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Abstract

Many recommendation algorithms rely on
user data to generate recommendations.
However, these recommendations also affect
the data obtained from future users. This
work aims to understand the effects of this
dynamic interaction. We propose a simple
model where users with heterogeneous prefer-
ences arrive over time. Based on this model,
we prove that naive estimators, i.e. those
which ignore this feedback loop, are not con-
sistent. We show that consistent estimators
are efficient in the presence of myopic agents.
Our results are validated using extensive sim-
ulations.

1 INTRODUCTION

We find ourselves surrounded by recommendations
that help us make better decisions. However, relatively
little work has been devoted to the understanding of
the dynamics of such systems caused by the interac-
tion with users. This work aims to understand the
dynamics that arise when users combine the recom-
mendations with their own preference when making a
decision.

For example, a user of Netflix uses their recommenda-
tions to decide what movie to watch. However, this
user also has her own beliefs about movies, e.g. based
on artwork, synopsis, actors, recommendations by
friends, etc. The user thus combines the suggestions
from Netflix with her own preferences to decide what
movie to watch. Netflix captures data on the out-
come to improve its recommendations to future users.
Of course, this pattern is not unique to Netflix, but
observed more broadly; across all platforms that use
recommendations.
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A first requirement for any estimator is consistency;
however it is not clear that in the presence of human
interaction naive estimators are consistent. Indeed, we
show that simple estimators can easily be fooled by the
selection effect of the users. We propose to measure
performance by adapting the notion of regret from the
multi-armed bandit literature. Using this metric, we
show that naive estimators suffer linear regret; even
with ‘infinite data’ the performance per time step is
bounded away from the optimum.

Using the notion of regret is useful as it also allows
us to quantify the efficiency of estimators. New users
and items with little to no data constantly arrive and
thus a recommendation system is always in a state of
learning. It is therefore important that the system
learn efficiently from data. While this might sound
like the well-known cold-start problem, that is not the
focus of this work; Rather than providing recommen-
dation solutions for users in the absence of data, we
focus on quantifying how quickly an algorithm obtains
enough data to make good recommendations. This is
more akin to the social learning and incentivizing ex-
ploration literature than work on the cold-start prob-
lem.

1.1 Main results

From a technical standpoint, this paper provides
a dynamical model that captures the dynamics of
users with heterogeneous preferences, while abstract-
ing away the specifics of recommendation algorithms.
In the first part of this work, we show that there is a
severe selection bias problem that leads to linear re-
gret. Second, we show that when the algorithm uses
unbiased estimates for items, ‘free’ exploration occurs
and we recover the familiar logarithmic regret bound.
This is important because inducing agents to explore
is difficult from both a statistical and strategic point
of view. We validate our claims using simulations with
feature-based and low-rank methods.

It is important to note that the focus of this work is
to provide a simplified framework that allows us to
reason about the dynamic aspects of recommendation
systems. We do not claim that the model nor the as-
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sumptions are a perfect reflection of reality. Instead,
we believe that the model we propose provides an ex-
cellent lens to better understand vital aspects of rec-
ommendation systems.

1.2 Related work

This work roughly intersects with three separate fields
of study. Recommendation systems [Adomavicius and
Tuzhilin), [2005] have attracted much attention. In par-
ticular, much research has focused on new methods
that treat the data as fixed, rather than dynamic.
There has been less work on selection bias, which was
first demonstrated by Marlin| [2003], and subsequent
work [Amatriain et al, 2009, Marlin et al., 2007, [Steckl,
2010]. Rather than modeling user behavior directly,
they impose the statistical assumption of a covariance
shift; the distribution of observed ratings is not al-
tered by conditioning on the selection event, but five
star ratings are more likely to be observed. More re-
cently, [Schnabel et al.|[2016] and |Joachims et al. [2017]
link the bias from covariance shifts to recent advances
in causal inference. Mackey et al.| [2010] combine ma-
trix factorization and latent factor models to capture
heterogeneity in interactions and context.

The different approach of this work is reminiscent of
the work on social learning [Chamleyl [2004} |Smith and
Sgrensen, 2000], where agents learn about the state of
the world by combining their private signals with ob-
servations of actions (but not necessarily outcomes) of
others. The work of [Ifrach et al|[2014] is closest re-
lated to our setup. They discuss how consumer reviews
converge on the quality of a product, given diversity
of preferences under a reasonable price assumption.
However, the work in social learning focuses on users
interacting with a single item. This seemingly minor
minor difference leads to completely different dynam-
ics.

