
Combinatorial Semi-Bandits with Knapsacks

Supplementary materials for
“Combinatorial Semi-Bandits with Knapsacks”
This supplement is structured as follows. Section 6 provides full proof of the main result. Section 7 gives the details of
the simulations. Finally, we provide two “appendices” for the sake of making this paper more self-contained: we derive
Theorem 2.1 in Appendix A, and list definitions and special cases of matroids in Appendix B.

All references to Sections 1-5 refer to the main paper; references to subsequent sections refer to this supplement. All
citations refer to the bibliography in the main paper.

6 Proof of the main result

This section presents a detailed and self-contained proof of the main result: Theorem 3.1. We actually prove a slightly
stronger statement involving high-probability regret rather than expected regret:
Theorem 6.1 (main result). Consider the SemiBwK problem with a linearizable action set F that admits a negatively
correlated RRS. Then algorithm SemiBwK-RRS with this RRS achieves

Regret  O(log(ndT/�))
p
n
⇣
OPT /

p
B +

p
T +OPT

⌘
(6.1)

with probability at least 1� �. Here T is the time horizon, n is the number of atoms, B is the budget, and � > 0 is a given
parameter. Parameter ↵ in the confidence radius is set to ↵ = cconf log(ndT/�), for a large enough absolute constant
cconf > 0. Parameter ✏ in the algorithm is set to ✏ =

p
↵n
B +

↵n
B +

p
↵nT
B . The result holds as long as B > 3(↵n+

p
↵nT).

6.1 Linear programs

We argue that LPALG provides a good benchmark that we can use instead of OPT. Fix round t and let OPTALG, t denote
the optimal value for LPALG in this round. Then:
Lemma 6.2. OPTALG, t � 1

T (1� ✏)OPT with probability at least 1� �.

We will prove this by constructing a series of LP’s, starting with a generic linear relaxation for BwK and ending with LPALG.
We show that along the series the optimal value does not decrease with high probability.

The first LP, adapted from Badanidiyuru et al. [2013a], has one decision variable for each action, and applies generically
to any BwK problem.

maximize
P

S2F µ(S)x(S)
subject to

P
S2F C(S, j)x(S)  B/T j = 1, ..., d

0 
P

S2F x(S)  1.
(LPBwK)

Let OPTBwK(B) denote the optimal value of this LP with a given budget B. Then:
Claim 6.3. OPTBwK(B✏) � (1� ✏)OPTBwK(B) � 1

T (1� ✏) OPT.

Proof. The second inequality in Claim 6.3 follows from [Lemma 3.1 in Badanidiyuru et al., 2013a]. We will prove the first
inequality as follows. Let x⇤ denote an optimal solution to LPBwK(B). Consider (1 � ✏)x⇤; this is feasible to LPBwK(B✏),
since for every S, (1 � ✏)x⇤

(S)  1 and
X

S✓A:S2S
C(S, j)(1 � ✏)x(S)  B✏/T . Hence, this is a feasible solution. Now,

consider the objective function. Let y denote an optimal solution to LPBwK(B✏). We have that

OPTBwK(B✏) =

X

S✓A:S2S
µ(S)y⇤(S) �

X

S✓A:S2S
µ(S)(1� ✏)x⇤

(S) = (1� ✏)OPTBwK(B).

Now consider a simpler LP where the decision variables correspond to atoms. As before, P denotes the polytope induced
by action set F .

maximize µ · x
subject to C† · x 4 B✏/T x 2 P x 2 [0, 1]n.

(LPATOMS)

Karthik Abinav Sankararaman, Aleksandrs Slivkins

Here C = (C(a, j) : a 2 A, j 2 d) is the n ⇥ d matrix of expected consumption, and C† denotes its transpose. The
notation 4 means that the inequality  holds for for each coordinate.

Leting OPTatoms denote the optimal value for LPATOMS, we have:
Claim 6.4. With probability at least 1� � we have, OPTALG, t � OPTatoms � OPTBwK(B✏).

Proof. We will first prove the second inequality.

Consider the optimal solution vector x to LPBwK(B✏). Define S⇤
:= {S : x(S) 6= 0}.

We will now map this to a feasible solution to LPATOMS and show that the objective value does not decrease. This will
then complete the claim. Consider the following solution y defined as follows.

y(a) =
X

S2S⇤:a2S

x(S).

