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A Proof of Lemma 1

To prove Lemma 1, we introduce two intermediate lemmata as follows.

Lemma 5 Consider Assumptions 1 and 2 are satisfied, and define f∗
p as the best static solution in (18) with

Fp := {f |f(x) = θ
⊤zp(x), ∀θ ∈ R

2D}. If {fp,t(xt)} denotes the sequence of estimates generated by online kernel

learning algorithm with a pre-selected kernel p, the following bound holds true w.p.1, i.e.,

T∑

t=1

ℓt(fp,t(xt))−
T∑

t=1

ℓt(f
∗
p (xt))≤

‖θ∗
p‖2
2η

+
ηL2T

2
(32)

where η is the learning rate, L is the Lipschitz constant in Assumption 2, and θ
∗
p is the corresponding weights

supporting the best estimator f∗
p (x) = (θ∗

p)
⊤zp(x).

Proof: Similar to the regret analysis of online gradient descent [25], using (11) for any fixed θ, we find

‖θp,t+1 − θ‖2 =‖θp,t − η∇L(θ⊤
p,tzp(xt), yt)− θ‖2 (33)

=‖θp,t − θ‖2 + η2‖∇L(θ⊤
p,tzp(xt), yt)‖2 − 2η∇⊤L(θ⊤

p,tzp(xt), yt)(θp,t − θ).

Meanwhile, the convexity of the loss under Assumption 1 implies that

L(θ⊤
p,tzp(xt), yt)− L(θ⊤zp(xt), yt) ≤ ∇⊤L(θ⊤

p,tzp(xt), yt)(θp,t − θ). (34)

Plugging (34) into (33) and rearranging terms yields

L(θ⊤
p,tzp(xt), yt)−L(θ⊤zp(xt), yt) ≤

‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2
2η

+
η

2
‖∇L(θ⊤

p,tzp(xt), yt)‖2. (35)

Summing (35) over t = 1, . . . , T , with fp,t(xt) = θ
⊤
p,tzp(xt), we arrive at

T∑

t=1

(

L(fp,t(xt), yt)−L(θ⊤zp(xt), yt)
)

≤ ‖θp,1−θ‖2 − ‖θp,T+1 − θ‖2
2η

+
η

2

T∑

t=1

‖∇L(θ⊤
p,tzp(xt), yt)‖2

(a)

≤ ‖θ‖2
2η

+
ηL2T

2
(36)

where (a) uses the Lipschitz constant in Assumption 2, the non-negativity of ‖θp,T+1−θ‖2, and the initial value

θp,1 = 0. The proof is complete by choosing θ = θ
∗
p =

∑T
t=1 α

∗
p,tzp(xt) such that f∗

p (xt) = θ
⊤zp(xt) in (36).

Lemma 5 demonstrates that the static regret of the Raker approach is upper bounded by some constants, which
mainly depend on the stepsize in (16) and the time horizon T .

In addition, we will bound the difference between the loss of the solution obtained from Algorithm 1 and the
loss of the best single kernel-based online learning algorithm. Specifically the following lemma holds:

Lemma 6 Without loss of generality, assume the cost ℓp,t(·) ∈ [−1, 1] in Assumption 2. Let {fp,t} be the

RF-based function estimators obtained from Algorithm 1, for any kernel p we have

T∑

t=1

P∑

p=1

w̄p,tℓt(fp,t(xt))−
T∑

t=1

ℓt(fp,t(xt)) ≤ ηT +
lnP

η
(37)

where η is the learning rate in (14), and P is the number of kernels in the dictionary.



Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

Proof: Defining Wt =
∑P

p=1 wp,t, the weight recursion in (14) implies that

Wt+1 =

P∑

p=1

wp,t+1

=

P∑

p=1

wp,t exp (−ηℓt (fp,t(xt)))

≤
P∑

p=1

wp,t

(

1− ηℓt (fp,t(xt)) + η2ℓt (fp,t(xt))
2
)

(38)

where the last inequality follows exp(−ηx) ≤ 1− ηx+ η2x2, for |η| ≤ 1. Furthermore, substituting the definition

w̄p,t := wp,t/
∑P

p=1 wp,t = wp,t/Wt into (38), it follows that

Wt+1 ≤
P∑

p=1

Wtw̄p,t

(

1− ηℓt (fp,t(xt)) + η2ℓt (fp,t(xt))
2
)

= Wt

(

1− η

P∑

p=1

w̄p,tℓt (fp,t(xt)) + η2
P∑

p=1

w̄p,tℓt (fp,t(xt))
2

)

(a)

≤ Wt exp

(

− η

P∑

p=1

w̄p,tℓt (fp,t(xt)) + η2
P∑

p=1

w̄p,tℓt (fp,t(xt))
2

)

(39)

where (a) follows from 1 + x ≤ ex, ∀x. Telescoping (39) from t = 1 to T , we have (W1 = 1)

WT+1 ≤ exp

(

− η

T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt)) + η2
T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt))
2

)

. (40)

On the other hand, for any p, the following holds true

WT+1 ≥ wp,T+1 = wp,1

T∏

t=1

exp(−ηℓt (fp,t(xt)))

= wp,1 exp

(

− η

T∑

t=1

ℓt (fp,t(xt))

)

. (41)

Combining (40) with (41), we arrive at

exp

(

−η
T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt))+η2
T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt))
2

)

≥ wp,1 exp

(

−η
T∑

t=1

ℓt (fp,t(xt))

)

. (42)

Taking the logarithm on both sides of (42), it follows that (cf. wp,1 = 1/P )

−η

T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt)) + η2
T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt))
2 ≥ −η

T∑

t=1

ℓt (fp,t(xt))− lnP (43)

which leads to

T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt)) ≤
T∑

t=1

ℓt (fp,t(xt)) + η

T∑

t=1

P∑

p=1

w̄p,tℓt (fp,t(xt))
2
+

lnP

η
(44)

from which the proof is complete since ℓt (fp,t(xt))
2 ≤ 1 and

∑P
p=1 w̄p,t = 1.
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Moreover, since the loss function ℓt(·) is convex, the following inequality holds

ℓt

( P∑

p=1

w̄p,tfp,t(xt)

)

≤
P∑

p=1

w̄p,tℓt (fp,t(xt)) . (45)

Plugging (45) into (37) in Lemma 6, we arrive at

T∑

t=1

ℓt

( P∑

p=1

w̄p,tfp,t(xt)

)

≤
T∑

t=1

ℓt (fp,t(xt)) + ηT +
lnP

η

(b)

≤
T∑

t=1

ℓt
(
f∗
p (xt)

)
+

lnP

η
+

‖θ∗
p‖2
2η

+
ηL2T

2
+ ηT (46)

where (b) follows from θ
∗
p is the optimal solution for any given kernel p, which leads to Lemma 1.

B Proof of Theorem 2

To derive the performance bound relative to the best function estimator f∗(xt) in the RKHS, the key step is
to bound the error of random feature approximation. For a given shift-invariant kernel κp, with probability at

least 1 − 28
(σp

ǫ

)2
exp

(−Dǫ2

4d+8

)
, the point-wise error of 2D-dimension random feature approximation is uniformly

bounded by [15]

sup
xi,xj∈X

∣
∣zp(xi)

⊤zp(xj)− κp(xi,xj)
∣
∣ < ǫ (47)

where ǫ > 0 is a given constant, D denotes the number of random Fourier features, while d represents the
dimension of original datum x, and σ2

p := Ep[v
⊤v] is the second order moments of the random Fourier features.

Henceforth, for the optimal function estimator (18) in Hp denoted by f∗
Hp

(x) =
∑T

t=1 α
∗
tκp(x,xt), defining the

corresponding function f̃∗
p :=

∑T
t=1 α

∗
t z

⊤
p (x)zp(xt) ∈ Fp, we have

∣
∣
∣
∣
∣

T∑

t=1

ℓt

(

f̃∗
p (xt)

)

−
T∑

t=1

ℓt

(

f∗
Hp

(xt)
)
∣
∣
∣
∣
∣

(a)

≤
T∑

t=1

∣
∣
∣ℓt

(

f̃∗
p (xt)