Finally, we can relate our work on exploration to
the multi-armed bandit literature [Bubeck and Cesa-
Bianchi, 2012]. In particular, there has been prior
work on human interaction with multi-armed bandit
algorithms: for example, how a system can optimally
induce myopic agents to explore [Kremer et all 2013]
by using payments [Frazier et al. |2014] or by the way
the system disseminates information [Papanastasiou
et al.| [2014] [Mansour et al., 2015 2016]. Similar to
those works, we use the regret framework to analyse a
system with interacting agents. Because in our model
agents have heterogeneous preferences, we show that
agents do not need to be incentivized to explore. Re-
cent work by Bastani et al.| [2017], |Qiang and Bay-
ati| [2016] consider natural exploration in contextual
bandit problems, and show that a modified greedy
algorithm performs well. While their motivation is

different, the results are similar to ours. There has
also been work on ‘free exploration’ in auction envi-
ronments [Hummel and McAfee| 2014].

1.3 Organization

In the next section, we introduce our model. In Sec-
tions [3] and [d we focus on the issues of consistency and
efficiency, respectively. We illustrate our results with
simulations in Section [5] before concluding.

2 MODELING
HUMAN-ALGORITHM
INTERACTION

In this section, we propose a model for the interaction
between the recommendation system (platform) and
users (agents). Each user selects one of the items the
platform recommends, and reports their experience to
the platform by providing a rating as feedback. The
platform uses this feedback to update the recommen-
dations for the next user.

More formally, we assume there are K items, labeled
i =1,...,K, and each item has a distinct, but un-
known, quality @; € R. This aspect models the ver-
tical differentiation between items and it is the task
of the platform to estimate these qualities. For nota-
tional convenience, we assume Q1 > Q2 > ... > Qk.
At every time step t = 1,...,T a new user arrives
and selects one of the K items. To do so, the user
receives a private preference signal 6;; ~ F; for each
item, drawn from a preference distribution F; which
we make precise later. The value of item ¢ for user ¢ is

Vie = Qi + 0 + et (1)

where €;; is additional noise drawn independently from
a noise distribution F with mean 0 and finite variance
02 < o0o. To aid the agents, the platform provides
a recommendation score s;;, aggregating the feedback
from previous agents. The agent uses her own prefer-
ences, along with the score, to select item a; according
to

a; = arg max Sy + 0. (2)
1

Hence, we make the assumption that the agent is
boundedly rational and uses s;; as a surrogate for the
quality. Abusing notation, we write

V;f = Vatt = Qat + eatt + East (3)

for the value of the chosen item for agent ¢. After
the agent selects item a; and observes the value Vi,
the platform queries for feedback W; from the user.
For example the platform can ask the user to provide
the value of the item as a rating, in which case W; =
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V;. Note that the private preferences 6; of the agent
remain hidden. The platform uses this feedback to
give recommendations to future users. In particular,
we require s;; to be measurable with respect to past
feedback, that is o{a,, W, : 7 < t}.

We measure the performance of a recommendation sys-
tem in terms of (pseudo-)regret:

T

Ry = Zm?X(Qi +0it) = (Qa, +0a,t),  (4)

t=1

which sums the difference between the expected value
of the best item and the expected value of the selected
itemﬂ We note that if scores s; = Q; for all ¢, the
regret of such platform would be 0, as each user selects
her optimal action using equation .

2.1 Preferences, values and personalization

We use this section to expand on the motivation of
the proposed model. The value for item i at time ¢
consists of three parts (see equation ) First, the
intrinsic quality @; can be seen as the mean quality
across users. In our theoretical analysis we treat this
as a constant to be estimated such that we are able
to disentangle the model fitting from the dynamics of
interaction. In this simple setting, one should view it
as a vertical differentiator between items. Taking ho-
tels as example, it could model quality of service and
cleanliness, where a common ranking across agents is
sensible. The intrinsic qualities (); can be replaced by
more complicated models, for example based on fea-
ture based regression methods, or matrix factorization
methods. Indeed, in Section we provide simu-
lation results where we replace Q); with a low rank
matrix factorization model.

