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A Clipped Estimator

As mentioned in Section 5, the motivating equation
guiding the design of our estimators is Eq. (2). This
equation tells us that even when the statistics of the
samples observed are governed by the distribution of
(X,V, Y ) under expert j, we can infer the mean of
expert k. Such observations were made in [23, 27] in
the context of best arm identification problems. Sup-
pose we observe t samples under expert ⇡

j

. Guided by
Eq. (2), one might come up with the following naive
importance sampled estimator for the mean under ex-
pert k (µ

k

):
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However, it is not possible to derive good confi-
dence interval for the above estimator because even
though the reward variable Y is bounded, the reweigh-
ing term ⇡
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(V
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(s)|X
j

(s))/⇡
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(V
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(s)|X
j

(s)) can be un-
bounded and in some case heavy-tailed. The key idea
is to come up with robust estimators that have good
variance properties. One approach of controlling the
variance of such estimators is to clip that the samples
that are too large. This leads to the following clipped
estimator [27]:
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The clipping makes the estimator biased, however it
helps in controlling the variance. The clipper level ⌘

kj

which depends on the relationship between ⇡
k

and ⇡
j

needs to be set carefully to control the bias-variance
trade-o↵. In [27], it has been shown that if the log-
divergence measure M

kj

(defined in (2)) is bounded,
then a good choice is ⌘

kj

= 2 log(2/✏)M
kj

, if we want
an additive bias of at most ✏(t)/2 (Theorem 3 in [27]).

This idea can be generalized to estimating the mean
of expert k, while observing samples from all the other
experts. This leads to the clipped estimator in Eq. (3).
Lemma 1 provides confidence guarantees for this esti-
mator. The proof of this lemma follows from Theorem
4 in [27], but we include it here for completeness. In
what follows, we will abbreviate E

pj(.)
[.] as E
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[.]. In
this section let µ̂
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Proof of Lemma 1. Note that from Lemma 3 in [27] it
follows that:
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For the sake of analysis, let us consider the rescaled
version µ̄
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k

(t)/t)µ̂
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(t) which can be written
as:
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Since Y
j

(s)  1, we have every random variable in the
sum in (11) bounded by 2 log(2/✏(t))

Let, µ̄
k

= E[µ̄
k

(t)]. Therefore by Cherno↵ bound, we
have the following chain:
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Now we can combine Equations (12) and (10) to ob-
tain:
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Now, we will prove Theorem 1. Note that we will re-
index the experts such that 0 = �

(1)

 �
(2)

 ... 
�

(N)

. Note that throughout this proof U
k

(t), µ̂
k

(t)
and s

k

(t) in Algorithm 1 are defined as in Equa-
tions (3) and (4) respectively. Before we proceed let
us prove some key lemmas.

First we prove that with high enough probability the
upper confidence bound estimate for the optimal ex-
pert k⇤ is greater than the true mean µ⇤.

Lemma 3. We have the following confidence bound
at time t,
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.
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Proof. We have the following chain,
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The last inequality is obtained by setting � = �(t) and
✏(t) = �(t) in Lemma 1.

Next we prove that for a large enough time t, the UCB
estimate of the kth expert is less than that of µ⇤.

Lemma 4. We have the following confidence bound
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Proof. We have the following chain,
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. Finally the concentration bound
in (iii) follows from Lemma 1.

Note that Lemmas 3 and 4 together imply,
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Proof of Theorem 1. Let T
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for k = 2, .., N . The regret of the algorithm can be

bounded as,
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Here, �(x) = x
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B Median of Means Estimator

The median of means estimator is popular for estimat-
ing statistics under heavy-tailed distribution [13, 26].
We shall see that the median of means based estimator
in Eq. (6) has good variance properties, when the chi-
square divergence (Assumption 2) are bounded. Be-
fore proving Lemma 2, we will be establishing some
intermediate results.

Lemma 5. Consider the quantity µ̂r

k

(t) in Eq. (5).
The variance of this quantity is upper bounded as fol-
lows:

Var[µ̂r
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m
.

1

W
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m

where m = bt/l(t)c.



Rajat Sen, Karthikeyan Shanmugam, Sanjay Shakkottai

Proof. We have the following chain,
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Now, we can apply Chebyshev to conclude that for all
r 2 [l(t)],

P
 

|µ̂r

k

(t) � µ
k

|  1

W
k

(t)

r
4

m

!
� 3

4
. (19)

Now we will prove Lemma 2.

Proof of Lemma 2. In light of Eq. (19), the probability

that the median is not within distance 1
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is bounded as,
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This concludes the proof.

Note that we will re-index the experts such that 0 =
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. Note that throughout this
proof U
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(t), µ̂
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(t) and s
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(t) in Algorithm 1 are defined
as in Equations (6) and (7) respectively. Before we
proceed let us prove some key lemmas. Now we prove
lemmas analogous to Lemmas 4 and 3.

Lemma 6. We have the following confidence bound
at time t,
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The proof follows directly from Lemma 2.
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Note that Lemma 7 and 6 together imply that,
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Proof of Theorem 2. Let T
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2, .., N . The regret of the algorithm can be bounded
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as,
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C Instance Dependent Terms

In this section we devote our attention to the instance
dependent terms in Theorems 1 and 2. We will first
prove Corollary 1.

