than the full-information setting.

Networks with bounded pathwidth: Given net-
work G = (N,E) and action set S that consists of cer-
tain subnetworks (e.g., s-r paths, Steiner trees, match-
ing, and cliques), we consider a ZDD GS = (V,A) that
stores all X 2 S. When constructing such a ZDD, the
frontier-based search (FBS) [22] is often used, which is
a fast construction algorithm based on Knuth’s Sim-
path algorithm [25]. FBS constructs an ordered and
reduced ZDD in a top-down manner using the mate
arrays, which maintain current search states as some
positive integers. If !G is the pathwidth of G and �

is the largest integer stored in the mate arrays, then
the size of ZDDs constructed by FBS can be bounded
as |V |  d�

!G ; in practice we often have |V | ⌧ d�
!G

(see [18, 22] for the details). In the worst case we have
!G = |N |, and thus the resulting ZDD size, |V |, can
be exponential in |N |. However, if !G is bounded by a
small constant, |V | is also bounded, and so are the time
and space complexities of our algorithm. The time and
space complexities of FBS are bounded by O(d�!G).
In practice ZDDs for storing various subnetworks are
obtained easily via existing software [17].

5.2 Sampling from Action Distributions

We show an e�cient algorithm performed on ZDD GS
for sampling from action distribution p(X;w,S), which
is based on the weight pushing [30, 35]; similar methods
on DDs have been studied in the field of logic-based
probabilistic modeling [19, 20].

We first introduce the following forward weight (FW)
Fv and backward weight (BW) Bv (v 2 V):

Fv :=
X

R2Rr,v

w(R), Bv :=
X

R2Rv,1

w(R),

where w(R) is an abbreviation of w(X(R)) =Q
i2X(R)

wi. Note that we have Z(w,S) = Br = F1.

E�cient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams

1: Algorithm FW(GS ,w)
2: Fr 1
3: Fv 0 (8v 2 V \{r})
4: for v = r, . . . , 2 do
5: Fc0v

+= Fv

6: Fc1v
+= wlvFv

7: return F := {F0, . . . ,Fr}

1: Algorithm BW(GS ,w)
2: B1 1
3: Bv 0 (8v 2 V \{1})
4: for v = 2, . . . , r do
5: Bv Bc0v

+ wlvBc1v

6: return B := {B0, . . . ,Br}

1: Algorithm Draw(GS ,w,B)
2: X {}, v r

3: while v > 1 do
4: ✓ wlvBc1v

/Bv

5: b ⇠ Ber(✓)
6: X X [{lv} if b = 1
7: v cbv
8: return X

1: Algorithm BWC(GS ,w,B)
2: Cv,j 0 (8v 2 V , 8j 2 E)
3: for v = 2, . . . , r do
4: Cv,lv wlvBc1v

5: for j = lv + 1, . . . , d do
6: Cv,j Cc0v,j

+ wlvCc1v,j

7: return C := {Cv,j | v 2 V, j � lv}

1: Algorithm CPM(GS ,w,B,F,C)
2: Pi,j 0 (8i, j 2 E)
3: for v = 2, . . . , r do
4: i lv

5: Pi,i+= FvwiBc1v
/Br

6: for j = i+ 1, . . . , d do
7: Pi,j+= FvwiCc1v,j

/Br

8: return P := {Pi,j | i, j 2 [d], i  j}

B := {B0, . . . ,Br} and F := {F0, . . . ,Fr} can be ef-
ficiently computed in a DP manner on GS as shown
in Algorithm FW(GS ,w) and BW(GS ,w). Once we
obtain B, we can draw a sample from p(X;w,S) by top-
down sampling on GS without rejection as shown in Al-
gorithm Draw(GS ,w,B), where Ber(✓) is the Bernoulli
distribution with parameter ✓ 2 [0, 1]. The total space
and time complexities are both O(|V |).

5.3 Computing Co-occurrence Probabilities

Given action distribution p(X;w,S), we define Pi,j :=
p(i 2 X, j 2 X;w,S) as the co-occurrence probability
of i and j (i, j 2 E). We here propose an e�cient
algorithm for computing Pi,j (i  j), which su�ces
for obtaining Pi,j for all i, j 2 E since Pi,j = Pj,i.
If we compute Pi,j (i  j) naively by traversing a
ZDD, we need O(d2|V |) computation time, which is
too expensive if d is large. Fortunately, they can be
computed in O(d|V |) time by using FW, BW, and
backward weighted co-occurrence (BWC) as follows.

