
Online Ensemble Multi-kernel Learning Adaptive to
Non-stationary and Adversarial Environments

Yanning Shen⋆ Tianyi Chen⋆ Georgios B. Giannakis
Dept. of Electrical and Computer Engineering and the Digital Technology Center

University of Minnesota, Minneapolis

Abstract

Kernel-based methods exhibit well-
documented performance in various nonlin-
ear learning tasks. Most of them rely on
a preselected kernel, whose prudent choice
presumes task-specific prior information.
To cope with this limitation, multi-kernel
learning has gained popularity thanks to
its flexibility in choosing kernels from a
prescribed kernel dictionary. Leveraging the
random feature approximation and its recent
orthogonality-promoting variant, the present
contribution develops an online multi-kernel
learning scheme to infer the intended non-
linear function ‘on the fly.’ To further boost
performance in non-stationary environments,
an adaptive multi-kernel learning scheme
(termed AdaRaker) is developed with afford-
able computation and memory complexity.
Performance is analyzed in terms of both
static and dynamic regret. To our best
knowledge, AdaRaker is the first algorithm
that can optimally track nonlinear functions
in non-stationary settings with theoretical
guarantees. Numerical tests on real datasets
are carried out to showcase the effectiveness
of the proposed algorithms.

1 Introduction

Function approximation emerges in various learning
tasks such as regression, classification, as well as re-
inforcement learning [1, 2]. Kernel-based methods are
powerful tools for nonlinear function approximation
with strong theoretical guarantees. While most ker-

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s). The first two authors contribute equally.

nel methods utilize a pre-selected kernel, multi-kernel
learning (MKL) approaches have attracted attention,
thanks to their flexibility of selecting the task-specific
kernel based on a prescribed kernel dictionary [3, 4].

In addition to the attractive generalization capabil-
ity that can be achieved by kernel methods, several
learning tasks are also expected to be performed in
an online fashion. Such need naturally arises when
the data arrive sequentially, such as those in online
spam detection [5], and time series prediction [6]; or,
when the sheer volume of data makes it impossible to
carry out data analytics in batch form [7]. This mo-
tivates well online kernel-based learning methods that
inherit the merits of their batch counterparts, while at
the same time allowing efficient online implementation.
Taking a step further, the optimal function may it-
self change over time in non-stationary environments.
This is the case when the function of interest e.g., rep-
resents the state in brain networks, or, captures the
temporal processes propagating over time-varying net-
works. Tackling online kernel-based learning tasks in
non-stationary and possibly adversarial environments
remains a largely uncharted territory [7, 8].

In accordance with these needs and desiderata, the
primary goal of this paper is an algorithmic pursuit of
online multi-kernel learning in non-stationary environ-
ments, along with its performance guarantees. Major
challenges come from two aspects: i) the well-known
curse of dimensionality in kernel-based learning; and,
ii) the defiance of tracking unknown time-varying func-
tions without future information. Regarding i), the
representer theorem renders the size of kernel matrix
to grow quadratically with the number of data [9], thus
the computational complexity to find even the single

kernel-based predictor is cubic. Furthermore, storage
of past data causes memory overflow in large-scale
learning tasks such as those emerging in e.g., topol-
ogy identification of social and brain networks [10, 11],
which makes kernel-based methods less scalable rel-
ative to their linear counterparts. For ii), most on-
line learning settings presume stationarity, where an

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

algorithm achieving sub-linear regret incurs on aver-
age “no-regret” relative to the best static comparator.
Clearly, designing online schemes that are comparable
to the best dynamic solution is appealing though chal-
lenging without knowledge of the environment [7, 12].

1.1 Related work

We review prior art in this area from two aspects.

Kernel methods. Significant efforts have been de-
voted to scaling up kernel methods in batch settings.
Specifically, approaches to approximating the kernel
matrix using low-rank factorizations were proposed in
[13], and their performance was formally established
in [14]. More recently, random feature-based methods
gain popularity since the seminal work [15], whose per-
formance has been considerably improved thanks to
the fresh orthogonality promoting technique for vari-
ance reduction [16]. These approaches assume that
the kernel function is selected a priori, and this selec-
tion crucially depends on domain knowledge. Incorpo-
rating the kernel selection, several multi-kernel based
learning approaches have been proposed in [17, 3, 4],
and their performance gain has been observed relative
to their single kernel counterparts. However, all the
aforementioned methods are designed for batch set-
tings, and thus they are either intractable or become
less efficient in online setups. Especially when the op-
timal functions vary over time, the batch schemes fall
short in tracking the optimal predictors.