We will now show that y is a feasible solution to the polytope P . From the definition of y, we can write it as
y =

P
S2S⇤

x(S) ⇥ I[S]. Here, I[S] is a binary vector, such that it has 1 at position a if and only if atom a is present in set

S. Hence, y is a point in the polytope since it can be written as convex combination of its vertices.

Now, we will show that, y also satisfies the resource consumption constraint.

C(j) · y =

X

a2A
C(a, j)

X

S2S⇤:a2S

x(S)

=

X

S2S⇤

X

a2S

C(a, j)x(S)

=

X

S2S⇤

C(S, j)x(S)  B✏/T.

The last inequality is because in the optimal solution, the x value corresponding to subset S⇤ is 1 while rest all are 0. We
will now show that y produces an objective value at least as large as x.

OPTatoms = µ · y⇤ � µ · y =

nX

a=1

µ(a)
X

S2S⇤:a2S

x(S)

=

X

S2S⇤

X

a2S

µ(a)x(S) =
X

S2S⇤

µ(S)x(S)

= OPTsubsets(B✏)

Now we will prove the first inequality. We will assume the “clean event” that µ+

t � µ and C�
t  Ct for all t. Hence, the

inequality holds with probability at least 1� �.

Consider a time t. Given an optimal solution x⇤ to LPATOMS we will show that this is feasible to LPALG,t. Note that,
x⇤ satisfies the constraint set x 2 P since that is same for both LPALG,t and LPATOMS. Now consider the constraint
C�

t (j) ·x  B✏
T . Note that C�

t (a, j)  C(a, j). Hence, we have that C�
t (j) ·x⇤  C(j) ·x⇤  B✏

T . The last inequality
is because x⇤ is a feasible solution to LPATOMS.

Now consider the objective function. Let y⇤ denote the optimal solution to LPALG,t.
OPTALG, t = µ+

t · y⇤ � µ+
t · x⇤ � µ · y⇤

= OPTatoms.

Hence, combining Claim 6.3 and Claim 6.4, we obtain Lemma 6.2.

6.2 Negative correlation and concentration bounds

Our analysis relies on several facts about negative correlation and concentration bounds. First, we argue that property (2.1)
in the definition of negative correlation is preserved under a specific linear transformation:

Combinatorial Semi-Bandits with Knapsacks

Claim 6.5. Suppose (X1, X2 , . . . , Xm) is a family of negatively correlated random variables with support [0, 1]. Fix
numbers �1,�2 , . . . ,�m 2 [0, 1]. Consider two families of random variables:

F+
=

✓
1 + �i(Xi � E[Xi])

2
: i 2 [m]

◆
and F�

=

✓
1� �i(Xi � E[Xi])

2
: i 2 [m]

◆
.

Then both families satisfy property (2.1).

Proof. Let us focus on family F+; the proof for family F� is very similar.

Denote µi = E[Xi] and Yi := (1 + �i(Xi � µi))/2 and zi := (1 � �iµi)/2 for all i 2 [m]. Note that Yi = �iXi/2 + zi
and zi � 0, Xi � 0. Fix a subset S ✓ [m]. We have,

E
"
Y

i2S

Yi

#
= E

2

4
X

T✓S

Y

i2T

(�iXi/2)
Y

j2S\T

zj

3

5 by Binomial Theorem

=

X

T✓S

E
"
Y

i2T

(�iXi/2)

#
Y

j2S\T

zj


X

T✓S

Y

i2T

(�iµi/2)
Y

j2S\T

zj (2.1) invariant under non-negative scaling, Xi neg. correlated

=

Y

i2S

((1� �iµi)/2 + �iµi/2) by Binomial Theorem

= (
1

2
)
|S|

=

Y

i2S

E[Yi]

Second, we extend Theorem 2.1 to a random process that evolves over time, and only assumes that property (2.3) holds
within each round conditional on the history.

