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In this supplementary material, we give the detailed
proofs for some lemmas, theorems and corollaries stat-
ed in the main paper. Moreover, we also report more
experimental results for both of our algorithms on sev-
eral dense and sparse data sets.

Notations

Throughout this paper, ∥·∥ denotes the standard Eu-
clidean norm, and ∥ · ∥1 is the ℓ1-norm, i.e., ∥x∥1 =∑d

i=1|xi|. We denote by ∇f(x) the full gradient of
f(x) if it is differentiable, or ∂f(x) the subdifferential
of f(·) at x if it is only Lipschitz continuous. Note
that Assumption 2 is the general form for the two cas-
es when F (x) is smooth or non-smooth1. That is, if
F (x) is smooth, the inequality in (12) in Assumption
2 becomes the following form:

F (y) ≥ F (x) +∇F (x)(y − x) +
µ

2
∥y − x∥2.

In the main paper, we assume that all component func-
tions have the same smoothness parameter, L. In fact,
we can extend the theoretical result for the case, when
the gradients of all component functions have the same
Lipschitz constant L, to the more general case, when
some component functions fi(·) have different degrees
of smoothness.

Definition 1. The SVRG estimator in the mini-batch

setting is defined as follows:

∇̃fIs
k
(xs

k) =
1

b

∑
i∈Is

k

[
∇fi(xs

k)−∇fi(x̃s−1)
]
+∇f(x̃s−1)

where Isk⊂ [n] is a mini-batch of size b.
1Strictly speaking, when the function F (·) is non-

smooth, ϑ ∈ ∂F (x); while F (·) is smooth, ϑ = ∇F (x).
(*) Corresponding author

Using the above definition, our algorithms naturally
generalize to the mini-batch setting.

Appendix A: Proof of Theorem 1

Although the proposed SVRG-SD algorithm is a vari-
ant of SVRG, it is non-trivial to analyze its conver-
gence property. Before proving Theorem 1, we first
give the following lemma.

Lemma 1. Let x∗ be the optimal solution of Problem

(1), then the following inequality holds

E
[∥∥∇fisk(xs

k−1)−∇f(xs
k−1)−∇fisk(x̃

s−1)+∇f(x̃s−1)
∥∥2]

≤ 4L
[
F (xs

k−1)− F (x∗) + F (x̃s−1)− F (x∗)
]
.

Lemma 1 provides the upper bound on the expect-
ed variance of the variance reduced gradient estima-
tor in (9) (i.e., the SVRG estimator independently in-
troduced in [5, 10]), which satisfies E[∇̃fisk(x

s
k−1)] =

∇f(xs
k−1). This lemma is essentially identical to Corol-

lary 3.5 in [9] and Lemma A.2 in [2]. In addition, the
upper bound on the variance of ∇̃fisk(x

s
k) can be ex-

tended to the mini-batch setting as in [6].

Using Lemma 1, we immediately get the following re-
sult, which is useful in our convergence analysis.

Corollary 2. For any α ≥ β > 0, the following in-

equality holds

αE
[∥∥∇fisk(xs

k−1)−∇f(xs
k−1)−∇fisk(x̃

s−1)+∇f(x̃s−1)
∥∥2]

− βE
[∥∥∇fisk(xs

k−1)−∇fisk(x̃
s−1)

∥∥2]
≤ 4L(α−β)

[
F (xs

k−1)− F (x∗) + F (x̃s−1)− F (x∗)
]
.
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Proof.

αE
[∥∥∇fisk(xs

k−1)−∇f(xs
k−1)−∇fisk(x̃

s−1)+∇f(x̃s−1)
∥∥2]− βE

[∥∥∇fisk(xs
k−1)−∇fisk(x̃

s−1)
∥∥2]

=αE
[∥∥[∇fisk(xs

k−1)−∇fisk(x̃
s−1)]−[∇f(xs

k−1)−∇f(x̃s−1)]
∥∥2]− βE

[∥∥∇fisk(xs
k−1)−∇fisk(x̃

s−1)
∥∥2]

=αE
[∥∥∇fisk(xs

k−1)−∇fisk(x̃
s−1)

∥∥2]−α
∥∥∇f(xs

k−1)−∇f(x̃s−1)
∥∥2−βE

[∥∥∇fisk(xs
k−1)−∇fisk(x̃

s−1)
∥∥2]