The second term in the value equation, 6;;, models
horizontal differentiation across agents. In our sim-
plified model agents only arrive once, and thus this
also covers different contexts. For example, one trav-
eler prefers a hotel on the waterfront, while another
prefers a hotel downtown, and yet a third prefers stay-
ing close to the convention center. While these hypo-
thetical hotels could have the same quality, the value
for users differs, in ways known to the user. However,
the intrinsic quality of these properties are unknown
to these users.

All in all, the value of item ¢ for agent ¢ is drawn from
a distribution with mean @;, and where the variance
consists of a part that is known to the user (6;;) and a
part that is unknown to both platform and user (g;;).

! Unlike the traditional bandit setting, there is no sin-
gle best item. Rather, different users might have different
optimal items.

In section |5 we investigate how well the theoretical
results carry over to more general models.

One could argue that personalization methods (i.e. re-
placing @ with more sophisticated models) supersede
the need for idiosyncratic preferences 6;;, as these pref-
erences can be captured by those models. However, we
argue that in most cases this factor cannot be elimi-
nated. Every recommendation system is constrained
in terms of the quantity and quality of the data it is
based on. First, a user only interacts with a system so
often, and that limits the amount of personalization
that models can achieve. Second, recommendation
systems often have access to only weak features, and
some aspects of user preferences and contexts, such as
taste or style, can be difficult to capture. Together,
these constraints make it difficult to fully model users
preferences, hence the need to explicitly model the un-
observed preferences to get a deeper understanding of
the dynamics of recommendations systems.

2.2 Incentives

We note that the agents in our model are boundedly
rational: their behavior is not optimal, and in par-
ticular ignores the design of the platform. Experi-
mentally, there has been abundant evidence of human
behavior that is not rational |Camerer, 1998, Kahne-
man, 2003]. Simple heuristics of user behavior have
been used by others in the social learning commu-
nity. Examples include learning about technologies
from word-of-mouth interactions [Ellison and Fuden-
berg, [1993], [1995] and modeling persuasion in social
networks |[Demarzo et al [2003]. The combination of
machine learning and mechanism design with bound-
edly rational agents is explored by |Liu et al.|[2015].

The behavior of the user in our model implicitly relies
on three assumptions:

1. The user is naive; she beliefs the scores supplied
by the platform are unbiased estimates of the true
quality.

2. The user is myopic; she selects the item that seems
best for her.

3. The user has incentives to give honest feedback.

The first assumption seems unrealistic if the platform
abuses this power to dictate exploration, which does
not align with the myopic behavior. However, in Sec-
tion [4 we show that there is no need for such aggresive
exploration from the platform to obtain order-optimal
performance. We also note that if the platform out-
puts the true qualities @;, then the selection rule ([2)
is optimal for a myopic agent. Finally, it is not obvi-
ous why a myopic user would leave feedback. While
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we do not explicitly model returning users, we argue
that in general a user is motivated to leave feedback
because it leads to better recommendations for her in
the future.

3 CONSISTENCY

In this section, we analyse the performance of stan-
dard algorithms, that is, scoring processes that do not
take into account that agents have private preferences,
and base the scores on empirical averages. This does
include algorithms that trade-off exploration and ex-
ploitation, such as variants of UCB [Auer et al. [2002]
and Thompson Sampling |[Russo and Roy, [2016]. We
focus on the Bernoulli preferences model, though in
Section [f] we empirically demonstrate that different
preference distributions lead to similar outcomes.

First we define the set of agents before time ¢ that have
selected item i by

Si={r<t:a, =i} (5)

We also define Vj; to denote the empirical average of
item ¢ up to time ¢:

_ 1
Vie = —— V: 6

TESt

where we use V;; = 0 when S;; = (. We want to show
that the system suffers linear regret when the platform
uses any scoring mechanism for which scores converge
to the empirical average of the observed values. This
means that the system never converges to an optimal
policy; rather a constant fraction of users are misled
into perpetuity. To make this rigorous, we define the
notion of mean-converging scoring process.

Definition 1. A scoring process that outputs scores
sit for item i at time t is mean-converging if

1. sit is a function of {V; : 7 € Sy} and t.
2. sy — Vi almost surely if lim inf, % > 0 almost
surely.

