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Abstract

In this paper, we discuss how a suitable fam-
ily of tensor kernels can be used to e�ciently
solve nonparametric extensions of `p regular-
ized learning methods. Our main contribu-
tion is proposing a fast dual algorithm, and
showing that it allows to solve the problem
e�ciently. Our results contrast recent find-
ings suggesting kernel methods cannot be ex-
tended beyond Hilbert setting. Numerical
experiments confirm the e↵ectiveness of the
method.

1 Introduction

Kernel methods are classically formulated as a regu-
larized empirical risk minimization and yields flexible
and e↵ective non-parametric models. However, they
are restricted to `2-regularization. Indeed the so called
kernel trick crucially relies on a scalar product struc-
ture (a Hilbert space). The basic tool of these methods
is the kernel function which, evaluated at the training
points, allows (a) to formulate a “dual” optimization
problem, which is essentially quadratic and finite di-
mensional, and (b), through the solution of dual prob-
lem, to obtain an explicit linear representation of the
solution of the original (primal) problem (the repre-
senter theorem) [18, 19]. This dual approach provides
a feasible way to deal with non-parametric (infinite
dimensional) models, and a possibly easier and more
e�cient algorithm to tackle the finite dimensional also.

It is well known that kernels for other norms can be
defined [16, 20, 21], but recent results suggest that
they are unpractical [17]. In particular, these kernels
do not allows to properly express, in closed-form, the
dual problem, making the kernel trick inapplicable. In
this paper, we question this conclusion. We consider
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`p-regularization for 1 < p < 2 and starting from [14]
we illustrate how, for certain values of p, a class of ten-
sor kernels make it possible to derive a dual problem
that can be e�ciently solved. Our main contribution is
a dual algorithm, having fast convergence properties,
that provides a way to overcome the well-known com-
putational issues related to non-Hilbertian norms, and
makes the kernel trick still viable. From the optimiza-
tion point of view, the challenge is that some stan-
dard assumptions are not satisfied. Indeed the dual
objective function lacks a global Lipschitz continuous
gradient, since it incorporates a convex polynomial of
degree strictly greater than 2. Moreover, depending on
the choice of the loss, constraints may be present. Con-
sidering all these aspects, the proposed algorithm is a
dual proximal gradient method with linesearch which
in the case of the least square loss and logistic loss we
prove to converge linearly. Numerical examples show
the e↵ectiveness of the proposed framework and the
possible application for variable selection.

The rest of the paper is organized as follows. In sec-
tion 2 we explain how tensor kernels arise in `p reg-
ularization learning problems and provide an e�cient
algorithm to solve such problems, which is the main
contribution of the paper. In section 3 one finds the
main elements of the theoretical analysis. Finally, sec-
tion 4 contains the numerical experiments.

Notation. If p > 1, q > 1 is its conjugate exponent,
i.e. 1/p+ 1/q = 1. Vectors are denoted by bold fonts
and scalars by plain fonts. For every x,x0 2 Rd, x �
x0 2 Rd and x ⌦ x0 2 Rd⇥d are their Hadamard and
tensor product respectively, and sum(x) 2 R denotes
the sum of the components of x. IfK is a countable set,
we denote by `p(K) the space of p-summable sequences

indexed in K with p-norm kwkp =
�P

k2K |wk|p
�1/p

.
We define the duality map of `q(K) as Jq : `q(K) !
`p(K) with Jq(u) = (sign(uk)|uk|q�1)k2K [15].

2 Motivation and main contribution

First, we recall how kernel methods arise for `2-
regularization. Next, we present the objective of this
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study, i.e., an e↵ective `p-norm regularized learning
method. Based on [14], which showed that this method
can be kernelized by an appropriate tensor kernel, we
present a novel dual algorithm which uses the knowl-
edge of the tensor kernel only and converges linearly.