Proof of Corollary 1. We will prove the two state-
ments about the two estimators separately,

(i) Going back to Lemma 4 in the proof of Theorem 1,
we get that,
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the chain leading to Eq. (17) follows with the new defi-
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of Algorithm 1 under estimator (3) is bounded as fol-
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We can analyze the same terms in an alternate man-
ner. From Eq. (17) in the proof of Theorem 1, it fol-
lows that the regret of Algorithm 1 under the clipped
estimator is bounded by,
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Using the definition of T
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in (17) we obtain:
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Combining the above equation with (22) we get the
desired result.

(ii) Theorem 2 immediately implies that
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for the median of means estimator.

We can alternately analyze the regret as follows. From
Eq. (21) in the proof of Theorem 2, it follows that
the regret of Algorithm 1 under the median of means
estimator is bounded by,
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Using the definition of T
2

in (21) we obtain:

R(T )  256�2 log T

�
(2)

⇥ 1

�
(2)

.

Combining the equations above we get the desired re-
sult.

Now we will work under the assumption that the gaps
in the means of the experts are generated according to
the generative model in Corollary 2.
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Proof of Corollary 2. In light of Corollary 1, we just
need to prove that E

p� [�(µµµ)] = O(log N).

Now, we will assume that {�
(i)

} for i = 3, ..., N , are
order statistics of N � 2 i.i.d uniform r.vs over the
interval [�
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, 1].

Note that by Jensen’s we have the following:
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Let X = �
(k)

and Y = �
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for k � 3. The joint
pdf of X, Y is given by,
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Combining this with Eq (23) yields,
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 1 + 2 log N.

D More on Empirical Results

In this section we provide more details about our em-
pirical results under the following sub-headings.

Training of Stochastic Experts: In Algo-
rithm 2, new experts are added before starting a new
batch. These stochastic experts are classifying func-
tions trained using cost-sensitive classification oracles
on data observed so far, which uses the ideas in [8].
The key idea is to reduce the cost-sensitive classifica-
tion problem into importance weighted classification,
which can be solved using binary classifiers by provid-
ing weights to each samples. Suppose a context x is ob-
served and Algorithm 2 chooses an expert ⇡

i

and draws
an arm a from the conditional distribution ⇡

i

(V |x).
Suppose the reward observed is r(a). Then the train-
ing sample (x, a) with a sample weight of r(a)/⇡

i

(a|x)
is added to the dataset for training the next batch
of experts. It has been shown that this importance
weighing yields good classification experts. These clas-
sifiers can provide confidence scores for arms, given a
context and hence can serve as stochastic experts. 4
di↵erent experts are added at the beginning of each
batch, out of which three are trained by XgBoost as
base-classifier while one is trained by logistic regres-
sion. Diversity is maintained among the experts added
by training them on bootstrapped versions of the data
observed so far, and also through selecting di↵erent
hyper-parameters. Note that the parameter selection
scheme is not tuned per dataset, but is held fixed for
all three datasets.

Estimating Divergence Parameters: Both our
divergence metrics M

ij

’s and �
ij

’s can be estimated
from data observed so far, during a run of Algo-
rithm 2. These divergences do not depend on the
arm chosen, but only on the context distribution and
the conditional distributions encoded by the expert.
Therefore, they can be easily estimated from data ob-
served. Suppose, n contexts have been observed so
far {x

1

, ..., x
n

}. We are interested in estimating �
ij

that is the chi-square divergence between ⇡
i

and ⇡
j

.
An estimator for this would be the empirical mean
(1/n) ⇥ P

n

k=1

D
f2(⇡i

(.|x
k

)k⇡
j

(.|x
k

)). Note that the
distribution over the arms ⇡

j

(.|x
k

) is nothing but the
confidence scores observed through evaluation of the
classifying oracle ⇡

j

on the features/context x
i

. In or-
der to be robust, we use the median of means estimator
instead of the simple empirical mean for estimating the
divergences.

Empirical Analysis of Instance Dependent

terms: In this section we empirically validate that
our instance dependent terms in Theorem 1 and 2 are
indeed much smaller compared to corresponding terms
in the UCB-1 [5] regret bounds, even in real problem
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where our generative assumptions do not hold. In or-
der to showcase this, we plot the instance-dependent
term in Theorem 2 which is given by,

N�1X
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1
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along with the corresponding term in UCB-1 bounds
given by,

NX

k=2

1

�
(k)

, (26)

as the number of stochastic experts grow in the stream
dataset experiments in Section 7. The true means of
the experts have been estimated in hindsight over the
whole dataset. The plot is shown in Fig. 3. It can be
observed that the term in the bounds of D-UCB grows
at a much slower pace, and in fact stops increasing with
the number of experts after a certain point.
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Figure 3: We plot the instance-dependent terms from
D-UCB bounds (the term in Theorem 2 involving the
gaps (25)) and that of UCB-1 bounds (26) as the num-
ber of experts grows in the stream analytics dataset. It
can be observed that the instance dependent term from
D-UCB grows at a much slower pace with the number of
experts, and in fact stops increasing after a certain point.