Online (multi-)kernel learning. Tailored for
streaming large-scale datasets, online kernel-based
learning methods have gained popularity recently. To
deal with the growing complexity of online kernel
learning, successful attempts have been made to design
budgeted kernel learning algorithms, including tech-
niques such as support vector (SV) removal [7, 18], and
SV merging [19]. Following the idea of budget mainte-
nance, online multi-kernel learning (OMKL) methods
have been studied in applications such as online clas-
sification [20, 8, 21], and regression [22]. Devoid the
need of budget maintenance, online kernel-based learn-
ing algorithms based on random feature approxima-
tion [15] have been recently developed in [23, 24], but
only learning with a pre-selected kernel is considered.
More importantly, existing online kernel-based learn-
ing approaches implicitly presume a stationary envi-
ronment, where the benchmark solution is the best
static function (a.k.a. static regret) [25]. However,
static regret is not a comprehensive metric in the gen-
eral non-stationary settings considered in this paper.

1.2 Our contributions

The present paper develops an adaptive online multi-
kernel learning algorithm, capable of learning a nonlin-
ear function from sequentially arriving data samples.
Relative to prior art, our contributions can be summa-
rized as follows.

c1) For the first time, random features are employed
for scalable online MKL tackled by a weighted combi-
nation of advices from an ensemble of experts - an in-
novative cross-fertilization of online learning to MKL.
Performance of the resultant algorithm (abbreviated
as Raker) is benchmarked by the best time-invariant
function approximant via static regret analysis.

c2) An adaptive algorithm (termed AdaRaker) is de-
veloped to tackle the multi-kernel learning task in non-
stationary setting, and analytically establish that the
AdaRaker solver yields sub-linear dynamic regret, so
long as the accumulated variation of per-slot minimiz-
ers grow sub-linearly with time.

c3) Our novel algorithms are applied to online re-
gression tasks, and tested numerically on several
real datasets, which demonstrates the effectiveness of
Raker and AdaRaker relative to popular alternatives.

1.3 Preliminaries

This section reviews basics of kernel-based learning,
which paves the road for developing our novel schemes.

Notation. Bold uppercase (lowercase) letters will de-
note matrices (column vectors), while (·)⊤ stands for
vector and matrix transposition, and ‖x‖ denotes the
ℓ2-norm of a vector x. Inequalities for vectors x > 0
are entry-wise. 〈·, ·〉 and 〈·, ·〉H denote the inner prod-
ucts in Euclidean and Hilbert spaces, respectively.

Setting. Given samples {(x1, y1), . . . , (xT , yT)}Tt=1

with xt ∈ R
d and yt ∈ R, the function approxima-

tion task is to find a function f(·) such that yn =
f(xn) + en, where en denotes an error term represent-
ing noise or un-modeled dynamics. Suppose that f(·)
belongs to a reproducing kernel Hilbert space (RKHS),
namely, i.e.,

H := {f |f(x) =
∞∑

t=1

αtκ(x,xt)} (1)

where κ(x,xt) : Rd × R
d → R is a basis (so-termed

kernel) function, which measures the similarity be-
tween x and xt. Different choices of κ specify var-
ious bases. One of the popular kernels is e.g., the
Gaussian one that is given by κ(x,xt) := exp[−(x −
xt)

2/(2σ2)]. A kernel is reproducing if it satisfies
〈κ(x,x1), κ(x,x2)〉 = κ(x1,x2), which in turn induces

Yanning Shen, Tianyi Chen, Georgios B. Giannakis

the RKHS norm ‖f‖2H =
∑

t

∑

t′ αtαt′κ(xt,xt′). Con-
sider the optimization problem

min
f∈H

L(f) := 1

T

T∑

t=1

ℓ(f(xt), yt) +
λ

2
‖f‖2H (2)

where depending on the application, the loss function
ℓ(·, ·) can be selected to be, e.g., the least-squares cost,
the logistic or hinge loss, and λ > 0 is a regularization
parameter. Thanks to the representer theorem, the
optimal solution of (2) admits the finite-dimensional
form, given by [9]

f(x) =

T∑

t=1

αtκ(x,xt) (3)

where {αt ∈ R}Tt=1 are combination coefficients. While
the scalar yt is used here for notational brevity, cover-
age can be readily generalized to the vector form.

Note that (2) relies on two facts: i) a properly
pre-selected kernel κ is known; and ii) all the data
{xt, yt}Tt=1 are available at hand. In the ensuing sec-
tions, an online MKL method will be proposed to se-
lect the optimal κ as a convex combination of multiple
kernels, when the data become available online.

2 Online MKL with random features

In this section, we develop an online algorithm to
simultaneously deal with kernel basis selections and
multiple kernel combinations. Our algorithm is based
on the recently proposed random feature-based tech-
niques [15, 16], and thus we term it random feature-
based multi-kernel (Raker) learning approach.