)

− ℓt(f
∗
Hp

(xt))
∣
∣
∣

(b)

≤
T∑

t=1

L

∣
∣
∣
∣
∣

T∑

i=1

α∗
i z

⊤
p (xi)zp(xt)−

T∑

i=1

α∗
i κp(xi,xt)

∣
∣
∣
∣
∣

(c)

≤
T∑

t=1

L

T∑

i=1

|α∗
i |
∣
∣z⊤p (xi)zp(xt)− κp(xi,xt)

∣
∣ (48)

where (a) follows from the triangle inequality, (b) uses the Lipschitz continuity of the loss function, and (c) is
due to the Cauchy-Schwarz inequality. Combining with (47) obtains

∣
∣
∣
∣
∣

T∑

t=1

ℓt(f̃
∗
p (xt))−

T∑

t=1

ℓt(f
∗
Hp

(xt))

∣
∣
∣
∣
∣
≤

T∑

t=1

Lǫ
T∑

i=1

|α∗
i | = ǫLT ‖f∗

Hp
‖1. (49)

Furthermore, since we assume κp(xi,xj) ≤ 1, ∀i, j, the uniform convergence in (47) also implies
sup

xi,xj∈X z⊤p (xi)zp(xj) ≤ 1 + ǫ, w.h.p., and it in turn leads to

‖θ∗
p‖2 =

∥
∥
∥
∥
∥

T∑

t=1

α∗
t zp(xt)

∥
∥
∥
∥
∥

2

≤ (1 + ǫ)‖f∗
Hp

‖21 (50)

where ‖f∗
Hp

‖1 :=
∑T

t=1 |α∗
t |.
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Therefore, Lemma 1 together with (49) and (50) leads to the regret of the proposed Raker algorithm compared
with the best static function in RKHS, i.e.,

T∑

t=1

ℓt

( P∑

p=1

wp,tfp,t(xt)

)

−
T∑

t=1

ℓt(f
∗
Hp

(xt))

=

T∑

t=1

ℓt

( P∑

p=1

wp,tfp,t(xt)

)

−
T∑

t=1

ℓt

(

f̃∗
p (xt)

)

+

T∑

t=1

ℓt

(

f̃∗
p (xt)

)

−
T∑

t=1

ℓt(f
∗
Hp

(xt))

≤ lnP

η
+

ηL2T

2
+ ηT +

(1 + ǫ)‖f∗
Hp

‖21
2η

+ ǫLT ‖f∗
Hp

‖1 (51)

which completes the proof of Theorem 2.

C Proof of Lemma 3

Following from Lemma 1, with η = 1√
T
, we have

T∑

t=1

ℓt

( P∑

p=1

wp,tfp,t(xt)

)

−
T∑

t=1

ℓt(f
∗
p∗(xt))≤

(

lnP +
‖θ∗

p∗‖2
2

+
L2

2
+ 1

)
√
T := c0

√
T (52)

where the index is defined as p∗ = argminp∈P
∑T

t=1 ℓt
(
f∗
p (xt)

)
. Therefore, for at the end of each instance I, we

can conclude that the static regret of the Raker learner AI is (cf. (28))

RegsAI
(|I|) =

∑

t∈I

ℓt

(

f
(I)
t (xt)

)

−
∑

t∈I

ℓt(f
∗
p∗(xt))≤ c0

√

|I| (53)

where f
(I)
t (xt) is defined in (25). To this end, we can sketch the main steps as follows.

For every interval I, the static regret of the ada-Raker learner A can be decomposed as

RegsA(|I|) =
∑

t∈I

ℓt (ft(xt))−
∑

t∈I

ℓt

(

f
(I)
t (xt)

)

︸ ︷︷ ︸

R1

+
∑

t∈I

ℓt

(

f
(I)
t (xt)

)

−
∑

t∈I

ℓt(f
∗
p∗(xt))

