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A Deferred Proofs

This section contains proofs which were deferred to it from
the body of the article.

A.1 Proof of Theorem 1

We will prove the theorem using induction based on depth
of the circuit rooted at a node v 2 V , i.e. the maxi-
mal length of a path connecting a leaf to v. Given that
 

v

(·) is a non-negative function, it is su�cient to show
it is normalized, i.e. that for any fixed values of the vari-
ables in cond(v), denoted by b 2 {0, 1, ⇤}N where b
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= ⇤ if
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For the base case of the induction of depth-1 SPQNs, which
means v 2 I must be an indicator node, i.e. v = I [x

i

= a]
for some i 2 [N ] and a 2 {0, 1}, then e↵(v) = {i} and
cond(v) = ;, and so summing over all possible values of
x
i

is equal to I [x
i

= a] (0) + I [x
i

= a] (1) = 1 meeting the
normalization condition. Let us now assume that our in-
duction assumption holds for all circuit of depth d � 1, and
prove it also holds for d+1. Since any SPQNs of depth d+1
is greater than 1, then the root node must either be a sum,
product or quotient node, and not an indicator node. Ad-
ditionally, for the root v 2 V of such a circuit, because each
of its child nodes can be viewed as a depth-d sub-circuit,
then according to the induction assumption it represents a
normalized probability function over the variables in e↵(v)
for any fixed values of the variables in cond(v). Next we
will use this property to show that for any possible node
type, v represent a normalized probability function.

if v 2 Q is a quotient node, then according to conditional
soundness then Pside(v)(·) is a strictly positive function and
hence the output of the quotient operation is well defined.
Additionally, the conditional soundness also entails that
 de(v)(·) is a marginal conditional distribution of  nu(v)(·),
and specifically, that summing  nu(v)(·) over all the possi-
ble values of the variables in e↵(v) equals to  de(v)(·), and
thus:
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where we have used the fact that changing the values of
the coordinates of x for i 2 e↵(v) do not a↵ect the value of
 de(v)(x) as e↵(de(v))\e↵(v) = ;, in combination with the
relationship between the sum over  nu(v)(·) and  de(v)(·).

If v 2 S is a sum node, then according to conditional
completeness the e↵ective scopes of its child nodes are
identical to its own e↵ective scope. This also entails
that cond(c) ⇢ cond(v) for any c 2 ch(v) because that
cond(c) is the complement of e↵(c) with respect to sc(c).

We can also assume without losing our generality that
cond(c) = cond(v), as variables outside of cond(c) do not
a↵ect the output of  

c

(·) regardless of their value. Given
the last assumption and the induction assumption, all the
children of v represent conditional distributions over the
same set of variables, and because the weights of v are
normalized to sum to one, then:
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where the inner sum equals to 1 due to the normalization
of the child nodes.

Finally, we will consider the case that v 2 P is a product
node. Recall that conditional decomposability means that
the e↵ective scopes of each child of v are disjoint sets, and
that the directed dependency graph formed by the children
of v is an acyclic graph. To prove this case, we will use a
secondary induction over the number of children of v. In
the base case of v having just a single child ch(v) = {c}, it
holds that  

v

(·) =  
c

(·), and thus it is a normalized prob-
ability function due to the primary induction assumption.
Let us assume that out secondary induction assumption
holds for v with t children, and prove it also holds for t+1
children. Let c̄ 2 ch(v) be child of v that is a sink node in
the induced dependency graph, i.e. that none of the vari-
ables in its e↵ective scope are part of the conditional scope
of another child, hence the following holds:
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where the equality marked by (1) is due to decomposing
the sum into two nested sums, one where we iterate over
the di↵erent values of x just over the coordinates matching
the variables in the e↵ective scope of v that are not in the
e↵ective scope of c̄ and the second nested sum over the
remaining coordinates of the e↵ective sum. Because the
inner sum a↵ects only the variables in  

c̄

(·) we can extract
all over nodes out of it, this is because of our assumption
that c̄ is a sink node and hence e↵(c̄) is not part of the
scopes of the other children, in addition to the fact that
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the e↵ective scopes are disjoint sets. The equality marked
by (2) is because 

c̄

)(·) is a normalized probability function
according to our primary induction assumption, hence the
inner sum equals to one. The final equality is due to our
secondary induction assumption, as there are only t child
nodes left and thus that sum also equals to one. This
concludes the proof for both the secondary and the primary
induction assumption.

