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Abstract

We consider the problem of contextual ban-
dits with stochastic experts, which is a vari-
ation of the traditional stochastic contextual
bandit with experts problem. In our prob-
lem setting, we assume access to a class of
stochastic experts, where each expert is a con-
ditional distribution over the arms given a
context. We propose upper-confidence bound
(UCB) algorithms for this problem, which
employ two different importance sampling
based estimators for the mean reward for
each expert. Both these estimators leverage
information leakage among the experts, thus
using samples collected under all the experts
to estimate the mean reward of any given ex-
pert. This leads to instance dependent regret
bounds of O (A(p)MlogT/A), where A(p) is
a term that depends on the mean rewards
of the experts, A is the smallest gap be-
tween the mean reward of the optimal ex-
pert and the rest, and M quantifies the in-
formation leakage among the experts. We
show that under some assumptions A(g) is
typically O(log N). We implement our algo-
rithm with stochastic experts generated from
cost-sensitive classification oracles and show
superior empirical performance on real-world
datasets, when compared to other state of the
art contextual bandit algorithms.

1 Introduction

Modern machine learning applications like recommen-
dation engines [24, 11, 25], computational advertis-
ing [28, 10], A/B testing in medicine [29, 30] are in-
herently online. In these settings the task is to take
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sequential decisions that are not only profitable but
also enable the system to learn better in future. For
instance in a computational advertising system, the
task is to sequentially place advertisements on users’
webpages with the dual objective of learning the pref-
erences of the users and increasing the click-through
rate on the fly. A key attribute of these systems is the
well-known ezploration (searching the space of possible
decisions for better learning) and ezxploitation (taking
decisions that are more profitable) trade-off. A prin-
cipled method to capture this trade-off is the study of
multi-armed bandit problems [12].

K-armed stochastic bandit problems have been stud-
ied for several decades. These are formulated as a
sequential process, where at each time step any one of
the K-arms can be selected. Upon selection of the k-th
arm, the arm returns a stochastic reward with an ex-
pected reward of py. Starting from the work of [21], a
major focus has been on regret, which is the difference
in the total reward that is accumulated from the genie
optimal policy (one that always selects the arm with
the maximum expected reward) from that of the cho-
sen online policy. The current state-of-art algorithms
achieve a regret of O((K/A)logT) [12, 7, 4, 5], which
is order-wise optimal [21]. Here, A corresponds to the
gap in expected reward between the best arm and the
next best one.

Additional side information can be incorporated in this
setting through the framework of contextual bandits.
In the stochastic setting, it is assumed that at each
time-step nature draws (x,r1,...,7x) from a fixed but
unknown distribution. Here, x € X represents the
context vector, while rq,...,7x are the rewards of the
K-arms [22]. The context z is revealed to the policy-
designer, after which she decides to choose an arm
a € {1,2,..,K}. Then, the reward r, is revealed
to the policy-designer. In the computational adver-
tising example, the context can be thought of as the
browsing history, age, gender etc. of an user arriving
in the system, while 71, ..., 7 are generated according
to the probability of the user clicking on each of the
K advertisements. The task here is to learn a good
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mapping from the space of contexts X to the space of
arms [K] = {1,2,..., K} such that when the decisions
are taken according to that mapping, the mean reward
observed is high.

A popular model in the stochastic contextual bandits
literature is the experts setting [3, 18, 22]. The task
is to compete against the best ezpert in a class of
experts I = {my,...,mn}, where each expert 7 € II
is a function mapping X — [K]. The mean reward
of an expert 7 is defined as E [7"7,( X)], where X is
the random variable denoting the context and the ex-
pectation is taken over the unknown distribution over
(z,71,...,7x). The best expert is naturally defined as
the expert with the highest mean reward. The ex-
pected difference in rewards of a genie policy that al-
ways chooses the best expert and the online algorithm
employed by the policy-designer is defined as the re-
gret. This problem has been well-studied in the litera-
ture, where a popular approach is to reduce the contex-
tual bandit problem to supervised learning techniques
through argmin-oracles [8]. This leads to powerful al-
gorithms with instance-independent regret bounds of

o ( KTpolylog(N)) at time T [3, 18].