≤αE
[∥∥∇fisk(xs

k−1)−∇fisk(x̃
s−1)

∥∥2]−βE
[∥∥∇fisk(xs

k−1)−∇fisk(x̃
s−1)

∥∥2]
=(α−β)E

[∥∥[∇fisk(xs
k−1)−∇fisk(x

∗)
]
− [∇fisk(x̃

s−1)−∇fisk(x
∗)]
∥∥2]

≤ 2(α−β)
{
E
[∥∥∇fisk(xs

k−1)−∇fisk(x
∗)
∥∥2]+ E

[∥∥∇fisk(x̃s−1)−∇fisk(x
∗)
∥∥2]}

≤ 4L(α−β)
[
F (xs

k−1)− F (x∗) + F (x̃s−1)− F (x∗)
]
,

where the second equality holds due to the fact that E[∥x−Ex∥2]=E[∥x∥2]−∥Ex∥2; the second inequality holds

due to the fact that ∥a − b∥2 ≤ 2(∥a∥2 + ∥b∥2); and the last inequality follows from Lemma 3.4 in [9] (i.e.,

E[∥∇fi(x)−∇fi(x∗)∥2]≤2L[F (x)−F (x∗)]).

Moreover, we also introduce the following lemmas [3, 7], which are useful in our convergence analysis.

Lemma 2. Let F̃ (x, y) be the linear approximation of F (·) at y with respect to f , i.e.,

F̃ (x, y) = f(y) + ⟨∇f(y), x− y⟩+ r(x).

Then

F (x) ≤ F̃ (x, y) +
L

2
∥x− y∥2 ≤ F (x) +

L

2
∥x− y∥2.

Lemma 3. Assume that x̂ is an optimal solution of the following problem,

min
x∈Rd

τ

2
∥x− y∥2 + g(x),

where g(x) is a convex function (but possibly non-differentiable). Then the following inequality holds for all

x∈Rd:

g(x̂) +
τ

2
∥x̂− y∥2 + τ

2
∥x− x̂∥2 ≤ g(x) +

τ

2
∥x− y∥2.

Proof of Theorem 1:

Proof. Let η = 1
Lα and pisk =∇̃fisk(x

s
k−1)=∇fisk(x

s
k−1)−∇fisk(x̃

s−1) +∇f(x̃s−1). Using Lemma 2, we have

F (ysk) ≤ f(xs
k−1) +

⟨
∇f(xs

k−1), y
s
k−xs

k−1
⟩
+

Lα

2

∥∥ysk−xs
k−1
∥∥2−L(α−1)

2

∥∥ysk−xs
k−1
∥∥2 + r(ysk)

= fisk(x
s
k−1) +

⟨
pisk , y

s
k − xs

k−1

⟩
+ r(ysk) +

Lα

2
∥ysk − xs

k−1∥2

+
⟨
∇f(xs

k−1)− pisk , y
s
k − xs

k−1

⟩
− L(α−1)

2
∥ysk − xs

k−1∥2 + f(xs
k−1)− fisk(x

s
k−1).

(13)

Then ⟨
∇f(xs

k−1)− pisk , y
s
k − xs

k−1

⟩
− L(α−1)

2
∥ysk − xs

k−1∥2

≤ 1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2 +

L(α−1)

2
∥ysk−xs

k−1∥2 −
L(α−1)

2
∥ysk−xs

k−1∥2

=
1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2,

(14)
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where the inequality follows from the Young’s inequality, i.e., aT b ≤ ∥a∥2/(2ρ) + ρ∥b∥2/2 for any ρ>0. Substi-

tuting the inequality (14) into the inequality (13), we have

F (ysk) ≤ fisk(x
s
k−1) +

⟨
pisk , y

s
k − xs

k−1

⟩
+ r(ysk) +

Lα

2
∥ysk − xs

k−1∥2

+
1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2 + f(xs

k−1)− fisk(x
s
k−1)

≤ fisk(x
s
k−1) + r(ŵs

k−1) +
Lα

2

(
∥ŵs

k−1−xs
k−1∥2−∥ŵs

k−1−ysk∥2
)
+ ⟨pisk , ŵ

s
k−1−xs

k−1⟩

+
1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2 + f(xs

k−1)− fisk(x
s
k−1)