In words, the score only depends on the observed out-
comes for this particular item, and if we observe a
linear number of selections of arm 4, then the score
converges to the mean outcome. Trivially, this includes
using the average itself as score, s;; = Vj;, but this def-
inition also includes well known methods that carefully
balance exploitation with exploration, such as versions
of UCB and Thompson Sampling.

From the previous section, we know that, ideally, the
scores supplied to the user converge to the quality of

the item, s;; — @;, as more users select item i. We
say that the scores are biased if this is not the case:

sit 7+ Qi as  [Si| — oo. (7)

The next proposition shows that mean-converging
scoring processes lead to linear regret, because these
scores are generally biased. We only show this result
for when preferences are drawn from Bernoulli distri-
butions as this simplifies the analysis significantly. In
Section [5| simulations show that linear regret is ob-
served under a variety of preference distributions. Un-
der the Bernoulli model, it is needed that the gap be-
tween qualities is ‘small’, though we show that this
condition is rather weak.

Proposition 1. When 6;; ~ Bernoulli(p) for all i,t,

of
(1-p)~
A= — < 8
Q1— Q2 A=K +p (8)
and s;; 1S mean-converging, then
lim sup B >c (9)
t—o00

for some ¢ > 0.

The proof of this proposition can be found in the sup-
plemental material. The intuition behind the result is
that the best ranked item is selected by users that do
not necessarily like it that much, while other items are
only selected by users who really love it. Therefore,
the ratings of the best ranked item suffers relative to
others.

We note that for K = 100 and p = 1/50, the con-
dition requires A < 0.86. More generally, in the rel-

evant regime where p < %, the condition is sat-

isfied if A < 0.7 for all K. We also note that the
linear regret we obtain is not caused by the usual ex-
ploration/exploitation trade-off, but rather the esti-
mators being biased.

There is no bias result for general preference distribu-
tions as it is possible to cherry pick distributions in
such a way that biases cancel each other out exactly.
Furthermore, the magnitude of the problem depends
crucially on the variance in user preference relative to
the differences in qualitiesﬂ However, in Section We
provide simulations with a variety of preference distri-
butions that suggest that bias is not an artifact of our
assumptions.

3.1 TUnbiased estimates

Naturally, a first attempt to improve the linear regret
is aimed at obtaining unbiased versions of the naive
averaging. We now sketch a few such approaches.

2 In the limiting scenario of no variance in preferences,
we already know that there is no bias either.
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3.1.1 Randomization

Researchers can avoid selection bias in experimental
studies by randomizing treatments, and we can employ
the same approach here. Instead of the user choos-
ing an action, the platform assigns matches between
users and items. Note that pure randomization is not
needed, user ratings are unbiased as long as the selec-
tion of items is independent from private preferences.

Just like randomized control studies, this approach is
often infeasible or prohibitively expensive, e.g. a plat-
form cannot force the user to select a certain hotel or
restaurant. However, small scale user experimentation
can potentially inform the platform on the magnitude
and effects of idiosyncratic preferences and the bias it
induces.

3.1.2 Algorithmic approach

Another option is to consider algorithmic approaches
to obtain consistent estimators. In the case of
Bernoulli preferences, it is possible to obtain unbiased
estimates from data. However, this approach does not
generalize to other preference distributions, let alone
to the case where we do not know the underlying pref-
erence distributions.

3.1.3 Changing the feedback model

Given the difficulty of debiasing feedback algorithmi-
cally, we briefly discuss a third alternative. The tradi-
tional type of question ‘How would you rate this item?’
asks for an absolute measure of satisfaction, which cor-
responds to directly probing for V; in our model. If we
ask how the chosen item compares to the expectation,
we ask for a relative measure of feedback, approximat-
ing Vi —(8a,t+0a,t). An example of such prompt could
be ‘How does this item compare to your expectation?’
This way, we can uncover an unbiased estimate of @, .
Importantly, it does not require any distributional as-
sumptions on the form of the preferences. Whether
such relative feedback works in practice would require
a thorough empirical study, which is beyond the scope
of this work. We also note that this approach does not
work when platforms collect implicit feedback.