In practice the class of experts are generated online
by training cost-sensitive classification oracles [3, 18].
Once trained, the resulting classifiers/oracles can pro-
vide reliable confidence scores given a new context,
especially if they are well-calibrated [17]. These con-
fidence scores effectively are a K-dimensional proba-
bility vector, where the k" entry is the probability of
the classifier/oracle choosing the k* arm as the best,
given a context. Motivated by this observation, we
propose a variation of the traditional experts setting,
which we term contextual bandits with stochastic ex-
perts. We assume access to a class of stochastic ez-
perts I = {my,...,my}, which are not deterministic.
Instead, each expert m € II, is a conditional probabil-
ity distribution over the arms given a context. For an
expert m € II the conditional distribution is denoted
by 7y |x (v|r) where V' € [K] is the random variable
denoting the arm chosen and X is the context. An ad-
ditional benefit is that this setting allows us to derive
regret bounds in terms of closeness of these soft ex-
perts quantified by divergence measures, rather than
in terms of the total number of arms K.

As before, the task is to compete against the expert
in the class with the highest mean reward. The ex-
pected reward of a stochastic expert m is defined as
Ex,v~rvix) [rv], i.e the mean reward observed when
the arm is drawn from the conditional distribution
m(V|X). We propose upper-confidence (UCB) style al-
gorithms for the contextual bandits with stochastic ex-
perts problem, that employ two importance sampling

based estimators for the mean rewards under various
experts. We prove instance-dependent regret guaran-
tees for our algorithms. The main contributions of this
paper are listed in the next section.

1.1 Main Contributions

The contributions of this paper are three-fold:

(i) (Importance Sampling based Estimators):
The key components in our approach are two impor-
tance sampling based estimators for the mean rewards
under all the experts. Both these estimators are based
on the observation that samples collected under one
expert can be reweighted by likelihood /importance ra-
tios and averaged to provide an estimate for the mean
reward under another expert. This sharing of infor-
mation is termed as information leakage and has been
utilized before under various settings [23, 27, 10]. The
first estimator that we use is an adaptive variant of the
well-known clipping technique, which was proposed
in [27]. The estimator is presented in Eq. (3). How-
ever, we carefully adapt the clipping threshold in an
online manner, in order to achieve regret guarantees.

We also propose an importance sampling variant of
the classical median of means estimator (see [26, 13]).
This estimator is also designed to utilize the samples
collected under all experts together to estimate the
mean reward under any given expert. We define the
estimator in Eq. (6). To the best of our knowledge,
importance sampling has not been used in conjunc-
tion with the median of means technique in the liter-
ature before. We provide novel confidence guarantees
for this estimator which depends on chi-square diver-
gences between the conditional distributions under the
various experts. This may be of independent interest.

(74) (Instance Dependent Regret Bounds): We
propose the contextual bandits with stochastic experts
problem. We design two UCB based algorithms for
this problem, based on the two importance sampling
based estimators mentioned above. We show that
utilizing the information leakage between the experts
leads to regret guarantees that scale sub-linearly in IV,
the number of experts. The information leakage be-
tween any two experts in the first estimator is governed
by a pairwise log-divergence measure (Def. 2). For the
second estimator, chi-square divergences (Def. 3) char-
acterize the leakage.

We show that the regret of our UCB algorithm based
on these two estimators scales as ': O (W log T).

!Tighter regret bounds are derived in Theorems 1 and

2. Here, we only mention the Corollaries of our approach,
that are easy to state.
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Here, M is related to the largest pairwise divergence
values under the two divergence measures used. A
is the gap between the mean rewards of the optimal
expert and the second best. A(p) is a parameter that
only depends on the gaps between mean rewards of
the optimum experts and various sub-optimal ones.
It is a normalized sum of difference in squares of the
gaps of adjacent sub-optimal experts ordered by their
gaps. Under the assumption that the suboptimal gaps
(except that of the second best arm) are uniformly
distributed in a bounded interval, we can show that
the parameter A\(p) is O(log N) in expectation. We
define this parameter explicitly in Section 6.