From Eq. (3), Pi,j can be written as follows:

Pi,j =
X

R2Rr,1:i,j2X(R)

w(R)

Z(w,S) .(4)

We first consider Pi,i as a special case of Pi,j , which
can be expressed as follows by using FW and BW (see
the supplementary material for details):

Pi,i =
X

v2V :lv=i

FvwiBc1v

Br
.

Next, to compute Pi,j (i < j), we rewrite the right
hand side of Eq. (4) using BWC Cv,j (j > lv) as follows
(details are provided in the supplementary material):

Pi,j =
X

v2V :lv=i

FvwiCc1v,j

Br
,

where Cv,j :=
P

R2Rv,1:j2X(R)
w(R).

Because Cv,j is a variant of Bv, C := {Cv,j | v 2 V, j �
lv} can be computed in a similar manner to B as
shown in Algorithm BWC(GS ,w,B), whose time and
space complexities are both O(d|V |). To conclude, Pi,j

can be computed by Algorithm CPM(GS ,w,F,B,C).
The total space and time complexities of computing
P := {Pi,j | i  j} are both O(d|V |).

6 EXPERIMENTS

We consider three network-based BCO problems: OSP,
DST, and CG. For OSP and DST (Section 6.1), we
use artificial networks to observe the scalability of al-
gorithms. For CG (Section 6.2), we use two real-world
networks to show the practical utility of COMBD3. All
algorithms were implemented in the C programming
language, and we used Graphillion [17] to obtain the
ZDDs. We note that constructing ZDDs with the soft-
ware is not a drawback; in all of the following instances
ZDD construction took only a few seconds at most.

6.1 OSP and DST on Artificial Networks

Experimental setting: We consider OSP and DST
instances on artificial networks, which are undirected

Shinsaku Sakaue, Masakazu Ishihata, Shin-ichi Minato

3 4 5 6 7 8 9 10
m

0

2

4

6

8
R

un
ni

ng
tim

e
(s

) COMBAND
COMBD3

(a) OSP

3 4 5 6 7 8 9 10
m

10�2

100

102

104

R
un

ni
ng

tim
e

(s
) COMBAND

COMBD3

(b) DST (semi-log)

3 4 5 6 7 8 9 10
m

0

1 ⇥ 104

2 ⇥ 104

3 ⇥ 104

4 ⇥ 104

5 ⇥ 104

S
iz

e

action set size
ZDD size

(c) OSP

3 4 5 6 7 8 9 10
m

100

104

108

1012

S
iz

e

action set size
ZDD size

(d) DST (semi-log)

0 5.0 ⇥ 104 105

Round
0

50

100

150

200

250

R
eg

re
t

COMBD3(� = 2)
COMBD3(� = 3)
COMBAND

(e) OSP

0 5.0 ⇥ 102 103

Round
0
5

10
15
20
25
30
35

R
eg

re
t

COMBD3(� = 2)
COMBD3(� = 3)
COMBAND

(f) DST

0 5.0 ⇥ 104 105

Round
0

2.0⇥105

4.0⇥105

6.0⇥105

Player 1
Player 2

(g) CG on MCI

0 5.0 ⇥ 104 105

Round
0

1.0⇥106

2.0⇥106

3.0⇥106

Player 1
Player 2

(h) CG on ATT

Figure 2: (a),(b) Running times that COMBD3 and COMBAND required for 100 iterations (averaged over 100
trials). (c),(d) Action set sizes, |S|, and ZDD sizes, |V |. (e),(f) Achieved regret values of each algorithm on the
3⇥ 10 grid; the regret values are averaged over 100 trials and the error bars indicate the standard deviations.
(g),(h) Regret values of each player for CG on MCI and ATT, respectively.

grid networks with 3 ⇥m nodes (m = 3, . . . , 10). In
both problems, E is the edge set of the given network.
In OSP, action set S is the set of all s-r paths from
starting node s to goal node r that are placed on
diagonal corners of the given grid. In DST, S is the
set of all Steiner trees that contain the four corners
of the grid. The aim of the player is to minimize the
cumulative cost of the selected subnetworks over some
time horizon. In this experiment, we define loss vector
`t as follows: We first uniformly sample µ0 from [0, 1]d.
In the t-th round, we set µt = µt�1 with probability 0.9
or draw a new µt uniformly from [0, 1]d with probability
0.1. Then, we set `t,i = 1/d with probability µt,i and
�1/d with probability 1 � µt,i for each i 2 E, where
µt,i is the i-th entry of µt. In the short run, this setting
is a stochastic OCO problem where each `t,i is drawn
from Ber(µt,i), but the adversary secretly resets µt

with probability 0.1 in each round to foil the player.