Theorem 6.6. Let ZT = {⇣t,a : a 2 A, t 2 [T]} be a family of random variables taking values in [0, 1]. Assume random
variables {⇣t,a : a 2 A} satisfy property (2.1) given Zt�1 and have expectation 1

2
given Zt�1, for each round t. Let

Z =
1

nT

P
a2A,t2[T]

⇣t,a be the average. Then for some absolute constant c,

Pr[Z � 1

2
+ ⌘]  c · e�2m⌘2

(8⌘ > 0). (6.2)

Proof. We prove that family Zt satisfies property (2.3), and then invoke Theorem 2.1. Let us restate property (2.3) for the
sake of completeness:

E

2

4
Y

(t,a)2S

⇣t,a

3

5  2
�|S| for any subset S ✓ ZT . (6.3)

Fix subset S ⇢ ZT . Partition S into subsets St = {⇣t,a 2 ZT \ S}, for each round t. Fix round ⌧ and denote

G⌧ =
Q

t2[⌧] Ht, where Ht =
Q

a2St
⇣t,a.

We will now prove the following statement by induction on ⌧ :

E[G⌧]  2
�k⌧ , where k⌧ =

P
t2[⌧] |St|. (6.4)

The base case is when ⌧ = 1. Note that G⌧ is just the product of elements in set ⇣1 and they are negatively correlated from
the premise. Therefore we are done. Now for the inductive case of ⌧ � 2,

E[H⌧ |Z⌧�1] 
Y

a2S⌧

E[⇣⌧,a|Z⌧�1] From property (2.1) in the conditional space (6.5)

 2
�|S⌧ | From assumption in Lemma 6.6 (6.6)

Karthik Abinav Sankararaman, Aleksandrs Slivkins

Therefore, we have

E[G⌧] = E[E[G⌧�1H⌧ |Z⌧�1]] Law of iterated expectation
= E[G⌧�1 E[H⌧ |Z⌧�1]] Since G⌧�1 is a fixed value conditional on Z⌧�1

 2
�|S⌧ | E[G⌧�1] From Eq. 6.6

 2
�k⌧ From inductive hypothesis

This completes the proof of Eq. 6.4. We obtain Eq. 6.3 for ⌧ = T .

Third, we invoke Eq. 2.6 for rewards and resource consumptions:
Lemma 6.7. With probability at least 1� e�⌦(↵), we have the following:

|µ̂t(a)� µt(a)|  2Rad(µ̂t(a), Nt(a) + 1)

8j 2 [d] |Ĉt(a, j)� Ct(a, j)|  2Rad(Ĉt(a, j), Nt(a) + 1).
(6.7)

Fourth, we use a concentration bound from prior work which gets sharper when the expected sum is very small, and does
not rely on independent random variables:
Theorem 6.8 (Babaioff et al. [2015]). Let X1, X2, . . . , Xm denote a set of {0, 1} random variables. For each t,
let ↵t denote the multiplier determined by random variables X1, X2, . . . , Xt�1. Let M =

Pm
t=1

Mt where Mt =

E[Xt|X1, X2, . . . , Xt�1]. Then for any b � 1, we have the following with probability at least 1�m�⌦(b):

|
mX

t=1

↵t(Xt �Mt)|  b(
p
M logm+ logm)

6.3 Analysis of the “clean event”

Let us set up several events, henceforth called clean events, and prove that they hold with high probability. Then the
remainder of the analysis can proceed conditional on the intersection of these events. The clean events are similar to
the ones in Agrawal and Devanur [2014b], but are somewhat “stronger”, essentially because our algorithm has access to
per-atom feedback and our analysis can use the negative correlation property of the RRS.

In what follows, it is convenient to consider a version of SemiBwK in which the algorithm does not stop, so that we can
argue about what happens w.h.p. if our algorithm runs for the full T rounds. Then we show that our algorithm does indeed
run for the full T rounds w.h.p.

Recall that xt be the optimal fractional solution obtained by solving the LP in round t. Let Yt 2 {0, 1}n be the random
binary vector obtained by invoking the RRS (so that the chosen action St 2 F corresponds to a particular realization of
Yt, interpreted as a subset). Let Gt := {Yt0 : 8t0  t} denote the family of RRS realizations up to round t.

6.3.1 “Clean event” for rewards

For brevity, for each round t let µt = (µt(a) : a 2 A) be the vector of realized rewards, and let rt := µt(St) = µt · Yt

be the algorithm’s reward at this round.
Lemma 6.9. Consider SemiBwK without stopping. Then with probability at least 1� nT e�⌦(↵):

|
P

t2[T]
rt �

P
t2[T]

µ+
t · xt|  O

⇣q
↵n

P
t2[T]

rt +
p
↵nT + ↵n

⌘
.

Proof. We prove the Lemma by proving the following three high-probability inequalities.