︸ ︷︷ ︸

R2

(54)

where R1 is the regret of the Ada-Raker learner A relative to the Raker learner AI , and R2 is the static regret
of AI on this interval. Notice that R2 can directly follow from (53), while R1 can be bounded following the
same steps as multiple kernel combinations in Lemma 6. Different from the kernel selections however, the crux
here is that the number of Raker learners (experts) here is time-varying, i.e., |I(t)|.
A tight bound can be resolved via the Sleeping Experts reformulation [31], meaning that the expert that has
never appeared before should be thought of as being asleep for all previous rounds. Nevertheless, to get a looser
estimate, we assume all the experts (instances {AI}) ever appeared until t are all active; that is, the total number
of experts is upper bounded by t log t, since at most log t experts are run during time t. Following (38)-(44), we
have that

R1 ≤ η(I)|I|+ ln(t log t)

η(I)
=
√

|I| (1 + ln t+ ln(log t)) ≤
√

|I| (1 + 2 ln t) (55)

where η(I) is chosen as η(I) = 1/
√

|I|, and ln(log t) ≤ ln(t). Together with (53), it follows that for any interval
I, we have

RegsA(|I|) =
√

|I| (1 + c0 + 2 ln t) ≤
√

|I| (1 + c0 + 2 lnT ) . (56)

Note that this bound only holds for those intervals (collected in I) (re)initializing Raker instance AI , since the
static regret bound (54) holds only at the end of such interval.

The next step is to show that for any interval I ⊆ T , the above sub-linear bound on RegsA(|I|) holds. This
extension can be done whenever the interval set I is properly designed. Specifically, the example of interval
partition given in Section 4.1 does have such desired properties, and the detailed arguments can follow [31, A.2].
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D Proof of Theorem 4

To start with, the dynamic regret in (26) can be decomposed by

RegdA(T ) :=
T∑

t=1

ℓt(ft(xt))−
T∑

t=1

ℓt(f
∗(xt)) +

T∑

t=1

ℓt(f
∗(xt))−

T∑

t=1

ℓt(f
∗
t (xt)) (57)

where f∗(·) is the best fixed function estimate in (18), and f∗
t (·) is the best dynamic function estimate in (27),

both of which belong to the space F :=
⋃

p∈P Hp. In (57), the first difference term is the static regret of the
AdaRaker algorithm, and the second difference term is the relative loss between the best fixed function estimate
and the best dynamic solution in the common function space.

Intuitively, if the time horizon T is quite large, then the average static regret will become small, but the gap
between two benchmarks is large. With the insights gained from [12, 36], the length of time horizon essentially
trades off the values of two terms. Thus, splitting T into sub-horizons {Ts}, s = 1, . . . , ⌊T/∆T ⌋ with each length
∆T , the dynamic regret of AdaRaker can be bounded by

RegdA(T )=

⌊T/∆T⌋
∑

s=1

∑

t∈Ts

(ℓt(ft(xt))− ℓt(f
∗(xt)))

︸ ︷︷ ︸

R1

+

⌊T/∆T⌋
∑

s=1

∑

t∈Ts

(ℓt(f
∗(xt))− ℓt(f

∗
t (xt)))

︸ ︷︷ ︸

R2

(58)

where R1 can be bounded under AdaRaker from Lemma 3, and R2 that depends on the variability of the
environments V({ℓt}), can be bounded by [12, Prop. 2]

R2 ≤ 2∆TV({ℓt}t∈Ts
). (59)

Together with Lemma 3, it follows that

RegdA(T ) ≤
⌊T/∆T⌋
∑

s=1

(

(C0 + C1 ln T )
√
∆T + 2∆TV({ℓt}t∈Ts

)
)

= (C0 + C1 lnT )
T

√

|∆T |
+ 2|∆T |V({ℓt}Tt=1). (60)

Since (29) in Lemma 3 holds for any interval ∆T ⊆ T , then selecting ∆T so that |∆T | =
(
T/V({ℓt}Tt=1)

) 2

3 , it
follows that

RegdA(T ) ≤ (C0 + C1 lnT )T
2

3V
1

3 ({ℓt}Tt=1) + 2T
2

3V
1

3 ({ℓt}Tt=1). (61)

The additional approximation error relative to the function in F :=
⋃

p∈P Hp can be derived following (48)-(49),
from which the proof is complete.