A.2 Proof of Proposition 1

By the second and third conditions in def. 7, all product
and sum nodes in an SPQN composed of valid CMOs must
be conditionally D&C, and thus, according to theorem. 1,
we only need to prove that it is conditionally sound for
it to be tractable. We employ induction on the depth of
the SPQN rooted at v 2 V with the assumption that all
SPQNs up to depth d that are composed of valid CMO
nodes are strongly conditionally sound, hence also valid
distributions, strictly positive functions, and that for all
z 2 {0, 1, ⇤}N such that z

i

= ⇤ if i 2 e↵(v) it holds that
 

v

(z) = 1.

We begin with the base case of a CMO node connected
to the two indicator leaf nodes I [x

i

= 0] and I [x
i

= 1] for
some i 2 [N ], which according to def. 7 is the only valid
CMO node that is connected to the leaves. Under this
case the output of the CMO node is equal to a single sum
node computing w1I [xi

= 0] + w2I [xi

= 1], where w 2 R2

is strictly positive. Since the output is simply a single sum
node over indicators of the same variable, it immediately
follows that it is conditionally decomposable, complete and
sound. Additionally, since w is strictly positive, then the
output of the node is also strictly positive for any value
of x

i

. Finally, when setting x
i

= ⇤ the output equals to
w1 · 1 + w2 · 1 = 1.

Let v denote the root CMO node of an SPQN of depth d+1.
Without losing our generality, we can assume that ↵ = � =
1 (see def. 6) with children a1, . . . , a�

, b1, . . . , b� 2 V , oth-
erwise we can substitute each of the products,

Q
↵

j=1 Aij

and
Q

�

j=1 Bij

, with an auxiliary valid CMO node that
computes just the product, i.e. with no A-type children,
which is trivially conditionally sound. Since we assume
all the children of v represents strictly positive functions,
and since the output of v is composed of products and
weighted sums with positive weights, then the output of
v is also strictly positive. According to def. 7, the inter-
nal sum and product nodes of v are conditionally D&C,
and thus their respective rooted sub-SPQNs are tractable
by the induction assumption, which means they represent
valid distributions. Additionally, def. 7 also entails that
the e↵ective scopes of each of b1, . . . , b� are equal to e↵(v),
and do not appear in the conditional scopes of a1, . . . , a�

.
Now, for any a 2 {0, 1, ⇤}N the following holds:
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where the equality marked by (1) is because the nodes of

a
i

are not a↵ected by the changing coordinates specified
by e↵(v), while the equality marked by (2) follows from
our induction assumption that the children b1, . . . , b� al-
ready represent normalized probability functions, and thus
summing over them equals to one.This proves that the de-
nominator is a marginal of the numerator, which prove
that the SPQN rooted at v is conditionally sound. To
prove that it is also strongly conditionally sound, we sim-
ply notice that for any z 2 {0, 1, ⇤} such that z

i

= ⇤ it
holds that  

bi(z) = 1 based on our induction assumption
as e↵(b

i

) = e↵(v), and thus:

 nu(v)(z) =
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which proves that the SPQN rooted at v is strongly condi-
tionally sound. Additionally from the conditionally sound
property we have just proven, it thus follow that

 
v

(z) =
 nu(v)(z)

 de(v)(z)
=
 de(v)(z)

 de(v)(z)
= 1

proving that all of our induction assumptions hold and
completing our proof of the proposition.