With probability at least 1� nT e�⌦(↵): the following holds:

|
P

t2[T]
rt �

P
t2[T]

µ · Yt|  3nT Rad

⇣
1

nT

P
t2[T]

µ+
t · xt , nT

⌘
(6.8)

|
P

t2[T]
µ · Yt � µ+

t · Yt|  12

r
↵n

⇣P
t2[T]

µ+
t · xt

⌘
+ 12

p
↵n+ 12↵n (6.9)

|
P

t2[T]
µ+

t · Yt � µ+
t · xt| 

p
↵nT . (6.10)

Combinatorial Semi-Bandits with Knapsacks

We will use the properties of RRS to prove Eq. 6.10. Proof of Eq. 6.9 is similar to Agrawal and Devanur [2014b], while
proof of Eq. 6.8 follows immediately from the setup of the model. Using the parts (6.8) and (6.10) we can now find an
appropriate upper bound on

qP
t2[T]

µ+
t · xt and using this upper bound, we prove Lemma 6.9.

Proof of Eq. 6.8. Recall that rt = µtYt. Note that, E[µtYt] = µYt when the expectation is taken over just the independent
samples of µ. By Theorem 6.8, with probability 1� e�⌦(↵) we have:

|
P

tT rt �
P

tT µ · Yt|  3nT Rad

⇣
1

nT

P
tT µ · Yt , nT

⌘

 3nT Rad

⇣
1

nT

P
tT µ+

t · Yt , nT
⌘

 3nT Rad

⇣
1

nT

P
tT µ+

t · xt , nT
⌘
.

The last inequality is because Yt is a feasible solution to LPALG.

Proof of Eq. 6.9. For this part, the arguments similar to Agrawal and Devanur [2014b] follow with some minor adaptations.
For sake of completeness we describe the full proof. Note that we have,

|
P

tT µ · Yt � µ+
t · Yt| 

Pn
a=1

|
P

tT µ(a)Yt(a)� µ+

t (a)Yt(a)|.

Now, using Lemma 6.7 in Appendix, we have that with probability 1� nTe�⌦(↵)

|
P

tT µ(a)Yt(a)� µ+

t (a)Yt(a)|  12
P

tT Rad(µ(a), Nt(a) + 1).

Hence, we have
Pn

a=1
|
P

tT µ(a)Yt(a)� µ+

t (a)Yt(a)| = 12
P

a2A
PNT (a)+1

r=1
Rad(µ(a), r)

 12
P

a2A(NT (a) + 1)Rad(µ(a), NT (a) + 1)

 12
p
↵n (µ · (NT + 1)) + 12↵n.

The last inequality is from the definition of Rad function and using the Cauchy-Swartz inequality. Note that µNT =P
tT µ · Yt. Also, since we have with probability 1� e�⌦(↵), µ(a)  µ+

t (a), we have,

12
p
↵n (µ · (NT + 1)) + 12↵n  12

r
↵n

⇣P
tT µ+

t · Yt

⌘
+ 12

p
↵n+ 12↵n.

Finally note that Yt is a feasible solution to the semi-bandit polytope P . Hence, we have that

µ+
t · Yt  µ+

t · xt.

Hence,

12

r
↵n

⇣P
tT µ+

t · Yt

⌘
+ 12

p
↵n+ 12↵n  12

r
↵n

⇣P
tT µ+

t · xt

⌘
+ 12

p
↵n+ 12↵n.

Proof of Eq. 6.10: Recall that for each round t, the UCB vector µ+
t is determined by the random variables Gt�1 = {Yt0 :

8t0 < t}. Further, conditional on a realization of Gt�1, the random variables {Yt(a) : a 2 A} are negatively correlated
from the property of RRS. Let ⇣̃t(a) := µ+

t (a)Yt(a), a 2 A. Note that we have E[⇣̃t(a)|Gt�1] = µ+

t (a)xt(a). Define

⇣t(a) :=
1 + µ+

t (a)Yt(a)� µ+

t (a)xt(a)

2
.

From Claim 6.5, we have that {⇣t(a) : a 2 A} conditioned on Gt�1 satisfy (2.1). Further, E[⇣t(a)|Gt�1] =
1

2
. Therefore,

the family {⇣t(a) : t 2 [T], a 2 A} satisfies the assumptions in Theorem 6.6 and hence satisfies Eq. 6.2 for some absolute
constant c. Plugging back the ⇣̃t(a)’s, we obtain an upper-tail concentration bound:

Pr

h
1

nT (
PT

t=1

P
a2A ⇣̃t(a)� µ+

t (a)xt(a)) � ⌘
i
 c · e�2nT⌘2

.