2.1 Classical kernel methods

We begin with a look at a simple kernel method, that
is, kernel ridge regression, and we highlight the role
played by duality. Later, this will serve as a guide
to generalize the theory to `p-regularization. Ridge
regression is formulated as the following optimization
problem

min
w2Rd

�

2
kXw � yk22 +

1

2
kwk22, (1)

where X 2 Rn⇥d is the data matrix. This problem
has a companion dual problem which is

min
↵2Rn

1

2
kX⇤↵k22 +

1

2�
k↵k22 � hy,↵i, (2)

where X⇤ is the transpose of X. These two problems
are indeed related: writing the optimality conditions
for (1) and (2) one obtains

X⇤(Xw � y) + ��1w = 0 and

XX⇤↵� y + ��1↵ = 0

respectively; and hence it immediately follows that if
↵̄ is the solution of (2), then

w̄ = X⇤↵̄ =
nX

i=1

↵̄ixi (3)

is the unique solution of (1). Equation (3) is the con-
tent of the so called representer theorem which ensures
that the solution of a regularized regression problem
can be written as a linear combination of the data
points xi 2 Rd, i = 1, · · · , n. Moreover, for the linear
estimator it holds

hw̄,xi =
nX

i=1

↵̄ihxi,xi =
nX

i=1

↵̄iK(xi,x), (4)

where K : Rd ⇥ Rd ! R is the linear kernel function
defined as K(x,x0) = hx,x0i. We note that, since
XX⇤ = (K(xi,xj))1in,1jn, the dual problem (2)
can also be written in terms of the linear kernel func-
tion, taking the form of the following quadratic opti-
mization problem

min
↵2Rn

1

2

nX

i,j=1

K(xi,xj)↵i↵j +
1

2�
h↵,↵i � hy,↵i. (5)

So, summarizing, the dual problem (5) and the repre-
sentation formulas (3)-(4) provide a way to solve the
primal problem (1) and to evaluate the optimal linear
estimator by relying on the knowledge of the linear
kernel function only. This conclusion can then be ex-
tended to nonlinear regression models, by introducing
general kernel functions defined as

K(x,x0) = h�(x),�(x0)i = sum(�(x)� �(x0)), (6)

for some nonlinear feature map � : Rd ! `2. This
is the so called kernel trick and it is at the basis
of kernel methods in machine learning, allowing even
to treat infinite dimensional (nonparametric) mod-
els. Kernels, defined by (6), can indeed be charac-
terized as positive definite functions, in the sense that
for every n 2 N, (xi)1in 2 (Rd)

n
, and ↵ 2 Rn,Pn

i,j=1 K(xi,xj)↵i↵j � 0. Moreover, kernels define
an associated function space which is a reproducing
kernel Hilbert space. There are many significant ex-
amples of kernel functions and we cite among the other
the Gaussian kernel K(x,x0) = exp(�⌘�2kx� x0k22)
and the polynomial kernel K(x,x0) = hx,x0is, de-
scribing the space of homogeneous polynomials of de-
gree s. We note that the theory can be further gen-
eralized to handle more general loss functions, so to
include classification problems too [18, 19].

2.2 Kernel methods beyond `2-regularization

In view of the discussion above, a natural question is
whether kernel methods can be extended to other regu-
larization terms. In particular `1-regularization would
be important in view of its properties to provide sparse
solutions. Unfortunately, in general `1-regularization
methods cannot be kernelized (although they admit
dual) [9, 11] and a useful representer theorem and def-
inition of kernel can be obtained only under severe
restrictions [16]. However, it was noted in [10] that
`p-regularization can be seen as a proxy to `1 for suit-
able p. Moreover, it was recently shown in [14] that
for certain values of p 2 ]1, 2[ (arbitrarily close to 1),
the `p-regularization method can indeed be kernelized,
provided that a suitable definition of tensor kernel is
introduced. Here we recall the theory in [14] for a sim-
ple model in order to make it more transparent. Thus,
in analogy to section 2.1, we consider the problem

min
w2Rd

�

2
kXw � yk22 +

1

p
kwkpp := F (w), (7)

where 1 < p < 2. In this case the dual problem is

min
↵2Rd

1

q
kX⇤↵kqq +

1

2�
k↵k22 � hy,↵i := ⇤(↵), (8)

where q is the conjugate exponent of p (that is 1/p +
1/q = 1). Now, following the same argument as in
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section 2.1, we write the optimality conditions of the
two problems. Then we have

X⇤(Xw � y) + ��1Jp(w) = 0 and

XJq(X
⇤↵)� y + ��1↵ = 0,

(9)

where Jp : Rd ! Rd and Jq : Rd ! Rd are the gra-
dients of (1/p)k·kpp and (1/q)k·kqq respectively (they
are the duality maps). Thus, multiplying by X⇤ the
second equation in (9) and taking into account that
Jp � Jq = Id, it follows that if ↵̄ is the solution of (8),
then w̄ = Jq(X⇤↵̄) is the solution of (7). So, in this
case the representer theorem becomes

w̄ = Jq(X
⇤↵̄) = Jq

✓ nX

i=1

↵̄ixi

◆
. (10)