For the clipped estimator we show that M =
M?1og?(1/A) where M is the largest pairwise log-
divergence associated with the clipped estimator. For
the median of means estimator, M = ¢? where o2 is

the largest pairwise chi-squared divergence.

Naively treating each expert as an arm would lead
to a regret scaling of O(NlogT/A). However,
this ignores information leakage. FExisting instance-
independent bounds for contextual bandits scale as

KTpoly log(N) [3]. Our problem dependent bounds
have a near optimal dependence on A and does not
depend on K, the numbers of arms. However, it de-
pends on the divergence measure associated with the
information leakage in the problem (M or ¢ parame-
ters). Besides our analysis, we empirically show that
this divergence based approach rivals or performs bet-
ter than very efficient heuristics for contextual bandits
(like bagging etc.) on real-world data sets.

(i4i) (Empirical Validation): We empirically vali-
date our algorithm on three real world data-sets [20,
19, 1] against other state of the art contextual bandit
algorithms [22, 3] implemented in Vowpal Wabbit [2].
In our implementation, we use online training of cost-
sensitive classification oracles [8] to generate the class
of stochastic experts. We show that our algorithms
have better regret performance on these data-sets com-
pared to the other algorithms.

2 Related Work

Contextual bandits has been studied in the literature
for several decades, starting with the simple setting of
discrete contexts [12], to linear contextual bandits [16]
and finally the general experts setting [18, 3, 22, 6, 9].
In this work, we focus on the experts setting. Con-
textual bandits with experts was first studied in the
adversarial setting, where there are algorithms with

the optimal regret scaling O(v/KT log N) [6].

In this paper, we are more interested in the stochas-
tic version of the problem, where the context and

the rewards of the arms are generated from an un-
known but fixed distribution. The first strategies to
be explored in this setting were explore-then-commit
and epsilon-greedy [22] style strategies that achieve a
regret scaling of O (\/Klog NTQ/S) in the instance-
independent case. Following this there have been
several efforts to design adaptive algorithms that
achieve a O(y/KTpolylog(N)) instance-independent
regret scaling. Notable among these are [18, 3]. These
algorithms map the contextual bandit problem to su-
pervised learning and assume access to cost-sensitive
classification oracles. These algorithms have been
heavily optimized in Vowpal Wabbit [2].

We study the contextual bandits with stochastic ex-
perts problem, where the experts are not determin-
istic functions mapping contexts to arms, but are
conditional distributions over the arms given a con-
text. We show that we can achieve instance-dependent
regret guarantees for this problem, that can scale
as O ((MlogN/A)logT) under some assumptions.
Here, A is the gap between the mean reward of the
best expert and the second best and M is a diver-
gence term between the experts. Our algorithms are
based on importance sampling based estimators which
leverage information leakage among stochastic experts.
We use an adaptive clipped importance sampling esti-
mator for the mean rewards of the experts, that was
introduced in [27]. In [27], the estimator was studied
in a best-arm/pure explore setting, while we study a
cumulative regret problem where we need to adjust the
parameters of the estimator in an online manner. In
addition, we introduce an importance sampling based
median of means style estimator in this paper, that
can leverage the information leakage among experts.

3 Problem Setting and Definitions

The general stochastic contextual bandit problem with
K arms is defined as a sequential process for T discrete
time-steps [22], where T is the time-horizon of interest.
At each time ¢t € {1,2,--- T} nature draws a vector
(x¢,7m1(8), ..., 7 (t)) from an unknown but fixed prob-
ability distribution. Here, r;(¢) € [0,1] is the reward
of arm i. The context vector x; € X is revealed to
the policy-designer, whose task is then to choose an
arm out the K possibilities. Only the reward 7, (t)
of the chosen arm v(t), is then revealed to the policy-
designer. We will use 7, in place of r,)(t) for no-
tational convenience.

Stochastic Experts: We consider a class of stochas-
tic experts II = {m,--- ,mn}, where each 7; is a
conditional probability distribution 7y |x (v|x) where
V € [K] is the random variable denoting the arm cho-
sen and X is the context. We will use the shorthand
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Figure 1: Bayesian Network denoting the joint distribu-
tion of the random variables at a given time-step, under
our contextual bandit setting. X denotes the context, V'
denotes the chosen arm, while Y denotes the reward from
the chosen arm that also depends on the context observed.
The distribution of the reward given the chosen arm and
the context, and the marginal of the context remain fixed
over all time slots. However, the conditional distribution
of the chosen arm given the context is dependent on the
stochastic expert at that time-step.