A.3 Proof of Theorem 2

We heavily base our proof on Martens and Medabalimi
(2014), who have proven a very similar claim on a slightly
di↵erent distribution on complete graphs, namely, that
SPNs cannot approximate the uniform distribution on the
spanning trees of a complete graph. Next, we go through
the steps of their proof, citing the relevant lemmas, and
highlighting the places where our proof diverges.

We begin by citing the following decomposition lemma,
paraphrased to match the notations and definition of sec. 2:

Lemma 1 (paraphrase of theorem 39 of Martens and
Medabalimi (2014)). Suppose { 

j

(x)}1
j=1 are the respec-

tive outputs of a sequence of D&C SPNs of size at most s
over N binary variables, which converges point-wise (con-
sidered as functions of x) to some function � of x. Then
we have that � can be written as:
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g
i

h
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(2)

where k  s2 and for all i 2 [k] it holds that g
i

and h
i

are real-valued non-negative functions of y
i

and z
i

, respec-
tively, where y

i

and z
i

are sub-sets / tuples of the variables
in x satisfying that N

3
 |y

i

|, |z
i

|  2N
3
, y

i

\ z
i

= ;, and
y
i

[ z
i

= x.

According to lemma 1, it is su�cient to show that if a
function in the form of eq. 2 is equal to a strictly positive
distribution of triangle-free graphs of M vertices, denoted
by d(E), where N =

�
M

2

�
is the number of variables rep-

resenting the edges of the graph, then k = 2⌦(N), because
the k is a lower bound on the size of any SPN approximat-
ing d(E).

Because the functions that comprise � are non-negative,
then � = 0 if and only if for all i it holds that g

i

h
i

= 0.
Thus, if �(E) = d(E) > 0, i.e. E represents a triangle-free
graph, then either g

i

= 0 or h
i

= 0 on E. We will prove
that k = 2⌦(N) by showing that each term g

i

h
i

can be non-
zero on at most a small fraction of the triangle-free graphs,
and more specifically, that it can be non-zero only on a
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small fraction of spanning trees, which are only a sub-set
of all triangle-free graphs.

Let g and h be functions as above, such that N

3
 |y|, |z| 

2N
3
, y \ z = ;, and y

i

[ z
i

= E, and that d(E) = 0
implies g(y) = 0 or h(z) = 0. Examining the possible
triangles of E, we single out all the triangles such that
some of the edges are part of y and some of z. Notice
that for such triangles the function g · h must employ a
conservative strategy, as each function on its own only see
a part of the possible edges of the triangle and hence cannot
decide whether all edges are in the graph or not. Martens
and Medabalimi (2014) call such triplet of edges constraint
triangles, and prove the following claims:

Claim 1 (Paraphrase of proposition 42 of Martens and
Medabalimi (2014)). Let E

i1i2 , E
i2i3 , and E

i1i3 be three
di↵erent edges that form a constraint triangle with respect
to g and h as above, for which if all edges are part of the
graph then g · h = 0. Additionally, suppose that both E

i1i2

and E
i2i3 are in the same set of variables with respect to

the partition y [ z. Then the following properties hold:

• g(y) · h(z) = 0 for all values of E such that E
i1i2 = 1

and E
i2i3 = 1, i.e. are part of the graph E represents.

• g(y) ·h(z) = 0 for all values of E such that E
i1i3 = 1,

i.e. is part of the graph E represents.

Claim 2 (Paraphrase of lemma 43 of Martens and Meda-
balimi (2014)). Given any partition of the edges of E into
disjoint sets y [ z, such that N

3
 |y|, |z|  2N

3
, then the

total number of constraint triangles is lower bounded by
M

3

60
.

Claim 1 means that if g(y) · h(z) > 0 then either E
i1i2

and E
i2i3 are not part of the graph, or E

i1i3 is not part of
it, and thus each constraint limits what graphs it can be
non-zero on. Claim 2 finds a lower bound on the number
of such constraints, which brings us to the following claim
by Martens and Medabalimi (2014), which finds an upper
bound on percentage of spanning trees that obey any given
C set of distinct constraints:

Claim 3 (Paraphrase of lemma 44 of Martens and Meda-
balimi (2014)). Suppose we are given C distinct constraints
which are each one of the two forms discussed above. Then,
of all the spanning trees of the complete graph on M ver-
tices, a proportion of at most:

✓
1� C

M3

◆C
/6M2

of them obey all of the constraints.