≤ Fisk
(ŵs

k−1) +
Lα

2

(
∥ŵs

k−1 − xs
k−1∥2 − ∥ŵs

k−1 − ysk∥2
)
+ f(xs

k−1)− fisk(x
s
k−1)

+
1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2 +

⟨
−∇fisk(x̃

s−1) +∇f(x̃s−1), ŵs
k−1 − xs

k−1

⟩
≤ σFisk

(x∗) + (1− σ)Fisk
(x̂s

k−1) +
Lασ2

2

(
∥x∗ − zsk−1∥2 − ∥x∗ − zsk∥2

)
+

1

2L(α−1)
∥∇f(xs

k−1)− pisk∥
2 + f(xs

k−1)− fisk(x
s
k−1)

+
⟨
∇f(x̃s−1)−∇fisk(x̃

s−1), ŵs
k−1−xs

k−1

⟩
,

(15)

where ŵs
k−1 = σx∗ + (1−σ)x̂s

k−1, and x̂s
k−1 = θk−1x

s
k−2. The second inequality follows from Lemma 3 with

g(x) :=
⟨
pisk , x−xs

k−1

⟩
+r(x), τ = Lα, x̂ = ysk, x = ŵs

k−1 and y = xs
k−1; the third inequality holds due to the

convexity of the component function fisk(x) (i.e., fisk(x
s
k−1)+⟨∇fisk(x

s
k−1), ŵ

s
k−1−xs

k−1⟩ ≤ fisk(ŵ
s
k−1)); and the last

inequality holds due to the convexity of the function Fisk
(x) :=fisk(x)+r(x), and

zsk−1 = [xs
k−1 − (1−σ)x̂s

k−1]/σ, zsk = [ysk − (1−σ)x̂s
k−1]/σ,

which mean that ŵs
k−1− xs

k−1 = σ(x∗ − zsk−1) and ŵs
k−1− ysk = σ(x∗ − zsk).

Using Property 1 with ζ = δη
1−Lη and η = 1/Lα,2 we obtain

F (θkx
s
k−1) = F (x̂s

k) ≤ F (xs
k−1)−

(θk−1)2

2L(α− 1)
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2

≤ F (xs
k−1)−

βk

2L(α−1)
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2,
(16)

where βk = min
[
1/αk, (θk−1)2

]
, and αk is defined below. Then there exists βk such that

E
[

βk

2L(α−1)
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]
=

βk

2L(α−1)
E
[
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]
, (17)

where βk = E[βk∥∇fisk(x
s
k−1) −∇fisk(x̃

s−1)∥2]/E[∥∇fisk(x
s
k−1) −∇fisk(x̃

s−1)∥2], and βk < (α− 1)/2. Using the

inequality (16), then we have

E[F (x̂s
k)− F (x∗)] ≤ E

[
F (xs

k−1)− F (x∗)− βk

2L(α−1)
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]

= E
[
F (xs

k−1)− F (x∗)
]
− βk

2L(α−1)
E
[
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]
.

(18)

2Note that our fast versions of SVRG-SD (i.e., SVRG-SD with randomly partial sufficient decrease) have the similar
convergence properties as SVRG-SD because Property 1 still holds in the case when θk=1. That is, the main difference
between their convergence properties is the different values of βk, as shown below.
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There must exist a constant αk > 0 such that E[F (ysk)−F (x∗)] = αkE
[
F (xs

k−1)−F (x∗)
]
. Since

E
[
f(xs

k−1)−fisk(x
s
k−1)

]
= 0, E

[
∇fisk(x̃

s−1)
]
= ∇f(x̃s−1), E

[
Fisk

(x∗)
]
= F (x∗), and E

[
Fisk

(xs
k−1)

]
= F (xs

k−1), and

taking the expectation of both sides of (15), we have

αkE
[
F (xs

k−1)− F (x∗)
]
− ckβk

2L(α−1)
E
[
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]

≤ (1− σ)E
[
F (x̂s

k−1)− F (x∗)
]
+

Lασ2

2
E
[
∥x∗ − zsk−1∥2 − ∥x∗ − zsk∥2

]
+

1

2L(α−1)
E∥∇f(xs

k−1)− pisk∥
2 − ckβk

2L(α−1)
E
[
∥∇fisk(x

s
k−1)−∇fisk(x̃

s−1)∥2
]