Karthik Abinav Sankararaman, Aleksandrs Slivkins

To obtain a corresponding concentration bound for the lower tail, we apply a similar argument to

⇣ 0t(a) =
1 + µ+

t (a)xt(a)� ⇣̃t(a)

2
.

Once again from Claim 6.5, we have that {⇣ 0t(a) : a 2 A} conditioned on Gt�1 satisfy (2.1). The family {⇣ 0t(a) : t 2
[T], a 2 A} satisfies the assumptions in Theorem 6.6 and hence satisfies Eq. 6.2. Plugging back the ⇣̃t(a)’s, we obtain a
lower-tail concentration bound:

Pr

h
1

nT (
PT

t=1

P
a2A µ+

t (a)xt(a)� ⇣̃t(a)) � ⌘
i
 c · e�2nT⌘2

.

Combining these two we have,

Pr

h
1

nT |
PT

t=1

P
a2A µ+

t (a)Yt(a)� µ+

t (a)xt(a)| � ⌘
i
 2 c · e�2nT⌘2

. (6.11)

Hence setting ⌘ =
p

↵
nT , we obtain Eq. 6.10 with probability at least 1� e�⌦(↵).

Combining Eq. (6.8), (6.9) and (6.10) Let us denote H :=

qP
t2[T]

µ+
t · xt. Adding the three equations we get

|
P

t2[T]
rt �H2| 

p
↵H + ↵+

p
↵nH +O(↵n) +

p
↵nT (6.12)

Rearranging and solving for H , we have

H 
qP

t2[T]
rt +O(

p
↵n) + (↵nT)1/4

Plugging this back into Eq. 6.12, we get Lemma 6.9.

6.3.2 “Clean event” for resource consumption

We define a similar “clean event” for consumption of each resource j. By a slight abuse of notation, for each round t
let Ct(j) = (Ct(a, j) : a 2 A) be the vector of realized consumption of resource j. Let �t(j) denote algorithm’s
consumption for resource j at round t (i.e., �t(j) = Ct(j) · Yt).
Lemma 6.10. Consider SemiBwK without stopping. Then with probability at least 1� nT e�⌦(↵):

8j 2 [d] |
P

t2[T]
�t(j)�

P
t2[T]

C�
t (j) · xt| 

p
↵nB✏ + ↵n+

p
↵nT .

Proof. The proof is similar to Lemma 6.9. We will split the proof into following three equations. Fix an arbitrary resource
j 2 [d]. With probability at least 1� nTe�⌦(↵) the following holds:

|
P

tT �t(j)�
P

tT C(j) · Yt|  3nT Rad

⇣
1

nT

P
tT C(j) · Yt , nT

⌘
. (6.13)

|
P

tT C(j) · Yt �C�
t (j) · Yt|  12

r
↵n

⇣P
tT C(j) · Yt

⌘
+ 12

p
↵n+ 12↵n. (6.14)

|
P

tT C�
t (j) · Yt �C�

t (j) · xt| 
p
↵nT . (6.15)

Using the parts 6.13, 6.14 and 6.15 we can find an upper bound on
qP

tT Ct(j) · Yt. Hence, combining Lemmas 6.13,
6.14 and 6.15 with this bound and taking an Union Bound over all the resources, we get Lemma 6.10.

Proof of Eq. 6.13. We have that {Ct(a, j) : a 2 A} is a set of independent random variables over a probability spacee C⌦.
Note that, EC⌦ Ct(a, j)Yt(a) = C(a, j)Yt(a). Hence, we can invoke Theorem 6.8 on independent random variables to
get with probability 1� nTe�⌦(↵)

Combinatorial Semi-Bandits with Knapsacks

|
P

tT �t(j)�
P

tT C(j) · Yt|  3nT Rad

⇣
1

nT

P
tT C(j) · Yt , nT

⌘
.