4 EFFICIENCY

From the previous section we know that naive scoring
mechanisms are inconsistent and lead to linear regret.
We now focus on the efficiency of consistent estimators,
and we assume we have access to unbiased feedback
from now on. But, this is not necessarily sufficient to
guarantee good performance. The multi-armed ban-
dit literature suggests that algorithms with small re-
gret require a careful balance between exploration and

exploitation.

In particular, that means that the system needs to
obtain data on every item in order to provide useful
scores to the users. However, myopic agents have no
interest in assisting the platform with exploration. In
this section we address the problem of exploration in
the proposed model. As opposed to the research men-
tioned in the introduction, we deal with agents with
heterogeneous preferences. It seems natural that these
heterogeneous agents help the system explore, but it is
not obvious to what extent this helps. We show that
because of this diversity in preferences, the free explo-
ration leads to optimal performance (up to constants);
we recover the standard logarithmic regret bound from
the bandit literature. This means that there is little
need for a platform to implement a complicated ex-
ploration strategy, and incentives naturally align much
better than in the settings of previous work.

4.1 Formal result

We assume the qualities (); are bounded, and without
loss of generality we can assume they are bounded in
[0, 1], and we assume access to unbiased feedback from
the user. That is, the feedback at time ¢ for chosen
item i; is 1715 = @, +¢:. However, we no longer require
that private preference distributions are Bernoulli. Let

Vit denote the average of the values observed of item
i by time t

_ 1 .
| itl TESt
where S;; = {7 < t : a; = i}. We now consider

the scoring algorithm that clips the value onto [0, 1]:
sit = max (0, min(1, V;4)).

Then, if the private preferences have sufficiently large
variance, made precise in the theorem statement, then
exploration is guaranteed and the platform suffers log-
arithmic regret. Let A, be the smallest gap in qual-
ities Amin = minm‘ |Qz — Q]|

The following result shows that empirical averaging is
enough to get an order optimal (pseudo)-regret bound
with respect to the total number of agents T

Proposition 2. If for all i, F; are such that P(0;; >
1) >+ and P(0;y <0) >~ Then

1 2
E[regret(T)] < <A6U. + Amin) K

n 32a02K(10g(T);210%Am1n) +log(2)) (11)

min

where C' = /K1,

The proof can be found in the supplement. The main
idea is that we can show every arm is chosen suffi-
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ciently often initially, and then concentration inequal-
ities ensure good performance after an initial learning
phase.

Corollary 3. Suppose F; is a symmetric distribution
around 0 such that P(0;; > 1) > =, then the theorem
applies with C' > ~217 K.

Also note that the theorem applies for Bernoulli pref-
erences, where C' = p(1—p)®¥~1. The small value of C
leads to a large leading constant. Simulations suggest
that performance is much better in practice.

4.2 Remarks

The main take-away from this result is not so much the
specific bound, but rather the practical insight that
it, and its proof, yield. The intuition is that initially
estimates of quality are poor. Therefore, it takes some
time and luck for users with idiosyncratic preferences
to try these items. As estimates improve, however,
most agents are drawn to their optimal choice. Since
these choices differ across agents, the platform gets to
learn efficiently about all items without incurring a
regret penalty.

The practical consequence of this observation is that to
improve the performance, the designer of a recommen-
dation system should focus on simple ways to make
new items, or more generally items with few observa-
tions, more likely to be chosen. We can achieve this by
highlighting new arrivals. A good example is Netflix,
which clearly displays a ‘Recently Added’ selection.

5 SIMULATIONS

In this section we empirically demonstrate that the
theoretical results derived in the previous sections hold
much more broadly. First, we focus on verifying the
results from our simplified model. Thereafter, we
consider more advanced personalization models using
feature-based and low rank methods, where we inves-
tigate the dynamics with private preferencesﬂ

5.1 Simulations of regret

Before considering more advanced methods, we sim-
ulate our model using different preference distribu-
tions and plot the cumulative regret over time. We
run 50 simulations with 5000 time steps and K = 50
items across four preference distributions with ran-
domly drawn parameters. We then compare biased
and unbiased algorithms based on empirical averages.
Figure [1] shows the cumulative regret paths for each

3 The code to replicate the simulations is publicly avail-
able at https://github.com/schmit/human_interaction.

of these simulations. The qualities were drawn from
the uniform distribution over [0, 1]. For the preference
distributions F; for item i, we used

e : 2log(K
Bernoulli distribution with p; ~ U|0, %]

Normal distribution with p; = 0 and o; ~ U|0, 1].