7m;(V|X) to denote the conditional distribution corre-
sponding to expert i, for notational convenience. The
observation model at each time step t is as follows:
(i) A context x; is observed. (i) The policy-designer
chooses a stochastic expert 7y € II. An arm v(t) is
drawn from the probability distribution ) (V|z;),
by the policy-designer. (iv) The stochastic reward
Yt = To(¢) is revealed.

The joint distribution of the random variables X, V.Y
denoting the context, arm chosen and reward observed
respectively at time ¢, can be modeled by the Bayesian
Network shown in Fig. 1. The joint distribution fac-
torizes as follows, p(x,v,y) = p(y|v, z)p(v|z)p(z) (1),
where p(y|v, x) (the reward distribution given the arm
and the context), and p(z) (marginal distribution of
the context) is determined by the nature’s distribu-
tion and are fixed for all time-steps t = 1,2,...,7. On
the other hand p(v|x) (distribution of the arm chosen
given the context) depends on the expert selected at
each round. At time ¢, p(v|x) = 7y (v]x) that is the
conditional distribution encoded by the stochastic ex-
pert chosen at time t. Now we are at a position to
define the objective of the problem.

Regret: The objective in our contextual bandit
problem is to perform as well as the best expert in
the class of experts. We will define py(z,v,y) =
p(ylv, z)m(v]z)p(x) as the distribution of the corre-
sponding random variables when the expert chosen is
7 € II. The expected reward of expert k is now de-
noted by, px = Ep, (5,0, [Y], where Ep,() denotes ex-
pectation with respect to distribution p(.). The best
expert is given by k* = arg maxy,c ) k- The objective
is to minimize the regret till time 7", which is defined as
R(T) = E;‘F:l (u* — uk(t)), where u* = pg+. Note that
this is analogous to the regret definition for the deter-
ministic ezpert setting [22]. Let us define Ay £ p* — g,

as the optimality gap in terms of expected reward, for
expert k. Let w = {u1,...,un}. Now we will define
some divergence metrics that will be important in de-
scribing our algorithms and theoretical guarantees.

3.1 Divergence Metrics

In this section we will define some f-divergence met-
rics that will be important in analyzing our estimators.
Similar divergence metrics were defined in [27] to ana-
lyze the clipped estimator in (3) in the context of a best
arm identification problem. In addition to the diver-
gence metric in [27], we will also define the chi-square
divergence metric which will be useful in analyzing the
median of means based estimator (6). First, we define
conditional f-divergence.

Definition 1. Let f(-) be a non-negative convex func-
tion such that f(1) = 0. For two joint distribu-
tions px,y(z,y) and gxy(x,y) (and the associated
conditionals), the conditional f-divergence is given by:

XY
Df(pX\YHQX\Y) = qu,y |:f (%)} :

Recall that ; is a conditional distribution of V' given
X. Thus, Ds(m||m;) is the conditional f-divergence
between the conditional distributions m; and ;. Note
that in this definition the marginal distribution of X
is the marginal of X given by nature’s inherent dis-
tribution over the contexts. In this work we will be
concerned with two specific f-divergence metrics that
are defined as follows.

Definition 2. (M,; measure) [27] Consider the func-
tion f1(x) = xexp(x — 1) — 1. We define the following
log-divergence measure: M;; = 14+log(1+Dy, (m;||7;)),
Vi, j € [N].

The M;;-measures will be crucial in analyzing one of
our estimators (clipped estimator) defined in Section 5.
Definition 3. (o;; measure) Dy, (m;||7;) is known as
the chi-square divergence between the respective con-
ditional distributions, where fo(x) = 2% — 1. Let
0}y =1+ D (mill7j).

The 0;;-measures are important in analyzing our sec-
ond estimator (median of means) defined in Section 5.