≤(1− σ)E
[
F (x̂s

k−1)− F (x∗)
]
+

Lασ2

2
E
[
∥x∗ − zsk−1∥2 − ∥x∗ − zsk∥2

]
+

2(1− ckβk)

α−1

[
F (xs

k−1)− F (x∗) + F (x̃s−1)− F (x∗)
]
,

(19)

where the second inequality follows from Lemma 1 and Corollary 2. Here, ck = αk − [2(1−ckβk)]/(α−1), i.e.,

ck =
αk(α− 1)− 2

α− 1− 2βk

.

Since 2
α−1 < σ with the suitable choices of α and σ, we have ck > αk − 2

α−1 > 1− σ. Thus, (19) is rewritten as

follows:

ckE
[
F (xs

k−1)− F (x∗)
]
− ckβk

2L(α− 1)
E
[
∥pisk −∇fisk(x̃

s−1)∥2
]

≤ (1− σ)E[F (x̂s
k−1)− F (x∗)] +

Lασ2

2
E
[
∥x∗ − zsk−1∥2 − ∥x∗ − zsk∥2

]
+

2(1− ckβk)

α− 1
E
[
F (x̃s−1)− F (x∗)

]
.

(20)

Combining the above two inequalities (18) and (20), we have

ckE[F (x̂s
k)− F (x∗)]

≤ (1− σ)E
[
F (x̂s

k−1)− F (x∗)
]
+

Lασ2

2
E
[
∥x∗ − zsk−1∥2 − ∥x∗ − zsk∥2

]
+

2(1− ckβk)

α− 1
E
[
F (x̃s−1)− F (x∗)

]
.

(21)

Taking the expectation over the random choice of is1, i
s
2, . . . , i

s
m, summing up the above inequality over k =

1, . . . ,m, and x̂s
0 = x̃s−1, we have

E

[
m∑

k=1

[ck − (1− σ)] [F (x̂s
k)− F (x∗)]

]

≤ (1− σ)E
[
F (x̃s−1)− F (x∗)

]
+

Lασ2

2
E
[
∥x∗ − zs0∥2 − ∥x∗ − zsm∥2

]
+ E

[
m∑

k=1

2(1− ckβk)

α− 1
[F (x̃s−1)− F (x∗)]

]
.

(22)
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In addition, there exists β̂s for the s-th epoch such that

E

[
m∑

k=1

[ck − (1− σ)] [F (x̂s
k)− F (x∗)]

]

= E

[
m∑

k=1

(
σ − 2

α− 1
+

2ckβk

α− 1

)
[F (x̂s

k)− F (x∗)]

]

=

(
σ − 2

α− 1
+ β̂s

)
E

[
m∑

k=1

[F (x̂s
k)− F (x∗)]

]
,

(23)

where

β̂s =
E
[∑m

k=1
2ckβk

α−1 [F (x̂s
k)− F (x∗)]

]
E[
∑m

k=1[F (x̂s
k)− F (x∗)]]

.

Let β̂ = mins=1,...,S β̂s. Using

x̃s =
1

m

m∑
k=1

x̂s
k, F (x̃s) ≤ 1

m

m∑
k=1

F (x̂s
k),

(22) and (23), we have (
σ − 2

α− 1
+ β̂

)
mE[F (x̃s)− F (x∗)]

≤
(
1− σ +

2m

α−1

)
E
[
F (x̃s−1)− F (x∗)

]
+

Lασ2

2
E
[
∥x∗ − zs0∥2 − ∥x∗ − zsm∥2

]
.

Therefore,

E[F (x̃s)− F (x∗)]

≤

 1− σ(
σ − 2

α−1 + β̂
)
m

+
2

(α−1)
(
σ − 2

α−1 + β̂
)
E

[
F (x̃s−1)− F (x∗)

]
+

Lασ2

2m
(
σ − 2

α−1 + β̂
)E[∥x∗ − zs0∥2 − ∥x∗ − zsm∥2

]
.

This completes the proof.

Appendix B: Proofs of Corollary 1

Proof. For µ-strongly convex problems, and let xs
0 = x̂s

0 = x̃s−1 and

zs0 =
xs
0 − (1− σ)x̂s

0

σ
= x̃s−1.