Exponential distribution with scale A\, ' ~ U0, 1].
Pareto distribution with shape o; ~ U|[2,4].

These are chosen such that the variance in prefer-
ence and qualities is roughly similar. A clear pattern
emerges; In all cases, the (biased) empirical averages
lead to linear regret, not just for the Bernoulli model
covered by Proposition Second, we note the unbi-
ased scores lead to much better results regardless of
the preference distribution, in line with Proposition

Bernoulli preferences
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Figure 1: These plots shows the cumulative regret
plotted against time for both the naive empirical av-
erages in blue, and the unbiased averages in orange.

5.2 Personalization methods

We now focus on methods that provide more personal-
ized recommendations. Because estimating such mod-
els is more complicated and computationally intensive,
we simplify the dynamics of our simulations to a two-
staged approach. We then use this approach to ex-
periment with a feature-based and a low-rank approx-
imation approach to personalization based on synthet-
ically generated data.

5.2.1 Two-staged simulations

In our original setup, the platform updates its scoring
rule after every observation. This is impractical when
dealing with more sophisticated models. Instead we
first collect a set of observations using a fixed scor-
ing algorithm (a training set), and fit the scoring al-
gorithm once to this training data. We then use this
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trained algorithm to generate a new set of observations
(a test set), again without updating the algorithm in
between observations. The test set is used to mea-
sure the performance of the fitted algorithm. Instead
of using regret, we measure performance by directly
computing the average rating on the second dataset
generated by our trained algorithm. Note that it is
possible to iterate generating data and fitting models
multiple times before generating a test set.

5.2.2 Ridge regression

In this section we discuss a feature-based model of per-
sonalization where the rating is assumed to be a linear
function of observed covariates.

The model In the feature-based setting, each item
has an unknown parameter vector w; and each user-
item pair has an observed feature vector z;;. The value
of item ¢ for user ¢ then becomes

Vie = Qi + xhw; + 031 + €44 (12)

Furthermore, we also parametrize 6;; in terms of x;,
such that
Osr ~ N (x1b, 09) (13)

where ® is another unknown parameter vector. After
generating the training set using a fixed scoring rule,
we use ridge regression to regress the reported ratings
for each item, which leads to estimates Qi and w; for
efmch item. These are then used as scoring rule: s;; =
Simulation details There are n = 100 items, and
w; € RP where p = 20. We generate Q; ~ N (0,1) and
wij, Wij ~ N(0,1/,/p) independently. The elements of
the feature vectors are generated independently follow-
ing ;j; ~ N(0,1). The error term is drawn according
to ;s ~ N(0,1), and we set gy = 0.1. We generate
10np = 20000 observations.

The training sets are generated using four different
scoring rules:

1. Using the oracle scoring rule: s;; = Q; + xﬁwi,
which leads to perfect recommendations.

2. Using the oracle scoring rule and unbiased ratings
Vit — it

3. Using randomly selected items, hence the user has
no choice.

4. We iterate steps one and two twice, where we first
use randomly selected items, then fit a Ridge re-
gression to estimate the parameters, and use these
to generate the test set: sy = Q; + #5w;.

This last training set allows us to better understand
how the system evolves over time.

Ridge regression Matrix Factorization
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Figure 2:  We compare performances of recommen-
dation systems based on different training data in a
feature-based model on the left and matrix factoriza-
tion on the right. Green corresponds to random se-
lections in the training set, orange to oracle selections
with unbiased feedback, red to the iterated model ini-
tially based on random selections, and blue is based
on biased oracle ratings.

Results The average values of the selected items in the
test set are plotted in the left plot of Figure The
two dotted lines provide useful benchmarks: the top
line shows the performance of the oracle scoring rule,
which upper bounds the performance. The bottom line
shows the performance in the absence of a scoring rule,
that is s;; = 0 for all 4,¢. Finally, note that random
selections lead to an average rating of 0.