We remark that, in contrast to the `2 case, the above
representation is nonlinear in the ↵i’s, because of the
presence of the nonlinear map Jq. Indeed this map
acts component-wise as the derivative of (1/q)|·|q, i.e.,
sign(·)|·|q�1. Therefore, at first sight it is not clear
how to define an appropriate kernel function that can
represent the estimator hw̄,xi in analogy to (4), and
make the kernel trick still successful. So, it comes as a
surprise that this is possible if one makes the following
assumption [14]

q is an even integer and q � 2. (11)

Indeed in that case, for every u 2 Rd, Jq(u) =�
sign(uj)|uj |q�1�

1jd
= (uq�1

j )1jd, and hence, us-

ing (10), we have

hw̄,xi =
dX

j=1

✓ nX

i=1

↵̄ixi,j

◆q�1

xj

=
dX

j=1

nX

i1,...,iq�1=1

xi1,j · · ·xiq�1,jxj↵̄i1 · · · ↵̄iq�1 ,

(12)
where we could expand the power of the summation
in a multilinear form since q is an integer. Therefore,
we are defining the linear tensor kernel function K as

K :

q timesz }| {
Rd ⇥ · · ·⇥ Rd ! R,

K(x0
1, · · · ,x0

q) =
dX

j=1

x0
1,j · · ·x0

q,j

= sum(x0
1 � · · ·� x0

q),

(13)

so that, (12) turns to

hw̄,xi =
nX

i1,...,iq�1=1

K(xi1 , · · · ,xiq�1 ,x)↵̄i1 · · · ↵̄iq�1 .

(14)

Comparing (13) and (6) we recognize that we may in-
terpret the tensor kernel as a kind of group-wise sim-
ilarity measure in the input space. Moreover, since q
is even,

kX⇤↵kqq =
dX

j=1

✓ nX

i=1

↵ixi,j

◆q

=
dX

j=1

nX

i1,...,iq=1

xi1,j · · ·xiq,j↵i1 · · ·↵iq

and hence, by exchanging the two summations above,
the dual problem (8) becomes

min
↵2Rd

1

q

nX

i1,...,iq=1

K(xi1 , . . . ,xiq )↵i1 · · ·↵iq

+
1

2�
k↵k2 � hy,↵i. (15)

We see now that, instead of the quadratic problem (5)
we have a convex polynomial optimization problem of
degree q.1 The introduction of the tensor kernel (13)
allows to parallel the `2 case, in the sense that the dual
problem (15) and formula (14) provide the solution of
the regression problem (7). Once again, the method
can be extended to general feature maps � : Rd !
`q(K), �(x) = (�k(x))k2K, with K a countable set,
provided that, in the definition of K, xi is replaced by
�(xi). Thus, a general tensor kernel is defined as

K(x0
1, · · · ,x0

q) =
X

k2K
�k(x

0
1) · · ·�k(x

0
q)

= sum(�(x0
1)� · · ·� �(x0

q)).

(16)

It is easy to show that tensor kernels are still symmet-
ric and positive definite, in the sense that

- 8x0
1, . . . ,x

0
q 2 Rd, and every permutation � of

{1, . . . , q}, K(x0
�(1) . . .x

0
�(q)) = K(x0

1, . . .x
0
q);

- for every x0
1, . . . ,x

0
n 2 Rd and every ↵ 2 Rn,Pn

i1,...,iq=1 K(x0
i1 , . . . ,x

0
iq )↵i1 . . .↵iq � 0.2

These tensor kernels define an associated function
space which is now a reproducing kernel Banach space
(See Section A.3 in the supplementary material and
[14, 20]). Moreover, reasoning as in (12), the following
representation formula can be proved

hw̄,�(x)i =
nX

i1,...,iq�1=1

K(xi1 , · · · ,xiq�1 ,x)↵̄i1 · · · ↵̄iq�1 .

(17)

1
The problem is convex since the first term in (15) is

equal to (1/q)kX⇤↵kqq.
2
However, it is not known whether a function

K :
�
Rd

�q ! R satisfying the two properties above can

be written as in (16) for some feature map � : Rd ! `q(K).
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Finally, there do exist cases in which tensor kernel
functions can be computed without knowing the fea-
ture map � itself. The following polynomial and expo-
nential tensor kernels are examples of such cases (but,
there are others in the class of power series tensor ker-
nels [14]).