Proof of Eq. 6.14. This is very similar to proof of 6.9 and we will skip the repetitive parts. Hence, we have with probability
1� nTe�⌦(↵)

|
P

tT C(j) · Yt �C�
t (j) · Yt|  12

p
↵n(C(j) · (NT + 1)) + 12↵n

 12

r
↵n

⇣P
tT C(j) · Yt

⌘
+ 12

p
↵n+ 12↵n.

Proof of Eq. 6.15. Recall that for each round t and each resource j, the LCB vector C�
t (j) is determined by the random

variables Gt�1 = {Yt0 : 8t0 < t}. Similar to the proof of Eq. 6.10, random variables {Yt(a) : a 2 A} obtained
from the RRS are negatively correlated given Gt�1. As before define ⇣̃t(a) = C�

t (a)Yt(a), a 2 A. We have that
E[⇣t(a) | Gt�1] = C�

t (a)xt(a).

By Claim 6.5, random variables

⇣t(a) =
1 + ⇣̃t(a)� C�

t (a)xt(a)

2
, a 2 A

satisfy (2.1), given Gt�1. We conclude that family {⇣t(a) : t 2 [T], a 2 A} satisfies the assumptions in Theorem 6.6, and
therefore satisfies Eq. 6.2 for some absolute constant c. Therefore, we obtain an upper-tail concentration bound for ⇣̃t(a)’s:

Pr

h
1

nT (
PT

t=1

P
a2A ⇣̃t(a)� C�

t (a)xt(a)) � ⌘
i
 c · e�2nT⌘2

.

To obtain a corresponding concentration bound for the lower tail, we apply a similar argument to

⇣ 0t(a) =
1 + C�

t (a)xt(a)� ⇣̃t(a)

2
.

Once again, invoking Claim 6.5 we have that {⇣ 0t(a) : a 2 A} conditioned on Gt�1 satisfy (2.1). Thus, family {⇣t(a) : t 2
[T], a 2 A} satisfies the assumptions in Theorem 6.6, and therefore satisfies Eq. 6.2. We obtain:

Pr

h
1

nT (
PT

t=1

P
a2A C�

t (a)xt(a)� ⇣̃t(a)) � ⌘
i
 c · e�2nT⌘2

.

Combing the two tails we have,

Pr

h
1

nT |
PT

t=1

P
a2A C�

t (a)Yt(a)� C�
t (a)xt(a)| � ⌘

i
 2 c · e�2nT⌘2

. (6.16)

Once again, setting ⌘ =
p

↵
nT , we obtain Eq. 6.15 with probability at least 1� e�⌦(↵).

Proof of Lemma 6.10. Denote G =

qP
tT C(j) · Yt. From Equation 6.13, 6.14 and 6.15, we have that G2 �

2⌦(
p
↵n)G 

P
tT C�

t (j) · xt + O(↵n) +
p
↵nT . Note that

P
tT C�

t (j) · xt  B✏. Hence, G2 � 2⌦(
p
↵n)G 

B✏ + O(↵n) +
p
↵nT . Hence, re-arranging this gives us G 

p
B✏ + O(

p
↵n) + (↵nT)1/4. Plugging this back in

Equations 6.13, 6.14 and 6.15, we get Lemma 6.10.

Karthik Abinav Sankararaman, Aleksandrs Slivkins

6.4 Putting it all together

Similar to Agrawal and Devanur [2014b], we will handle the hard constraint on budget, by choosing an appropriate value
of ✏. We then combine the above Lemma on ”rewards” clean event to compare the reward of the algorithm with that of the
optimal value of LP to obtain the regret bound in Theorem 6.1. Additionally, we use the Lemma on ”consumption” clean
event to argue that the algorithm doesn’t exhaust the resource budget before round T . Formally, consider the following.

Recall that from Lemma 6.2, we have OPTALG, � 1

T (1 � ✏)OPT. Let us define the performance of the algorithm as
ALG =

P
tT rt. From Lemma 6.9, that with probability at least 1� ndT e�⌦(↵)

ALG � (1� ✏)OPT�O(
p
↵nALG)�O(↵n)�

p
↵nT

� (1� ✏)OPT�O(
p
↵nOPT)�O(↵n)�

p
↵nT (since ALG  OPT).

Choosing ✏ =
p

↵n
B +

↵n
B +

p
↵nT
B and using the assumption that B > 3(↵n+

p
↵nT), we derive Eq. 6.1. For any given

�, we set ↵ = ⌦(log(
ndT
�)) to obtain a success probability of at least 1� �.