Due to the strong convexity of F (·), we have

µ

2
∥x∗ − zs0∥2 =

µ

2
∥x∗ − x̃s−1∥2 ≤ F (x̃s−1)− F (x∗). (24)
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Using Theorem 1, we obtain

E[F (x̃s)− F (x∗)]

≤

 1− σ

m(σ− 2
α−1+β̂)

+
2

(α−1)
(
σ− 2

α−1+β̂
) +

Lασ2

mµ
(
σ− 2

α−1+β̂
)
E

[
F (x̃s−1)− F (x∗)

]
.

Replacing α and σ in the above inequality with 19 and 1/2, respectively, we have

E[F (x̃s)− F (x∗)]

≤

(
9

(7 + 18β̂)m
+

2

7 + 18β̂
+

171L

(14 + 36β̂)mµ

)
E
[
F (x̃s−1)− F (x∗)

]
.

This completes the proof.

Appendix C: Proofs of Theorem 2

Proof. For non-strongly convex problems, and using Theorem 1 with α = 19 and σ = 1/2, we have

E[F (x̃s)− F (x∗)] ≤ 171L

(28 + 72β̂)m
E
[
∥x∗ − zs0∥

2 − ∥x∗ − zsm∥2
]

+

(
9

(7 + 18β̂)m
+

2

7 + 18β̂

)[
F (x̃s−1)− F (x∗)

]
.

(25)

According to the settings of Algorithm 1 for the non-strongly convex case, and let

xs
0 = x̂s

0 = [xs−1
m − (1− σ)x̂s−1

m ]/σ,

then we have

zs0 =
xs
0 − (1− σ)x̂s

0

σ
=

xs−1
m − (1− σ)x̂s−1

m

σ
,

and

zs−1
m =

xs−1
m − (1− σ)x̂s−1

m

σ
.

Therefore, zs0 = zs−1
m .

Using z00 = x̃0, and summing up the inequality (25) over all s = 1, . . . , S, then

E

[
F

(
1

S

S∑
s=1

x̃s

)
− F (x∗)

]
≤ 171L

(16 + 40β̂)mS

∥∥x∗ − x̃0
∥∥2

+

(
9

(4 + 8β̂)mS
+

1

(2 + 4β̂)S

)[
F (x̃0)− F (x∗)

]
.

Due to the settings of Algorithm 1 for the non-strongly convex case, we have

E[F (x)− F (x∗)] ≤ 171L

(16 + 40β̂)mS

∥∥x∗ − x̃0
∥∥2

+

(
9

(4 + 8β̂)mS
+

1

(2 + 4β̂)S

)[
F (x̃0)− F (x∗)

]
.

This completes the proof.
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Figure 1: Comparison of SAGA and SAGA-SD with different values of m1 for solving ridge regression problems

on the Covtype dataset.

Appendix D: Experiment Details

The C++ code of SVRG [5] was downloaded from http://riejohnson.com/svrg_download.html. The code
of of SAGA [4] was downloaded from http://www.aarondefazio.com/software.html. For fair comparison,
we implemented the proposed SVRG-SD and SAGA-SD algorithms, SAGA [4], Prox-SVRG [9], Catalyst [8]
(which is based on SVRG and has the following three important parameters: αk, κ, and the step size, η), and
Katyusha [1] in C++ with a Matlab interface3, and performed all the experiments on a PC with an Intel i5-2400
CPU and 16GB RAM.

Appendix E: More Experimental Results

Robustness

Figure 1 shows the performance of SAGA [4] and SAGA-SD with different values of m1 for solving ridge regression
problems on the Covtype data set, where the regularization parameter is λ1 = 10−4. From the result, we can
observe that SAGA-SD significantly outperforms SAGA in terms of number of passes and running time. In
particular, SAGA-SD, as well as SVRG-SD, has good robustness with respect to the number of iterations with
sufficient decrease, which inspires us to use the partial sufficient decrease trick for both SVRG-SD and SAGA-SD.