Polynomial tensor kernel of degree s 2 N, s � 1 :

K(x0
1, . . . ,x

0
q) =

⇣ dX

j=1

x0
1,j · · ·x0

q,j

⌘s

=
�
sum(x0

1 � · · ·� x0
q)
�s
.

It describes the space of homogeneous polynomials
in d real variables of degree s. This corresponds
to a finite dimensional model for which K =

�
k 2

Nd
�� Pd

j=1 kj = s
 

and, for every k 2 Nd, �k(x) =
�
s!/(k1! · · · kd!)

�1/q
xk, that is (�k)k2K is the basis of

all possible monomials in d variables of degree s and
the norm of a polynomial function f =

P
k2K wk�k is

kwkpp =
P

k2K |wk|p.

Exponential tensor kernel :

K(x0
1, . . . ,x

0
q) =

dY

j=1

ex
0
1,j ···x

0
q,j = esum(x0

1�···�x0
q).

This kernel provides an example of an infinite dimen-
sional model, where, K = Nd and, for every k 2 Nd,
the k-th component of the feature map is �k(x) =�
1/

Qd
j=1 kj !

�1/q
xk.

2.3 A dual algorithm

In this section we present the main contribution of this
paper which is an algorithm for solving the problem

min
w2`p(K)

�
nX

i=1

�
yi�h�(xi),wi

�2
+
1

p
kwkpp := F (w), (18)

where p = q/(q � 1) with q an even integer (strictly)
grater than 2, � > 0, � : X ! `q(K) is the feature map,
K is a countable set, and (xi, yi)1in 2 (X ⇥ Y)n

is the training set. Note that (18) reduces to (7) if
X = Rd, K = {1, . . . , d} and � is the identity map.
The proposed algorithm is based on the minimization
of the dual problem (15), where K is defined as in
(16). This method has two significant characteristics:
first, it is entirely formulated in terms of the tensor
kernel function, therefore it can also cope with non-
parametric (infinite dimensional) tensor kernels, e.g,
the exponential-tensor kernel; second, it provides fast
convergence. From the optimization viewpoint, we ob-
serve that the objective functions in (18) and (15) are

smooth. However, none of the two has Lipschitz con-
tinuous gradient, since in (18) 1 < p < 2 and in (15)
the first term is a convex polynomial of degree q > 2.
This poses an issue since most gradient algorithms re-
quires Lipschitz continuous gradient to achieve conver-
gence [2, 7, 8]. Relaxing this assumption for the more
general proximal gradient algorithm has been the ob-
jective of a number of recent works [3, 4, 13] that intro-
duce suitable linesearch procedures to determine the
gradient stepsizes. In light of these studies, we present
a dual gradient descent algorithm with a backtracking
linesearch procedure and we prove that, by exploiting
the strong convexity of the dual objective function and
the dual-primal link, the corresponding primal iterates
converge linearly to the solution of (18).

To simplify the exposition we treat here the case
q = 4, that is p = 4/3. Since the Gram ten-
sor K = (K(xi1 ,xi2 ,xi3 ,xi4))i2{1,...n}4 is of order
4, it can be viewed as a n2 ⇥ n2 symmetric ma-
trix: using a MATLAB-like notation, we define [K] =
reshape(K, n2, n2). Likewise, for a n⇥n matrix B, we
set [B] = reshape(B, n2, 1) for its vectorization. Then,
the dual problem (15) can be equivalently written as

min
↵2Rd

1

q
h[↵⌦↵], [K][↵⌦↵]i

+
1

2�
k↵k2 � hy,↵i := ⇤(↵). (19)

The proposed dual algorithm is detailed below.

Algorithm 2.1. Let ↵0 2 Rn, �, ✓ 2 ]0, 1[, and ini-
tialize the sequence (�m)m2N as the constant value
�̄ 2 ]0, �/(2(1� �))[. Then, for every m 2 N,

!m = reshape([K][↵m ⌦↵m], n, n)↵m

(the gradient of the quartic part of ⇤)

r⇤(↵m) = !m � y + ��1↵m

while ⇤(↵m)� ⇤(↵m � �mr⇤(↵m))

< �m(1� �)kr⇤(↵m)k2
do
⌅
�m := ✓�m

↵m+1 = (1� �m��1)↵m � �m(!m � y)

(20)

Remark 2.2. Algorithm 2.1 is given for q = 4. If
q is an even integer greater than 4, then the leading
term of ⇤ is a polynomial of degree q in the variables
↵ = (↵1, . . . ,↵m), and the formula for its gradient !n

at ↵m, even if possibly more complicated, can be still
expressed in term of the Gram tensor K.