Now we will argue that the algorithm does not exhaust the resource budget before round T with probability at least
1� ndT e�⌦(↵). Note that for every resource j 2 [d],

X

tT

C�
t (j) · xt  (1� ✏)B.

Hence, combining this with Lemma 6.10, we have
P

tT Ct(j)Yt  (1� ✏)B + ✏B  B.

7 Details for Numerical Simulations

Figure 3: Experimental Results for Uniform matroid (left plots) and Partition matroid (right plots) on independent (upper)
and correlated (lower) instances for n = 26. Here OPT denotes LPOPT.

Details of heuristic implementation of linCBwK. We now briefly describe the heuristic we use to simulate the linCBwK
algorithm. Note that even though the per-time-step running time of linCBwK is reasonable, it takes a significant time when
we want to perform simulations for many time-steps. The time-consuming step in the linCBwK algorithm is the solution to

Combinatorial Semi-Bandits with Knapsacks

a convex program for computing the optimistic estimates (namely µ̃t and W̃t). Hence, the heuristic gives a faster way to
obtain this estimate. We sample multiple times from a multi-variate Gaussian with mean µ̂ and covariance Mt (to obtain
estimate µ̃t) and with mean ŵtj and covariance M t (to obtain estimate w̃tj for each resource j). We use these samples
to compute the objective to choose the action at time-step t. For each sample, we compute the best action based on the
objective in linCBwK. We finally choose the action that occurs majority number of times in these samples. The number of
samples we choose is set to 30.

Language Details of algorithms. All algorithms except linCBwK were implemented in Python. The linCBwK algorithm
was implemented in MATLAB. This difference is crucial when we compare running times since language construct can
speed-up or slow down algorithms in practice. However, it is known that 10 for matrix operations commonly encountered
in engineering and statistics, MATLAB implementations runs several orders of magnitude faster than the corresponding
python implementation. Since linCBwK is the slowest of the four algorithms, our comparison of running times across
languages is justified.

Further results. We now show additional plots omitted in the main section in Figures 3 and 4. In particular we show the
variation of rewards of various algorithms when n = 6 and n = 26 on problem instances to be defined. As before, our
algorithm has the best performance across the algorithms in all settings.

Figure 4: Experimental Results for Uniform matroid (left plots) and partition matroid (right plots) on independent (upper)
and correlated (lower) instances for n = 6.

The first family was inspired by the dynamic assortment application. As in dynamic assortment, we have n products, and for
each product i there is an atom i and a resource i. The (fixed) price for each product is generated as an independent sample
from U[0,1], a uniform distribution on [0, 1]. At each round, we sample the buyers’s valuation from U[0,1], independently
for each product. If the valuation for a given product is greater than the price, one item of this product is sold (and then
the reward for atom i is the price, and consumption of resource i is 1). Else, we do something different from dynamic
assortment: we set reward for atom i and consumption for resource i to be the buyer’s valuation.

The second family was inspired by the dynamic pricing application with two products. We have n/2 allowed prices,
uniformly spaced in the [0, 1] interval. Recall that atoms correspond to price-product pairs, for the total of n atoms. In
each round t, the valuation vt,i for each product i is chosen independently from a normal distribution N (v0i , 1) truncated
on [0, 1]. The mean valuation v0i is drawn (once for all rounds) from U[0,1]. If the valuation for a given product i is greater

10https://www.mathworks.com/products/matlab/matlab-vs-python.html

Karthik Abinav Sankararaman, Aleksandrs Slivkins

than the offered price p, one item of this product is sold (and then reward for the corresponding atom (p, i) is the price, and
consumption of product i is 1). If there is no sale for this product, we do something different from dynamic pricing. For
each atom (p, i), if p < vt,i then the reward for atom (p, i) is drawn independently from U[0,1] and resource consumption
is 1; else, reward is 0 and consumption is .3. While dynamic assortment is modeled with a uniform matroid, and dynamic
pricing is modeled with a partition matroid, we tried both matroids on each family.