Computation cost: We compared COMBD3 with
COMBAND that uses explicit enumeration of possible
actions. The running times of the two methods for
OSPs and DSTs are shown in Figures 2 (a) and (b),
respectively; running times of 100 iterations averaged
over 100 trials are shown for each method. The re-
sults of COMBAND for DSTs with m � 8 are omitted
due to memory shortage. Figures 2 (c) and (d) plot
the sizes of action sets, |S|, and corresponding ZDD
sizes, |V |, for OSPs and DSTs, respectively. We see
that COMBD3, which runs in O(d|V |) time, is far more
scalable than COMBAND, which runs in O(d2|S|) time,
thanks to the compactness of ZDDs. In particular, for

DST on the 3⇥ 10 grid, we see that |V | is five orders
of magnitude smaller than |S|. In such cases, where
existing methods su↵er from the complex structure of
S (e.g., no e�cient optimization algorithm over S is
available) or the enormous size of S, our COMBD3 is
the only practical method.

Empirical regret: Regret values achieved by
COMBD3 (↵ = 2, 3) and COMBAND for OSP and DST
on the 3⇥ 10 grid are shown in Figures 2 (e) and (f),
respectively. As shown previously, COMBAND with ex-
plicit enumeration is too costly, and thus we here imple-
mented COMBAND using ZDDs. We see that the regret
values of the three methods actually grow sublinearly.
Note that the regret values of COMBD3, which does not
require n, is comparable to those of COMBAND, which
requires n as its input. We confirmed that COMBD3
yielded lower regret values than those of the theoretical
bounds stated in Theorems 1 and 2; the precise values
of the bounds are shown in the supplementary material.

6.2 CG on Real-world Networks

Experimental setting: We applied COMBD3 to the
congestion game (CG), which is a multi-player version
of the OSP, on two real-world networks. CG is de-
scribed as follows: Given m players and an undirected
network with starting node s and goal node r, the
players concurrently send a message from s to r. The
aim of each player is to minimize the cumulative time
needed to send n messages. In this problem E is the
edge set of the given network, an action is an s-r path,

E�cient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams

(a) MCI (b) ATT

Figure 3: (a) and (b) are the topologies of the two
networks; the triangles (squares) are the starting (goal)
nodes. The red (blue) paths indicate the top two paths
most frequently chosen by player 1 (2).

and action set S is the set of all s-r paths. The loss
value of an edge in E is the transmission time taken
to send a message along the edge, and the cost of an
action is the total transmission time needed to send a
message along the selected s-r path. We assume that
the loss of each edge increases with the number of play-
ers who use the same edge at the same time; formally a
player regards the other players as adversaries. We use
X

k
t 2 S (k 2 [m]) to denote the k-th player’s choice in

the t-th round and use X
k
t,i 2 {0, 1} to denote the i-th

entry of 1Xk
t
. We also use `

k
t,i to denote the transmis-

sion time taken by the k-th player to send a message
along the i-th edge in the t-th round. We here define

`
k
t,i := �i

N�k
t,i , where �i 2 R is the length of the edge,

 is an overhead constant, and N
�k
t,i :=

P
k0 6=k X

k0

t,i is
the number of adversaries who also choose the i-th edge
at the t-th round. Namely, we assume that the trans-
mission time of each edge increases exponentially with
the number of players using the same edge at the same
time. Consequently, to reduce the total transmission
time, the players should adaptively avoid contending
with each other. In this experiments, we set m = 2 and
 = 10. This setting violates the assumption |ct| < 1;
however, in practice, this violation barely matters. We
let both players use COMBD3, and the objective of this
problem is to let each player avoid contending with
each other and reduce his/her transmission time.

We use two real-world communication networks in the
Internet topology zoo [24]: the InternetMCI network
(MCI), and the ATT North America network (ATT).
Figures 3 (a) and (b) illustrate the topologies of MCI
and ATT, respectively. Both networks correspond to
the U.S. map and we choose Los Angeles as the starting
point s and New York as the goal r. The statistics for
each network are shown in Table 2.