4 A Meta-Algorithm

In this section, we propose a general upper-confidence
bound (UCB) style strategy that utilizes the struc-
ture of the problem to converge to the best expert
much faster than a naive UCB strategy that treats
each expert as an arm of the bandit problem. One of
the key observations in this framework is that rewards
collected under one expert can give us valuable infor-
mation about the mean under another expert, owing
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to the Bayesian Network factorization of the joint dis-
tribution of X,V and Y. We propose two estimators
for the mean rewards of different experts, that lever-
age this information leakage among experts, through
importance sampling. These estimators are defined in
Section 5. We propose a meta-algorithm (Algorithm 1)
that is designed to use these estimators and the corre-
sponding confidence intervals, to control regret.

Algorithm 1 D-UCB: Divergence based UCB for con-
textual bandits with stochastic experts

1: For time step ¢ = 1, observe context x; and choose
a random expert 7 € II. Play an arm drawn from
the conditional distribution = (V|xy).

2: fort=2,....,T do

Observe context x;

4: Let k(t) = argmax, Up(t — 1) = fi(t — 1) +
sp(t—1).

5: Select an arm v(t) from the distribution

Tk(t) (V|{Et)
6: Observe the reward Y'(t).
7: end for

@

Here, [ix(t) denotes an estimate for the mean reward
for expert k at time ¢, while s;(t) denotes the upper
confidence bound for the corresponding estimator at
time t. We propose two estimators that utilize all the
samples observed under various experts to provide an
estimate for the mean reward under expert k.

The first estimator denoted by ff(t) (Section 5,
Eq. (3)) is a clipped importance sampling estimator
inspired by [27]. If this estimator is used, then sj(t)
is set as in Equation. (4).

The second estimator denoted by [A7(t) (Section 5,
Eq. (6)) is a median of means based importance sam-
pling estimator. If this estimator is used, then sy (t) is
set as in Equation. (7).

5 Estimators and Confidence Bounds

In this section we define two estimators for estimating
the mean rewards under a given expert. Both these es-
timators can effectively leverage the information leak-
age between samples collected under various experts,
through importance sampling. One key observation
that enables us in doing so is the following equation,

Hi = E i (z,v, l:
P | (VIX)

This has been termed as information leakage and has
been leveraged before in the literature [27, 23, 10] in
best-arm identification settings. Recall that the sub-
script p;(x,v,y) denotes that the expectation is taken

under the joint distribution in (1), where p(v|z) =
mj(vlz) i.e. under the distribution imposed by ex-
pert 7;. However, even under this distribution we can
technically estimate the mean reward under expert 7.
The above equation is the motivation behind our esti-
mators. Now, we will introduce our first estimator.

Clipped Estimator: This estimator was introduced
in [27] in the context of a pure exploration problem.
Here, we analyze this estimator in a cumulative regret
setting, where the parameters of the estimator need to
be adjusted differently. Let n;(¢) denote the number
of times expert ¢ has been invoked by Algorithm 1
till time ¢, for all ¢+ € [N]. We define the fraction
vi(t) 2 n(t)/t. We will also define 7;(t) as the subset
of time-steps among {1,..,t}, in which the expert i
was selected. Let fif(t) be the estimate of the mean
reward of expert k from samples collected till time t.
The estimator is given by,

ad NAACIRO)
Z ; ) ()% ())
m < zlog<2/e<t>>Mkj}.

(3)

Here, A;(s) is the value of the random variable A at
time s drawn using expert j, where A can be the r.v’s
XY or V. We set Zy(t) = >, n;(t)/Myj. €(t) is
an adjustable term which controls the bias-variance
trade-off for the estimator.

Intuition: The clipped estimator is a weighted av-
erage of the samples collected under different experts,
where each sample is scaled by the importance ratio as
suggested by (2). We also clip the importance ratios
which are larger than a clipper level. This clipping
introduces bias but decreases variance. The clipper
level is carefully chosen to trade-off bias and variance.
The clipper level values and the weights are dependent
on the divergence terms Mj;’s. When the divergence
My,; is large, it means that the samples from expert j
is not valuable for estimating the mean for expert k.
Therefore, a weight of 1/My; is applied. Similarly, the
clipper level is set at 2log(2/e(t))My; to restrict the
aditive bias to €(t).