Our main technical result is the following theorem
studying the convergence of the above algorithm.

Theorem 2.3. Let (↵m)m2N and (�m)m2N be gener-
ated by Algorithm 2.1. Then we have infm �m > 0 and,
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for every m 2 N, setting wm = Jq
�Pn

i=1 ↵m,i�(xi)
�
,

it holds

kwm � w̄k2p 
⇥
(2pq)

�
⇤(↵0) + (�/2)kyk22

�⇤ 2�p
p

Cp

·
✓
1� 2

�
�m(1� �)

◆m�
⇤(↵0)�min⇤

�
,

for some constant Cp > 0, depending only on p, which
tends to zero as p ! 1. Therefore, wm converges lin-
early to the solution w̄ of problem (18).

Remark 2.4. An output ↵m of Algorithm 2.1 pro-
vides an estimator hwm,�(·)i, that can be expressed
in terms of the tensor kernel K through the equation

hwm,�(·)i =
nX

i1,...,iq�1=1

K(xi1 , · · · ,xiq�1 , ·)↵m,i1 · · ·↵m,iq�1 .

Indeed, this follows from recalling the definition of wm

in Theorem 2.3 and by reasoning as in (12).

Remark 2.5. If p 2 ]1, 2[ is not of the form p =
q/(q � 1) for some q as in (11), Theorem 2.3 remains
valid provided that in Algorithm 2.1 !m is computed
directly in terms of the feature map � evaluated at the
training points. Clearly, this case is feasible only if the
feature map is finite dimensional, that is, if the index
set K is finite.

In the following we discuss the most significant aspects
of this dual approach.

Cost per iteration. The complexity of Algo-
rithm 2.1 is mainly related to the computation of the
gradient of the quartic form in (19), which, by ex-
ploiting the symmetries of ↵m ⌦ ↵m and K, costs
(approximatively) n2(n + 1)2/4 multiplications. We
remark that in the infinite dimensional case this algo-
rithm is the only feasible approach to solve problem
(18). However, even in the case card(K) < +1, e.g.,
for the linear or polynomial tensor kernel, the method
may be convenient if n ⌧ card(K). Indeed a stan-
dard gradient-type algorithm on (18) costs 2ncard(K)
multiplications (2nd in case of (7)). Therefore, Algo-
rithm 2.1 is recommended if n(n + 1)2/8  card(K),
that is

n  2
�
card(K)

�1/3
. (21)

We stress that Algorithm 2.1 has a cost per iteration
that depends only on the size n of the data set, while
any primal approach will depend on the size of K. For
instance, in the case of polynomial kernels of degree
s, we have card(K) = (d+ s� 1) · · · d/s! � ds/s!, and
this implies that the cost of a gradient algorithm on the

primal problem grows exponentially with s. We also
remark that building the Gram tensor K will further
require d · n2(n + 1)2/4 multiplications (and 8 · n4/8
bytes in space). However, the Gram tensor is com-
puted once for all and in a validation procedure for
the regularization parameter �, it does not need to be
recomputed every time.

Rate of convergence. As mentioned above our
dual algorithm has linear convergence rate and can
be applied for infinite dimensional kernels. We next
discuss the comparison with primal approaches when
the kernel is finite dimensional (card(K) < +1). The
basic point is that primal approaches will allow only
for sublinear rates. Indeed, since the objective func-
tion in (18) is the sum of two convex smooth functions,
among the various algorithms, appropriate choices are
(a) a pure gradient descent algorithm with linesearch
(the gradient being that of F ) and (b) a proximal gra-
dient algorithm (possibly accelerated) with the prox of
(1/p)k·kpp. However, concerning (a) and according to
[4, 13], the algorithm converges, but, since 1 < p < 2,
the full gradient of F is not even locally Lipschitz con-
tinuous, so, the gradient stepsizes may get arbitrarily
close to zero, and ultimately the algorithm may ex-
hibit very slow convergence with no explicit rate. Be-
sides, regarding (b), the primal objective function in
(18) is only uniformly convex on bounded sets. There-
fore, standard convergence results [2, 6, 7] ensure only
convergence of the iterates (without rate) and sublin-
ear convergence rate for the objective values. On the
other hand, regarding Algorithm 2.1, we observe that
the constant Cp, in Theorem 2.3, approaches zero as
p ! 1, so when p is close to 1 the linear convergence
rate for the wm’s may degrade. In the numerical ex-
periments, we confirm the above theoretical behaviors:
the dual algorithm often converges in a few iterations
(of the order of 20), whereas a direct gradient descent
method (with linesearch or of proximal-type) on the
primal problem may require thousands of iterations to
reach the same precision.