Experimental results: Table 2 shows that the action
sets of real-world networks can also be represented as
compact ZDDs, and thus COMBD3 is more e�cient
than BCO algorithms that deal with the action sets

Table 2: Statistics for two real-world networks.

nodes # edges # s-r paths ZDD size
MCI 19 33 1,444 756
ATT 25 56 213,971 37,776

directly. Figures 2 (g) and (h) plot the regret values
of each player for MCI and ATT, respectively. The
figures show that each player attained sublinear regrets.
Figures 3 (a) and (b) show the top two most frequently
selected paths for each player. We see that each player
successfully avoided congestion. For the case where
the players can observe the costs of all s-r paths af-
ter choosing the current paths, it is known that the
MWU-based algorithms can achieve the Nash equilib-
ria on CG [23, 32]. In this experiment, even though
we employed the bandit feedback setting where each
player can observe only the cost of the selected path,
the players successfully found almost optimal strate-
gies on both networks by using COMBD3. To conclude,
the results suggest that COMBD3 is useful for adaptive
routing problems on real-world networks.

7 CONCLUSION

We proposed COMBD3, which is a practical and theoret-
ically guaranteed algorithm for BCO. COMBD3 is e↵ec-
tive particularly for network-based BCO instances, in-
cluding OSP, DST, and CG. The e�ciency of COMBD3
is thanks to its use of ZDDs, which o↵er compact
representation of action sets. The time and space com-
plexities of COMBD3 are bounded by ZDD size; more
precisely, they are O(d|V |). ZDD size is bounded in
some important cases (e.g., a knapsack constraint and
some constraints defined on networks with bounded
pathwidth), and the complexities of COMBD3 are also
bounded in such cases. When implementing the BCO
algorithm with ZDDs, the most di�cult part is design-
ing how to compute the unbiased estimator ˆ̀

t of `t,
which is obtained using CPMs. We overcame this di�-
culty by developing DP-based methods for computing
CPMs on ZDDs. Experiments showed that COMBD3
is far more scalable than the existing method that
deals with action sets directly. COMBD3 is theoreti-
cally guaranteed to achieve either O(T 2/3) regret with
high probability or O(

p
T) expected regret as an any-

time guarantee, and we experimentally confirmed that
COMBD3 attained sublinear regrets. The results on
CG showed that COMBD3 is useful for adaptive routing
problems on real-world networks.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Numbers 15H05711 and 16K16011.

Shinsaku Sakaue, Masakazu Ishihata, Shin-ichi Minato

References

[1] N. Ailon, K. Hatano, and E. Takimoto. Bandit
online optimization over the permutahedron. In
International Conference on Algorithmic Learning
Theory, pages 215–229. Springer, 2014.

[2] J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret
in online combinatorial optimization. Math. Oper.
Res., 39(1):31–45, February 2014.

[3] B. Awerbuch and R. D. Kleinberg. Adaptive rout-
ing with end-to-end feedback: Distributed learn-
ing and geometric approaches. In the 36th Annual
ACM Symposium on Theory of Computing, pages
45–53. ACM, 2004.

[4] P. L. Bartlett, V. Dani, T. Hayes, S. Kakade,
A. Rakhlin, and A. Tewari. High-probability regret
bounds for bandit online linear optimization. In
the 21st Annual Conference on Learning Theory,
pages 335–342. Omnipress, 2008.

[5] D. Bergman, A. A. Cire, W.-J. van Hoeve, and
J. Hooker. Decision Diagrams for Optimization.
Springer, first edition, 2016.

[6] G. Braun and S. Pokutta. An e�cient high-
probability algorithm for linear bandits. arXiv
preprint arXiv:1610.02072, 2016.

[7] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade.
Towards minimax policies for online linear opti-
mization with bandit feedback. In Conference on
Learning Theory, pages 1–14, 2012.

[8] N. Cesa-Bianchi and G. Lugosi. Prediction, learn-
ing, and games. Cambridge university press, 2006.

[9] N. Cesa-Bianchi and G. Lugosi. Combinatorial
bandits. J. Comput. Syst. Sci., 78(5):1404 – 1422,
2012.

[10] R. Combes, M. Sadegh Talebi, A. Proutiere, and
M. Lelarge. Combinatorial bandits revisited. In
Advances in Neural Information Processing Sys-
tems, pages 2116–2124, 2015.

[11] O. Coudert. Solving graph optimization problems
with ZBDDs. In 1997 European Conference on De-
sign and Test, page 224. IEEE Computer Society,
1997.

[12] V. Dani, S. M. Kakade, and T. P. Hayes. The price
of bandit information for online optimization. In
Advances in Neural Information Processing Sys-
tems, pages 345–352, 2008.

[13] X. Fan, I. Grama, and Q. Liu. Hoe↵ding’s in-
equality for supermartingales. Stoch. Proc. Appl.,
122(10):3545–3559, 2012.