The upper confidence term in Algorithm 1 for the es-
timator fif(t) is chosen as,

sp(t) = 58(1) (4)

at time ¢, where 3(t) is such that,

B(t) Veitlogt
Tog(2/B(t) — ~ Zk(b)

. We set ¢; = 16 in our analysis.
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The upper confidence bound is derived using Lemma 1.

Lemma 1. Consider the estimator in Eq. (3). We
have the following confidence bound at time t,

P(ue — 6 —€t)/2 < fi5(t) < pu +0)
5%t Ze()\?
8(log(2/€(t)))? ( t ) )

The lemma is implied by Theorem 4 in [27]. We in-
clude the proof in Section A in the appendix. The
lemma shows that the clipped estimator can pool sam-
ples from all experts, in order to estimate the mean un-
der expert k. The variance of the estimator depends
on Zi(t), which depends on the log-divergences and
number of times each expert has been invoked.

>1—2exp (—

Median of Means Estimator: Now we will in-
troduce our second estimator which is based on the
well-known median of means technique of estimation.
Median of means estimators are popular for statisti-
cal estimation when the underlying distributions are
heavy-tailed [13]. The estimator for the mean un-
der the k*" expert at time ¢ is obtained through the
following steps: (i) We divide the total samples into
I(t) = |ealog(1/6(t))] groups, such that the fraction
of samples from each expert is preserved. We choose
co = 8 for our analysis. Let us index the groups as
r = 1,2..,1(t). This means that there are at least
[n;(t)/1(t)] samples from expert 4 in each group. (i7)
We calculate the empirical mean of expert k£ from the
samples in each group through importance sampling.
(741) The median of these means is our estimator.

Now we will setup some notation. Let 7;(” C
{1,2,...,t} be the indices of the samples from expert
Jj that lie in group r. Let Wi (r,t) = >, ni(r,t)/owi,
where n;(r,t) is the number of samples from expert i
in group r. Let n(r,t) = >, n;(r,t). Then the mean
of expert k estimated from group r is given by,

N
" (o X))
) ]Zl E;T) Okj )”j(Vj(SHXJ’(S)).

(5)

The median of means estimator for expert k is then
given by,

i (¢) £ median (3" (1), (). (6)

Intuition: The mean of every group is a weighted
average of samples from each expert, rescaled by the
importance ratios. This is similar to the clipped esti-
mator in Eq. (3). However, here the importance ratios

are not clipped at a particular level. In this estima-
tor, the bias-variance trade-off is controlled by taking
the median of means from I(¢) groups. The number of
groups [(t) needs to be carefully set in-order to control
the bias-variance trade-off.

The upper confidence bound used in conjunction with
this estimator at time ¢ is given by,

1 c3log(1/4(t))
Wi(t) t

sp (1) = (7)
where Wi, (t) = min,ey We(r,t)/n(r,t) and 6(t) is
set as 1/t2 in our algorithm. This choice is inspired by
the following lemma.

Lemma 2. Let §(t) € (0,1). Then the estimator
in (6) has the following confidence bound,

PQ%W)ukSW&)Cﬂmym»

) >1-5(t).
(8)

We provide the proof of this lemma in Section B in the
appendix. The constant cg is 64.

6 Theoretical Results

In this section, we provide instance dependent regret
guarantees for Algorithm 1 for the two estimators pro-
posed - a) The clipped estimator (3) and b) The me-
dian of means estimator (6). Let A = minjp+ Ay be
the gap in the expected reward between the optimum
expert and the second best. We define a parameter
A(p), later in the section, that depends only on the
gaps of the expected rewards of various experts from
the optimal one.

For the Algorithm 1 that uses the clipped estimator,
regret scales as O(A(u)M?log®(6/A)log T/A). Simi-
larly, for the case of the median of means estimator,
regret scales as O(A(u)o?logT/A). Here M is the
maximum log-divergence and ¢? is the maximum chi-
square divergence between two experts, respectively.

When the gaps between the optimum expert and sub-
optimal ones are distributed uniformly at random in
[02,1] (02 > 0), we show that the A(u) parameter is
at most O(log N) in expectation. In contrast, if the
experts were used as separate arms, a naive application
of UCB-1 [5] bounds would yield a regret scaling of
o (% log T). This can be prohibitively large when the
number of experts are large.