Dealing with general convex loss. Above, we
considered, for the sake of simplicity, the least squares
loss. However, the proposed dual approach can be gen-
eralized to all other convex loss functions commonly
used in machine learning: the logistic loss and the
hinge loss for classification and the L1-loss, and the
Vapnik-"-insensitive loss for regression. In these cases
the dual objective function is composed of the same
leading polynomial form as in (15), which has locally
Lipschitz continuous gradient, and of a possibly non-
smooth (convex) function, having however a closed-
form proximity operator (see Example B.2 in the sup-
plementary material). Therefore, according to [13], for



Solving `p-norm regularization with tensor kernels

general convex losses, instead of Algorithm 2.1 we use a
proximal gradient algorithm with linesearch achieving
linear convergence or sublinear convergence depending
on the fact that the dual objective function is strongly
convex or not. In this respect we note that we have
linear convergence for the logistic loss and sublinear
convergence for the "-insensitive loss and the hinge
loss. This extension is treated in the next section.

3 The main elements of the
theoretical analysis

In this section we further develop the discussion of the
previous section and provide the theoretical grounds
for the dual approach to `p-norm regularized learning
problems. The emphasis here is on the duality theory
rather than on the tensor kernels. The results are pre-
sented for general loss function and any real parameter
p > 1.

The most general formulation of our objective is as
follows,

min
w2`p(K)

�
nX

i=1

L(yi, h�(xi),wi)+ 1

p
kwkpp := F (w),

(22)
where p > 1, � > 0, � : X ! `q(K) is the feature
map, (xi, yi)1in 2 (X ⇥Y)n is the training set, and
L : Y⇥R ! R is a loss function which is convex in the
second variable. We define the linear feature operator

�n : `
p(K) ! Rn, �nw =

�
h�(xi),wi

�
1in

. (23)

Then its adjoint is �⇤
n : Rn ! `q(K), �⇤

n↵ =Pn
i=1 ↵i�(xi). Duality is based on the following.

Theorem 3.1. The dual problem of (22) is

min
↵2Rn

1

q
k�⇤

n↵kqq + �
nX

i=1

L⇤
⇣
yi,�

↵i

�

⌘
:= ⇤(↵), (24)

where L⇤(yi, ·) is the Fenchel conjugate of L(yi, ·).
Moreover, (i) the primal problem has a unique so-
lution, the dual problem has solutions and minF =
�min⇤ (strong duality holds); and (ii) the solutions
(w̄, ↵̄) of the primal and dual problems are character-
ized by the following KKT conditions

(
w̄ = Jq(�⇤

n↵̄),

8 i 2 {1, . . . , n} � ↵i
� 2 @L(yi, h�(xi), w̄i),

(25)
where @L(yi, ·) is the subdi↵erential of L(yi, ·).

All the losses commonly used in machine learning ad-
mit explicit Fenchel conjugates and we refer to the
supplementary material for explicit examples. The
connection between the primal and dual problem is
further deepened in the following result.

Proposition 3.2. Let ↵̄ 2 Rn be a solution of the dual
problem (24) and let w̄ = Jq

�
�⇤

n↵̄
�
be the solution of

the primal problem (22). Let ↵ 2 Rn and set w =
Jq
�
�⇤

n↵
�
. Then

⇤(↵)�min⇤

� Cp
⇥
(2pq)

�
⇤(↵) + �k⇠k1

�⇤(2�p)/p
kw � w̄k2p, (26)

where, for every i = 1, . . . , n, ⇠i = inf L⇤(yi, ·) and
Cp > 0 is a constant that depends only on p.

The above proposition ensures that if an algorithm
generates a sequence (↵m)m2N that is minimizing for
the dual problem (24), i.e., ⇤(↵m) ! min⇤, then the
sequence defined by wm = Jq(�⇤

n↵m), m 2 N, con-
verges to the solution of the primal problem.