Comparison of Results for Ridge Regression

In this part, we first report the experimental results of SVRG [5], SAGA [4], Catalyst [8], Katyusha [1], SVRG-
SD and SAGA-SD for solving strongly convex (SC) ridge regression problems with the regularization parameter
λ1 = 10−5 in Figure 2, where the horizontal axis denotes the number of effective passes over the data set
(evaluating n component gradients, or computing a single full gradient is considered as one effective pass) or the
running time (seconds). Moreover, we report the performance of all the stochastic variance reduction methods
for solving ridge regression problems with relative small regularization parameters (e.g., λ1=10−7) in Figure 3,
which shows that SVRG-SD and SAGA-SD, as well as Katyusha, converge significantly faster than SAGA, SVRG,
and Catalyst. In particular, SVRG-SD and SAGA-SD usually outperform Katyusha in terms of both number of
passes and running time, which further justifies the effectiveness of our sufficient decrease technique for stochastic
optimization.

3The codes of some algorithms can be downloaded by the following anonymous link:
https://www.dropbox.com/s/pyjeegseht77toh/Code_SVRG_SD.zip?dl=0.
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Figure 2: Comparison of all the stochastic variance reduced gradient methods for solving strongly convex ridge

regression problems on the three dense data sets: Ijcnn1, Covtype and SUSY. The vertical axis is the objective

value minus the minimum, and the horizontal axis denotes the number of effective passes over the data (top) or

the running time (bottom).

Figure 4 shows the performance of all the methods for solving ridge regression problems with different regulariza-
tion parameters on the sparse data set, Rcv1. From the results, we can observe that SVRG-SD and SAGA-SD
significantly outperform their counterparts: SVRG and SAGA in terms of both number of effective passes and
running time. The accelerated method, Catalyst, usually outperforms the non-accelerated methods, SVRG and
SAGA. Katyusha converges much faster than SAGA, SVRG, and Catalyst for the cases when the regularization
parameter is relatively small (e.g., λ1=10−5), whereas it sometime achieves similar or inferior performance when
the regularization parameter is relatively large (e.g., λ1=10−3), as shown in Figures 4(a). Moreover, SVRG-SD
and SAGA-SD achieve at least comparable performance with the accelerated stochastic method, Katyusha [1], in
terms of number of effective passes. Since SVRG-SD and SAGA-SD have much lower per-iteration complexities
than Katyusha, they have more obvious advantage over Katyusha in terms of running time.

Comparison of Results for Lasso and Elastic-Net

Finally, we report the performance of Prox-SVRG [9], SAGA [4], Catalyst [8], Katyusha [1], SVRG-SD and
SAGA-SD for solving Lasso and elastic-net problems with different regularization parameters in Figures 5 and
6, respectively, from which we can observe that SVRG-SD and SAGA-SD also achieve much faster convergence
speed than their counterparts: Prox-SVRG and SAGA, respectively. In particular, they also have comparable
or better performance than the accelerated methods, Catalyst and Katyusha for both strongly convex and non-
strongly convex problems. For the elastic-net problem, each component function fi(x) is defined as follows:

fi(x) =
1

2
(aTi x− bi)

2 +
λ1

2
∥x∥2.
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Figure 3: Comparison of all the stochastic variance reduced gradient methods for solving strongly convex ridge

regression problems with relatively small regularization parameters. The vertical axis is the objective value minus

the minimum, and the horizontal axis denotes the number of effective passes over the data (top) or the running

time (bottom).
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Figure 4: Comparison of all the stochastic variance reduced gradient methods for solving strongly convex ridge

regression problems with different regularization parameters on the sparse data set, Rcv1. The vertical axis

represents the objective value minus the minimum, and the horizontal axis denotes the number of effective

passes (top) or the running time (bottom).
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(e) Covtype, λ2=10−5
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Figure 5: Comparison of all the stochastic variance reduced gradient methods for solving non-strongly convex

Lasso problems on the three data sets. The vertical axis is the objective value minus the minimum, and the

horizontal axis denotes the number of effective passes over the data (top) or the running time (seconds, bottom).
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(a) λ1 = 10−5 and λ2 = 10−5
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Figure 6: Comparison of all the stochastic methods for solving elastic-net (i.e., (λ1/2)∥·∥2+λ2∥·∥1) problems on

Ijcnn1 (the first column), Covtype (the second column), and SUSY (the last column). The vertical axis is the

objective value minus the minimum, and the horizontal axis denotes the number of effective passes over the data

(top) or the running time (seconds, bottom).