Given that we have C > M

3

60
, then it holds that g(y)·h(z) >

0 on at most 1

2M/15120 of all the possible spanning trees.

To conclude, �(E) can be non-zero on at most k

2M/15120

fraction of all spanning trees, and since d(E) should be
positive for any E that represents a triangle free graph,
such as any spanning tree, then if �(·) = d(·) it must be
that k

2M/15120 � 1, which means k � 2M
/15120, or in other

words, s = O(2⌦(M)).

A.4 Proof of Theorem 3

We start by examining all triangles for which the edge E
i2i3

is the largest edge (according to lexical order). For every

1 < i2 < i3  M , we define the following variables:
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Where '
(1)
i2i3

is a normalized probability over the edges

E1,i2 , . . . , Ei2�1,i2 and E1,i3 , . . . , Ei2�1,i3 , such that �
(1)
i2i3

is non-zero if and only if the edge E
i2i3 cannot complete a

triangle, i.e. whether E
i2i3 = 0 or E

i2i3 = 1 the graph can
be triangle-free as long as the other triplets of edges not
containing E

i2i3 do not result in a triangle. Similarly, '(2)
i2i3

is a normalized probability over the same edges, but '(2)
i2i3

is non-zero if and only if the inclusion of the edge E
i2i3 will

necessarily complete one of the triangles, i.e. for the graph
to be triangle-free then it must hold that E

i2i3 = 0. Also

notice that both '
(1)
i2i3

and '
(2)
i2i3

can be defined by a D&C

SPN. Given the above, either '(1)
i2i3

> 0 or '(2)
i2i3

> 0, hence
the denominator of �

i2i3 is always non-zero. Additionally,

if '(2)
i2i3

is non-zero then E
i2i3 = 0 or else the graph has a

triangle, and otherwise either E
i2i3 = 0 or E

i2i3 = 1, hence
the numerator of �

i2i3 is greater than zero if and only if
none of the triangles considered are part of the graph. It is
also trivial to verify that the numerator is also a D&C
SPN, and hence conditionally D&C. Finally, it is clear
from the construction that �

i2,i3 is strongly conditionally
sound, thus it is equivalent to a conditional distribution of
E

i2i3 conditioned on the other edges of the triangles whose
E

i2i3 is their largest edge, where e↵(�
i2i3) = {E

i2i3} and
cond(�

i2i3) = {E
i1i2 , Ei1i3 |1  i1 < i2}.

With the above conditional distributions defined for all
edges E

i2i3 such that 1 < i2 < i3  M , we can now
construct a strictly positive distribution over triangle-free
graphs. First, let us define �1i ⌘ I[E1i=0]+I[E1i=1]

2
for all

1 < i  M , for which e↵(�1i) = {E1i} and cond(�1i) = ;.
Then, we define the probability as � ⌘

Q
1i<jM

�
ij

, and
due to the definition of �

i2i3 it is once more trivial to verify
that  is conditionally decomposable, and specifically that
the induced dependency graph is indeed cycle-free – this
is due to the choice of lexical order which guarantees that
E

i2i3 can only depend on edges which are smaller than it,
forbidding the formation of any cycle. In conclusion, � is a
tractable SPQN, which is non-zero if and only if the edges
in E represent a triangle-free graph – as required. Addi-
tionally, since the size of '(1)

i2i3
is at most O(M), and the

size of '(2)
i2i3

is at most O(M2), then the size of � is at most

O(M4), which proves the main result.