Now, for the most significant losses L in machine learn-
ing (see Example B.2 in the supplementary material),
the dual problem (24) has the following form

min
↵2Rn

'1(↵) + '2(↵) = ⇤(↵), (27)

where '1 : Rn ! R is convex and smooth with lo-
cally Lipschitz continuous gradient ('1 will include
the term (1/q)k�⇤

n↵k
q
q) and '2 : Rn ! R [ {+1}

is proper, lower semicontinuous, convex, and admit-
ting a closed-form proximity operator. So, the form
(24) is amenable by the proximal gradient algorithm
with linesearch studied in [13], which, referring to (27),
takes the following form.

Algorithm 3.3. Let � 2 ]0, 1[, �̄ > 0, and let ✓ 2
]0, 1[. Let ↵0 2 Rn and define, for every m 2 N,

↵m+1 = prox�m'2
(↵m � �mr'1(↵m)), (28)

where �m = �̄✓jm and jm is the minimum of the j 2
N such that ↵̂m(j) := prox�m'2

(↵m � �̄✓jr'1(↵m))
satisfies

'1

�
↵̂m(j)

�
� '1

�
↵m

�
� h↵̂m(j)�↵m,r'1(↵m)i

 �/(�̄✓j)k↵̂m(j)�↵mk2.

Remark 3.4. In contrast to Algorithm 2.1, Algo-
rithm 3.3 provides rather a general algorithm where
'1 and '2 are set depending on the choice of the dif-
ferent losses.

Remark 3.5. If p = q/(q�1) and q satisfies (11), then
the computation of r'1(↵) in Algorithm 3.3 can be
performed in term of the Gram tensor K (for instance,
if q = 4 the gradient of the quartic part of '1 is as in
the first line of Algorithm 2.1). Moreover, if in addition
L is the square loss, then ⇤ is as in (19) and one can
take '1 = ⇤ and '2 = 0; and hence Algorithm 3.3
reduces to Algorithm 2.1.
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Table 1: Convergence rates

Number of iterations (rel. precision 10�8)

Algorithm p = 4/3 p = 5/4 p = 1.1 p = 1.05

dual GD + linesearch 12(5) 15(4) 63(22) 258(55)
primal GD + linesearch > 5000 > 5000 > 5000 > 5000
primal FISTA 1158 1542 — —
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Figure 1: Left. Convergence rates: dual algorithm vs FISTA on the primal. Right. True and estimated sparse
vectors for a linear tensor kernel: p = 4/3, n = 85, d = 1500, and 6 relevant features.

The convergence properties of Algorithm 3.3 are given
in the following theorem, which, as opposed to Theo-
rem 2.3, is valid for general loss and any p 2 ]1, 2].

Theorem 3.6. Let p 2 ]1, 2]. Define (↵m)m2N and
(�m)m2N as in Algorithm 3.3. Then, infm �m > 0
and, for every m 2 N, setting wm = Jq(�⇤

n↵m), it
holds

kwm � w̄kp  o(1/
p
m).

Moreover, if ⇤ is strongly convex (which occurs for
the least square loss and the logistic loss), then wm

converges linearly to w̄.

4 Numerical Experiments

In this section we perform experiments on simulated
data. Also, we provide experiments on a real data set
the supplementary material.

The experiments on simulated data assesses the fol-
lowing three points.3

Dual vs primal approach (without tensor ker-
nels). We considered problem (7) with di↵erent
choices of p (not necessarily with q even integer).
The purpose is to compare a dual approach against

3
All the numerical experiments have been performed in

MATLAB
R�

environment, on a MacBook laptop with Intel

Core 2 Duo, 2 Ghz and 4 GB of RAM.

a primal approach per se, thus without considering
the tensor kernel function — after all the dual prob-
lem (8) is smooth whatever q is. Algorithm 2.1 is
therefore modified in such a way that the gradient of
the dual term (1/q)kX⇤↵kqq is computed directly as

XJq(X⇤↵).4 For the primal approaches we consid-
ered two algorithms: (a) the gradient descent method
with linesearch and (b) the FISTA algorithm [2], but
with p 2 {4/3, 5/4}, since they are the only cases in
which the proximity operator of (1/p)k·kpp can be com-
puted explicitly [1]. We generated a matrix X ac-
cording to a normal distribution, a sparse vector w?,
(where the location of the nonzero coe�cients was cho-
sen randomly), a normal distributed noise vector ",
and we defined

y = Xw? + �", � = 5 · 10�2.