For ease of exposition of our results, let us re-index the
experts using indices {(1),(2),...,(N)} such that 0 =
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Ay £ Ay < ... < Ay). The regret guarantees for
our clipped estimator are provided under the following
assumption.

Assumption 1. Assume the log-divergence terms (2)
are bounded for alli,j € [N]. Let M = max; ; M;;.

Now we are at a position to present one of our main
theorems that provides regret guarantees for Algo-
rithm 1 using the estimator (3).

Theorem 1. Suppose Assumption 1 holds. Then the
regret of Algorithm 1 at time T using estimator (3), is

bounded as follows:
72 (&
Y (Z A(i))
i=2

Nl(?Mﬂbg«VAw»MgT<l YA >
P Ak Y(Ak+1))

01M2 lng(G/A(N)) IOgT
Aw

R(T) <

+

ﬂ72
log®(6/x) -
We defer the proof of Theorem 1 to Appendix A. We
now present Theorem 2 that provides regret guaran-

tees for Algorithm 1 using the estimator (6). The the-
orem holds under the following assumption.

Here, C1 is an universal constant and y(x) =

Assumption 2. Assume the chi-square terms (3) are
bounded for all i,j € [N]. Let 0 = max; ; 0;.
Theorem 2. Suppose Assumption 2 holds. Then the
regret of Algorithm 1 at time T using estimator (6), is
bounded as follows:

2
R(T) < Coo”logT
A
N-1
Cao?logT A(k) 7r
+ 1— — A( )
kZ:g A(k) A(/f+1) 3 Z

Here, Cy is an universal constant.

The proof of Theorem 2 has been deferred to Ap-
pendix B. Now, we will delve deeper into the instance
dependent terms in Theorems 1 and 2. The proofs of
Theorem 1 and 2 imply the following corollary.
Corollary 1. Let A(p) £ 14+ S0 ( AAz(k)).

(k1)
We have the following regret bounds:

(t) For Algorithm 1 with estimator (3),

M?log?(6/A(zy) log T
R(T) <O ( ATy, (A(M), ﬁ))
(i) Similarly for Algorithm 1 with estimator (6),
o logT _ . 1
R(T )<(’)< o mln()\(u),A(Q))).
Corollary 1 leads us to our next result. In Corol-

lary 2 we show that when the A gaps are uniformly
distributed, then the A(u) is O(log N), in expectation.

Corollary 2. Consider a generative model where
Ay < ... < Ay are the order statistics of N — 2
random variables drawn i.i.d uniform over the inter-
val [Agy,1]. Let pa denote the measure over these
A’s. Then we have the following:

(i) For Algorithm 1 with estimator (3),

M?log N log?(1/A () log T
By [R(T)) = 0 (Ae s WheloeT)

A2)

(ii) For Algorithm 1 with estimator (6),
0_2
E,, [R(T)] = O (£1gMeT),

Remark 1. Note that our guarantees do not have any
term containing K - the number of arms. This de-
pendence is implicitly captured in the divergence terms
among the experts. In fact when the number of arms
K is very large, we expect our divergence based algo-
rithms to perform comparatively better than other algo-
rithms, whose guarantees explicitly depend on K. This
phenomenon is observed in practice in our empirical
validation on real world data-sets in Section 7. We
also show empirically, that the term A(u) grows very
slowly with the number of experts on real-world data-
sets. This empirical result is included in Appendix D.

7 Empirical Results

In this section, we will empirically test our algorithms
on three real-world multi-class classification datasets,
against other state of the art algorithms for contex-
tual bandits with experts. Any multi-class classifica-
tion dataset can be converted into a contextual bandit
scenario, where the features are the contexts. At each
time-step, the feature (context) of a sample point is
revealed, following which the contextual bandit algo-
rithm chooses one of the K classes, and the reward
observed is 1 if its the correct class otherwise it is 0.
This is bandit feedback as the correct class is never
revealed, if not chosen. This method has been widely
used to benchmark contextual bandit algorithms [9, 3],
and is in fact implemented in Vowpal Wabbit [2].