We note that the best performing recommendations
are given by the model trained on random data
(green); these are close to the performance of the or-
acle. Unbiased ratings based on the oracle (orange)
perform a bit worse due to a feedback loop. The model
is only trained on ‘good’ selections and this leads to
a degradation of performance. We also see that the
iterated model (red) that was initially trained on ran-
dom selections performs worse than the randomly gen-
erated data, suggesting that the quality deteriorates
over time. Finally, the model trained on oracle data
(blue) performs much worse than all the models, and
does not perform much better than the ‘no-score algo-
rithm’ that does not provide recommendations.

5.2.3 Matrix factorization

In this section we investigate the dynamics of private
preferences that are low rank. We use the same two-
stage approach as before, where we first use a fixed
scoring rule to generate a training set, fit our model,
and use the fitted scoring rule to generate a test set to
measure performance.

The model The low-rank models assumes that the
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value for item i by user j follows the model
Uij =a; + bj + U;-T’Uj + .’E;Ty] —+ €4t (14)

where u; and v; are (hidden) g-dimensional vectors
modeling interaction between user and item, and a;
and b; are terms modeling overall differences between
users and items. Similarly, z; and y; are g-dimensional
vectors that combine the private preference 8;; = acfyj
Note that, unlike in previous settings, here we observe
the same user multiple times. The recommendation
system provides score s;; for user 7 and item j and the
user selects item

argmax s;; + r y; (15)
J

and reports her value V;;. We use alternating least
squares [Koren et al.l [2009] to estimate a, b, u and UE|

Simulation details As in the feature-based simula-
tion, we generate four training sets, one based on an
oracle, one based on an oracle with unbiased ratings,
one based on random selections, and finally an iterated
version of the random selections process, where we fit
a model to the random selections data and use that
model to generate training data.

We simulate 2000 users and 500 items, with rank ¢ =
4. Entries of u,v,x and y are independent Gaussians
with variance 1/q. To reduce variance, the error term
has a small variance, €;; ~ N(0,0.01) and for both
training and test sets each user rates 40 items. We
run alternating least squares with rank 2¢ and varying
regularization.

Results The two dotted lines denote the same bench-
marks as before. Again, we notice that recommenda-
tions trained on random data perform best, but this
time the difference is much more pronounced. The
recommendations based on perfect recommendations
(blue and orange) perform a lot worse. In fact, they
do barely better than not recommending items at all
and having users base their choice solely on their own
preference signals. Part of the degradation in perfor-
mance seems to be caused by a feedback loop; the
observations are not randomly sampled. We also no-
tice a much stronger degradation in performance of
the iterated model (red). This suggests that the dy-
namic nature of recommendation systems affect matrix
factorization methods more severely than the simpler
linear model from the previous section.

6 DISCUSSION

In this work, we introduce a model for analyzing feed-
back in recommendation systems. We propose a sim-

4 We ensure that users do not rate the same item in
both the training and test set.

ple model that explicitly looks at heterogeneous pref-
erences among users of a recommendation system, and
takes the dynamics of learning into account. We then
consider the consistency and efficiency of natural esti-
mators in this model. Recent work has focused on ex-
ploration, or efficiency, with selfish agents. On the one
hand, preferences lead to inconsistent estimators if this
aspect is not taken into account. On the other hand,
we also show that there is an upside to heterogeneous
preferences; they automatically lead to efficiency. Us-
ing simulations, we demonstrate that these phenomena
persist when we use more sophisticated recommenda-
tion methods, such as matrix factorization.

6.1 Future work

There are several directions of further research. Our
simplified model does not capture all aspects of rec-
ommendation systems. The most interesting aspect is
that, in practice, users only observe a limited set of rec-
ommendations, rather than the entire inventory. This
can lead to an inefficiency in the rate of exploration,
and requires further study.

Our model and simulations show that consistency of
models is an issue that is difficult to resolve. We be-
lieve that progress can be made. Theoretically, one
possible avenue is to also model the selection process
directly and combine it with the model for outcomes.
Empirically, by large scale studies that test the effects
of human interaction on estimators.

6.2 The bigger picture

We believe that this work has raised fundamental and
important issues relating the interaction between ma-
chine learning systems and the users interacting with
them. Algorithms not only consume data, but in their
interaction with users also create data, a much more
opaque process but equally vital in designing systems
that achieve the goals we set out to achieve. There is
still a lot of room for improvement by gaining a better
understanding of these dynamics.
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