A Proof of Theorem in Preliminaries

Theorem 2.1 follows easily from Theorem 3.3 in Impagliazzo and Kabanets [2010].
Theorem (Theorem 2.1). Let X = (X1, X2, . . . , Xm) denote a collection of random variables which take values in [0, 1],
and let X :=

1

m

Pm
i=1

Xi be their average. Suppose X satisfies (2.3), i.e., E[
Q

i2S Xi]  (
1

2
)
|S| for every S ✓ [m]. Then

for some absolute constant c,

Pr[X � 1

2
+ ⌘]  c · e�2m⌘2

(8⌘ > 0). (A.1)

Proof. Fix ⌘ > 0. From Theorem 3.3 in Impagliazzo and Kabanets [2010], we have that

Pr[X � 1

2
+ ⌘]  c · e�mDKL(1/2+⌘ k 1/2),

where DKL(· k ·) denotes KL-divergence, so that

DKL(
1

2
+ ⌘ k 1

2
) = (

1

2
+ ⌘) log(1 + 2⌘) + (

1

2
� ⌘) log(1� 2⌘). (A.2)

From Pinsker’s inequality we have, DKL(1/2 + ⌘ k 1/2) � 2⌘2, which implies (A.1).

B Matroid constraints

To make this paper more self-contained, we provide more background on matroid constraints and special cases thereof.

Recall that in SemiBwK, we have a finite ground set whose elements are called “atoms”, and a family F of “feasible subsets”
of the ground set which are the actions. To be consistent with the literature on matroids, the ground set will be denoted E.
Family F of subsets of E is called a matroid if it satisfies the following properties:

• Empty set: The empty set � is present in F

• Hereditary property: For two subsets X,Y ✓ E such that X ✓ Y , we have that

Y 2 F =) X 2 F

• Exchange property: For X,Y 2 F and |X| > |Y |, we have that

9e 2 X \ Y : Y [{e} 2 F

Matroids are linearizable, i.e., the convex hull of F forms a polytope in RE . (Here subsets of F are intepreted as binary
vectors in RE .) In other words, there exists a set of linear constraints whose set of feasible integral solutions is F . In fact,
the convex hull of F , a.k.a. the matroid polytope, can be represented via the following linear system:

x(S)  rank(S) 8S ✓ E
xe 2 [0, 1]E 8e 2 E.

(LP-Matroid)

Here x(S) :=
P

e2S xe, and rank(S) = max{|Y | : Y ✓ S, Y 2 F} is the “rank function” for F .

F is indeed the set of all feasible integral solutions of the above system. This is a standard fact in combinatorial optimiza-
tion, e.g., see Theorem 40.2 and its corollaries in Schrijver [2002].

We will now describe some well-studied special cases of matroids. That they indeed are special cases of matroids is
well-known, we will not present the corresponding proofs here.

Combinatorial Semi-Bandits with Knapsacks

In all LPs presented below, we have variables xe for each arom e 2 E, and we use shorthand x(S) :=
P

e2S xe for S ⇢ E.

Cardinality constraints. Cardinality constraint is defined as follows: a subset S of atoms belongs to F if and only if
|S|  K for some fixed K. This is perhaps the simplest constraint that our results are applicable to. In the context of
SemiBwK, each action selects at most K atoms.

The corresponding induced polytope is as follows:

x(E)  K
xe 2 [0, 1] 8e 2 E.

(LP-Cardinality)

Partition matroid constraints. A generalization of cardinality constraints, called partition matroid constraints, is defined
as follows. Suppose we have a collection B1 , . . . , Bk of disjoint subsets of E, and numbers d1 , . . . , dk. A subset S of
atoms belongs to F if and only if |S \ Bi|  di for every i. Partition matroid constraints appear in several applications
of SemiBwK such as dynamic pricing, adjusting repeated auctions, and repeated bidding. In these applications, each action
selects one price/bid for each offered product. Also, partition matroid constraints can model clusters of mutually exclusive
products in dynamic assortment application.

The induced polytope is as follows:

x(Bi)  di 8i 2 [k]
xe 2 [0, 1] 8e 2 E.

(LP-PartitionMatroid)

Spanning tree constraints. Spanning tree constraints describe spanning trees in a given undirected graph G = (V,E),
where the atoms correspond to edges in the graph. A spanning tree in G is a subset E0 ⇢ E of edges such that (V,E0

) is a
tree. Action set F consists of all spanning trees of G.

The induced polytope is as follows:

x(ES)  |S|� 1 8S ✓ V
x(EV) = |V |� 1

xe 2 [0, 1] 8e 2 E.
(LP-SpanningTree)

Here, ES denotes the edge set in subgraph induced by node set S ⇢ V .