[14] Y. Freund and R. E. Schapire. Adaptive game play-
ing using multiplicative weights. Games Econom.
Behav., 29(1):79 – 103, 1999.

[15] A. György, T. Linder, G. Lugosi, and G. Ottucsák.
The on-line shortest path problem under partial
monitoring. J. Mach. Learn. Res., 8(Oct):2369–
2403, 2007.

[16] M. Imase and B. M. Waxman. Dynamic Steiner
tree problem. SIAM J. Discrete. Math., 4(3):369–
384, 1991.

[17] T. Inoue, H. Iwashita, J. Kawahara, and S. Minato.
Graphillion: software library for very large sets of
labeled graphs. Int. J. Software Tool. Tech. Tran.,
18(1):57–66, 2016.

[18] Y. Inoue and S. Minato. Acceleration of ZDD
construction for subgraph enumeration via path-
width optimization. Technical report, TCS-TR-A-
16-80, Hokkaido University, 2016.

[19] M. Ishihata, Y. Kameya, T. Sato, and S. Minato.
Propositionalizing the EM algorithm by BDDs.
In the 18th International Conference on Inductive
Logic Programming, pages 44–49, 2008.

[20] M. Ishihata and T. Sato. Bayesian inference for
statistical abduction using Markov chain Monte
Carlo. In the 3rd Asian Conference on Machine
Learning, pages 81–96, 2011.

[21] S. Kale, L. Reyzin, and R. E. Schapire. Non-
stochastic bandit slate problems. In Advances
in Neural Information Processing Systems, pages
1054–1062, 2010.

[22] J. Kawahara, T. Inoue, H. Iwashita, and S. Mi-
nato. Frontier-based search for enumerating all
constrained subgraphs with compressed represen-
tation. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sci-
ences, E100.A(9):1773–1784, 2017.

[23] R. Kleinberg, G. Piliouras, and E. Tardos. Mul-
tiplicative updates outperform generic no-regret
learning in congestion games: Extended abstract.
In the 41st Annual ACM Symposium on Theory
of Computing, pages 533–542. ACM, 2009.

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden,
and M. Roughan. The Internet topology zoo. IEEE
J. Sel. Areas Commum., 29(9):1765–1775, 2011.

[25] D. E. Knuth. The Art of Computer Programming:
Combinatorial Algorithms, Part 1, volume 4A.
Addison-Wesley Professional, 1st edition, 2011.

E�cient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams

[26] T. Kocák, G. Neu, M. Valko, and R. Munos. Ef-
ficient learning by implicit exploration in bandit
problems with side observations. In Advances in
Neural Information Processing Systems, pages 613–
621, 2014.

[27] W. M. Koolen, M. K. Warmuth, and J. Kivinen.
Hedging structured concepts. In the 23rd An-
nual Conference on Learning Theory, pages 93–
105, 2010.

[28] H. B. McMahan and A. Blum. Online geometric
optimization in the bandit setting against an adap-
tive adversary. In the 17th Annual Conference on
Learning Theory, pages 109–123, 2004.

[29] S. Minato. Zero-suppressed BDDs for set manipu-
lation in combinatorial problems. In the 30th In-
ternational Design Automation Conference, pages
272–277. ACM, 1993.

[30] M. Mohri. Weighted automata algorithms. Hand-
book of weighted automata, pages 213–254, 2009.

[31] D. R. Morrison, E. C. Sewell, and S. H. Jacobson.
Solving the pricing problem in a branch-and-price
algorithm for graph coloring using zero-suppressed
binary decision diagrams. INFORMS J. Comput.,
28(1):67–82, 2016.

[32] G. Palaiopanos, I. Panageas, and G. Piliouras.
Multiplicative weights update with constant step-
size in congestion games: convergence, limit cycles
and chaos. In Advances in Neural Information
Processing Systems, 2017.

[33] H. Rahmanian, S. Vishwanathan, and M. K. War-
muth. Online dynamic programming. In Advances
in Neural Information Processing Systems, 2017.

[34] R. W. Rosenthal. A class of games possessing
pure-strategy Nash equilibria. Internat. J. Game
Theory, 2(1):65–67, 1973.

[35] E. Takimoto and M. K. Warmuth. Path kernels
and multiplicative updates. J. Mach. Learn. Res.,
4(Oct):773–818, 2003.

[36] T. Uchiya, A. Nakamura, and M. Kudo. Algo-
rithms for adversarial bandit problems with mul-
tiple plays. In International Conference on Algo-
rithmic Learning Theory, pages 375–389. Springer,
2010.