We chose n = 200, d = 105 and 10 relevant features.
The regularization parameter was set to � = 10, so
to achieve a reconstruction error of the order of the
noise. Table 1 and Figure 1(Left.) clearly show that
the dual approach significantly outperforms the two
primal approaches.5

4
Note that in this case the cost per iteration is essen-

tially equal to that of the gradient descent in the primal.
5
The optimal values were found by using the dual algo-

rithm and checking that the duality gap was < 10
�14

.
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Table 2: The dual algorithm with and without tensor kernels

Algorithm CPU time (sec) iterations

build the Gram tensor K 2.73 —
dual GD + linesearch (with K) 2.49 29
dual GD + linesearch (without K) 9.87 28

Tensor kernels in the dual approach. This ex-
periment considered the case treated in section 2.3,
that is, q = 4 (p = 4/3), with the polynomial tensor
kernel of degree 2, i.e.,

K(x0
1,x

0
2,x

0
3,x

0
4)

=
�
sum(x0

1 � x0
2 � x0

3 � x0
4)
�2

= sum(�(x0
1)� �(x0

2)� �(x0
3)� �(x0

4)),

where �(x) =
�
x2
1, . . . , x

2
d,

4
p
2x1x2, . . . ,

4
p
2x1xd, . . .

�
.

The dimension of the feature space is N = d(d+1)/2.
We generated X, w?, " as in the previous case and,
according to (23),6 we defined

�n =

2

64
�(x1)>

...
�(xd)>

3

75 2 Rn⇥N , y = �nw?+�", � = 5·10�2.

Then we aimed at solving problem (7) withX replaced
by �n. We examined a situation in which the compu-
tational cost per iteration of the dual algorithm is less
than the corresponding primal, measuring the gain in
CPU time. We set n = 90, d = 650 and 6 relevant
features out of the total of N = 211575. With these
figures, according to the discussion at the end of sec-
tion 2.3, computing the gradient through the tensor
kernel, as done in Algorithm 2.1, surely reduces the
cost per iteration. Table 2 shows the CPU time re-
quired by the dual algorithm with and without using
the tensor kernel.

Recovering the relevant features. The sparse-
ness properties of an `p-regularization method were
mentioned in [8] and later were studied further in
[10], from a statistical viewpoint. In contrast to `1-
regularization, the `p-regularization does not generally
provide finite supported vectors, so sparseness here ac-
tually means approximate sparsity in the sense that
the insignificant coe�cients are shrunk and the rele-
vant ones are highlighted. Our experiments confirm
this property of `p regularization. Indeed in the set-
ting described in the previous scenarios, the solution
vector w̄ always exhibits spikes that corresponds to the
non zero coe�cients of w?. Depending on the value of

6
In this case card(K) = N , so `p(K) can be identified

with RN
and the linear map �n can be thought as a n⇥N

matrix.

p, on the size n of the data set, and on the feature
space dimension N , this phenomenon may be more
or less notable, but in any case the vector w̄ either
clearly reveals the hidden relevant features (see Fig-
ure 1(Right.)) or can be safely thresholded in order
to discard most of the non-relevant features, and re-
duce the dimensionality of the problem of 1-2 orders
of magnitude.

5 Conclusions

In this paper we presented a novel and e�cient ker-
nel method for `p-norm regularized learning problems.
The method assumes that p = q/(q � 1) with q an
even integer grater than 2. In such case, we provided
an algorithm which is based on the minimization of
the dual problem and can be formulated in terms of a
tensor kernel evaluated at the training points, avoid-
ing the call of the feature map. Therefore, this pro-
vides the first viable solution to `p-type regularization
in infinite dimensional spaces. Moreover, in finite di-
mension, the proposed approach compares favorably to
other solutions in the regime of few sample and large
number of variables, and q reasonably low. For exam-
ple, our experiments show that if q = 4, the proposed
method is practicable and provides an e↵ective vari-
ables selection method and/or is able to discard most
of the irrelevant features. We remark that, the com-
plexity of the method depends only on the dataset size
and does not depend on the dimension of the function
space (e.g, the degree of the polynomial kernel). How-
ever, there are scenarios and values of q in which using
tensor kernels may be cumbersome from the computa-
tional point of view, but this di�culty is common to
other approaches to nonparametric sparsity and it is
certainly a challenge that requires further study. Fi-
nally, the experiments are meant to provide a proof of
concept for the proposed method and are the starting
point for a more systematic empirical study that we
defer to a future work.
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