Our algorithm is run in batches. At the starting
of each batch, we add experts trained on prior data
through cost-sensitive classification oracles [8] and also
update the divergence terms between experts, which
are estimated from data observed so far. During each
batch, Algorithm 1 is deployed with the current set of
experts. The pseudo-code for this procedure is pro-
vided in Algorithm 2.  We use XgBoost [15] and
Logistic Regression in scikit-learn [14] with calibra-
tion, as the base classifiers for our cost-sensitive or-
acles. Bootstrapping is used to generate different ex-
perts. At the starting of each batch 4 new experts are
added. The constants are set as ¢; = 1,co = 4 and
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Figure 2: In all these plots, the average progressive validation loss/error till time 7" has been plotted as a function of
time T'. (a) Performance of the algorithms on the Drug Consumption dataset [19]. (b) Performance of the algorithms on
the Stream Analytics dataset [1]. (¢) Performance of the algorithms on the Letters dataset [20]. (d) Legend.

Algorithm 2 Batched D-UCB with cost-sensitive
classification experts

1: Let IT = {m}, which is an expert that chooses
arms randomly. For time steps ¢t = 1 to 3K, choose
an arm sampled from expert m. t = 3K + 1.

2: Add experts to II trained on observed data and

update divergences.

while t <=T do

for s =t to t + O(v/t) do
Deploy Algorithm 1 with experts in II.
end for
Let t = t + O(v/t). Add experts to II trained
on observed data and update divergences.
8: end while

c3 = 2 in practice. All the settings are held fixed over
all three data-sets, without any parameter tuning. We
provide more details in Appendix D. In the appendix
we also show that the gap dependent term in our theo-
retical bounds grows much slower compared to UCB-1
bounds (Fig. 3), as the number of experts increase in
the stream analytics dataset [1]. An implementation
of our algorithm can be found here.

We compare against Vopal Wabbit implementations of
the following algorithms: (i) e-greedy [22] - parameter
set at '—epsilon 0.06°. (i7) First (Greedily selects best
expert) - parameter set at —first 100°. (4i) Online
Cover [3] - parameter set at '—cover 5’ (iv) Bagging
(Simulates Thompson Sampling through bagged clas-
sifiers) - parameter set at ~bag 7’.

Drug Consumption Data: This dataset [19] is a
part of UCI repository. It has data from 1885 respon-
dents with 32 dimensional continuous features (con-
texts) and their history of drug use. There are 19 drugs
under study (19 arms). For each entry, if the bandit
algorithm selects the drug most recently used, the re-

ward observed is 1, o.w. 0 reward is observed. The
performance of the algorithms are shown in Fig. 2a.
We see that D-UCB (Algorithm 2) with median of
moments clearly performs the best in terms of aver-
age loss, followed by D-UCB with the clipped estima-
tor. D-UCB-MoM converges to an average loss of 0.4
within 1885 samples.

Stream Analytics Data:  This dataset [1] has
been collected using the stream analytics client. It
has 10000 samples with 100 dimensional mixed fea-
tures (contexts). There are 10 classes (10 arms). For
each entry, if the bandit algorithm selects the correct
class, the reward observed is 1, o.w. 0 reward is ob-
served. The performance of the algorithms are shown
in Fig. 2b. In this data-set bagging performs the best
closely followed by the two versions of D-UCB (Algo-
rithm 2). Bagging is a strong competitor empirically,
however this algorithm lacks theoretical guarantees.
Bagging converges to an average loss of 8%, while D-
UCB-MoM converges to an average loss of 10%.

Letters Data: This dataset [20] is a part of the UCI
repository. It has 20000 samples of hand-written En-
glish letters, each with 17 hand-crafted visual features
(contexts). There are 26 classes (26 arms) correspond-
ing to 26 letters. For each entry, if the bandit algo-
rithm selects the correct letter, the reward observed
is 1, o.w. 0 reward is observed. The performance of
the algorithms are shown in Fig. 2c. Both versions of
D-UCB significantly outperform the others. The me-
dian of moments based version converges to an average
loss of 0.62, while the clipped version converges to an
average loss of 0.68.
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