With regards to realizing the same SPQN with valid
CMOs, notice that the quotient nodes already follow the
structure of valid CMOs, and that the numerator and de-
nominator are simply D&C SPNs which SPQNs composed
of valid CMOs can arbitrarily approximate without chang-
ing the size of the model. Thus this distribution can be
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Figure 1: Samples from the synthetic dataset we have
designed to showcase the advantages of SPQNs over
SPNs.

approximated arbitrarily well with an SPQN composed of
valid CMO nodes of size at most O(M4).

B Experiments

As a preliminary demonstration of the practical advantages
of SPQNs over standard SPNs, we have conducted a basic
experiment on a synthetic dataset suited to the strengths
of SPQNs.

In essence, the di↵erence between the two models is that
SPNs have a limited ability to represent intricate correla-
tions between large set of variables – once a sample is drawn
for some variable, the result has no further e↵ect on the rest
of the sampling process, i.e. the drawing of the children of
the remaining sum nodes. In contrast, SPQN can due to
the conditional distributions of its nodes. We have came up
with a simple synthetic dataset to demonstrate this di↵er-
ence, comprising of N ⇥N binary images generated as fol-
lows: first sample a random location in the image, and then
begin drawing a continuous non-overlapping path, where
at each step the path can be extended either forward, left,
or right, with respect to the direction of movement, with
equal probability, and given that the next position is free
and not directly adjacent to a previous section of the line
(excluding the current position). See fig. 1 for a selection
of samples from this distribution for N = 8. Since a pixel
can be ”on” only if there is a free path connecting it to
either ends of the drawn path, then it is dependent on all
previously sampled pixels, following our initial motivation.

In our experiments we have randomly sampled from the
above generative process for the case of N = 8: 50000
examples for the training set, 1000 examples for validation
and 10000 examples for the test set. We have trained SPNs
with the structure learning algorithm proposed by Gens
and Domingos (2013), where the hyper-parameters where

chosen using grid-search following the same space as in the
original article. The best model had in total 189, 128 nodes.

For SPQNs we have first flatten the 8⇥8 binary image to a
1D array of size 64, and then chosen a simple architecture
mimicking a 1D convolutional network. Namely, the graph
is composed of a sequence of “convolutional” layers, where
each layer d is defined by a stride S

d

, receptive field R
d

,
and number of channels C

d

, and is composed of many CMO
nodes spatially arranged and stacked according to C

d

. For
each layer d, spatial position t, and channel c, there is a
CMO node whose e↵ective scope is connected to nodes of
layer d� 1 at the spatial locations t · S � (S � 1), . . . , t · S
via intermediate sum nodes that are each connected the
channels of a given spatial location, and similarly for the
conditional scope at the spatial locations t·S�R+1, t·S�S.
Essentially, the output O

d,t,c

of layer d at location t and
channel c is equivalent to the following:
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The above architecture was trained with the
Adam (Kingma and Ba, 2015) variant of SGD, us-
ing �1 = �2 = 0.9, a learning rate of 5e � 2, mini-batches
of 100 samples each, and for 20 epochs. The other hyper-
parameters where chosen using cross-validation, where the
best performing model was composed of 4 layers, with
receptive fields equal to R1 = R2 = 32, R3 = 16, R4 = 1,
strides equal to S1 = S2 = 2, S3 = 16, S4 = 1, and number
of channels equal to R1 = R2 = R3 = 64, R4 = 1. In
terms of sum, product, and quotient nodes involved in the
computation, it amounts to just 108, 817 nodes, on par
with the SPN model found via structure learning.

In the final results, the best SPN model attained a log-
likelihood score of �22.68 on the training set, �24.35 on
the validation set, and �24.71 on the test set. In contrast,
the best SPQN model attained �15.94 on the training set,
�16.36 on the validation set, and �16.51 on the test set,
which amounts to a 35% improvement over SPNs. Given
both models are of similar size, and despite the fact no
structure learning was used for SPQN model, then the
SPQN model clearly outperform by a large margin the
standard SPN model. Nevertheless, it is important to
stress that further empirical evaluations are required to
completely validate the advantages of SPQNs over SPNs,
even more so on real-world tasks.
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