2.1 Kernel learning via random features

Kernel-based methods are challenged by the curse of
dimensionality, due to the fact that the optimal kernel
function depends on all the previous data samples [cf.
(3)]. Unlike online kernel learning schemes that rely
on budget maintenance strategies [26], the present sec-
tion explores an alternative approach for kernel-based
learning to make the subsequent online learning task
scalable with the sample size. This approach relies on
mapping the original data to random features (RFs),
and then applying existing linear online learning al-
gorithms in this new feature space [15]. Specifically,
given xt, the RF-based approach constructs a new fea-
ture representation zV(xt) ∈ R

2D, where D ≫ d,
V ∈ R

D×d is a random matrix that will be specified
later, and zV(x) approximates the kernel function by

k(xi,xj) ≃ z⊤
V
(xi)zV(xj). (4)

Hence, the function in the corresponding RKHS can
be approximated by (cf. (3))

f(x) ≃
T∑

t=1

αtz
⊤
V
(xt)zV(x) (5)

where θ :=
∑T

t=1 αtzV(xt) denotes the new weight
vector, the original kernel-based learning problem can
be transformed into a linear problem in the new 2D-
dimensional feature space, namely

f(x) ≃ θ
⊤zV(x). (6)

To efficiently approximate the kernel function, we will
confine our class to kernels that are shift invariant;
that is, κ(x1,x2) = κ(∆) with ∆ = x1 − x2, and
κ(0) = 1. With the shift-invariant property, view-
ing the positive definite κ(∆) as the inverse Fourier
transform of πκ(v), yields

κ(x1,x2) =

∫

πκ(v)e
jv⊤(x1−x2)dv

= Ev

[
ejv

⊤
x1 · e−jv⊤

x2

]
(7)

where last equality follows by treating πκ(v) as
the probability density function (pdf) of variable v.
Taking the Gaussian kernel as an example, where
κ(x1,x2) = exp

(
‖x1 − x2‖22/(2σ2)

)
, the correspond-

ing pdf π(v) = N (0, σ−2I) [15]. In this case, plugging

ejv
⊤
x1=cos(v⊤x1)+j sin(v⊤x1) into (7) yields

κ(x1,x2)=Ev

[
cos(v⊤x1) cos(v

⊤x2)+sin(v⊤x1) sin(v
⊤x2)

]

:=Ev

[
z⊤(x1)z(x2)

]
(8)

where z(x) := [sin(v⊤x), cos(v⊤x)]⊤. Clearly, D re-
alizations of RF z(x) can be obtained by randomly
sampling {v1, . . . ,vD} from πκ(v), that is

zV(x) := (9)
√

1

D
[sin(v⊤

1 x), cos(v
⊤
1 x), . . . , sin(v

⊤
Dx), cos(v⊤

Dx)]

where the entries of V := [v1, . . . ,vD]⊤ ∈ R
D×d are

i.i.d. Gaussian. Thanks to (5), the nonparametric
learning task is then approximated as a linear learning
task in the Fourier feature space. Specifically, with the
loss function [cf. (6)]

ℓt(f(xt)) := ℓ(f(xt), yt) = ℓ(θ⊤zV(xt), yt) (10)

the online learning task becomes minθ∈R2D

∑T
t=1

ℓ(θ⊤zV(xt), yt). Upon obtaining a new datum xt,
the representations of the data instance zV(xt) can
be generated via (9), and online gradient descent can
be applied to refine the estimator ‘on the fly,’ i.e.,

θt+1 = θt − ηt∇ℓ(θ⊤
t zV(xt), yt) (11)

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

where {ηt} denotes the sequence of stepsizes, and
∇ℓ(θ⊤

t zV(xt), yt) the gradient with respect to the
weight θ at θ = θt. The update (11) is still a func-

tional update in that it is tantamount to updating the
function ft(·) = θ

⊤
t zV(·), but the neat thing here is

that this function is in the span of {zV(x), ∀x ∈ X}.

Variance-reduced RF. Even if z⊤
V
(x1)zV(x2) is

an unbiased estimator of κ [cf. (8)], the variance
z⊤
V
(x1)zV(x2) decays as D increases. This explains

why the RF vector dimension is chosen to satisfy
D ≫ d. [15]. Next we will leverage a recent intriguing
discovery in [16] to markedly reduce the variance of RF
approximation by enforcing orthogonality on the rows
of V. For the original RF approach on a Gaussian
kernel with bandwidth σ2, recall that V = σ−1G in
(9), where each entry of G follows standardized Gaus-
sian pdf. For the variance-reduced RF method, with
D = d, VORF is formed as

VORF =
1

σ
SQ (12)

where Q ∈ R
d×d is a uniformly distributed random

orthonormal matrix, and S denotes a diagonal ma-
trix with diagonal entries drawn i.i.d. from χ distri-
bution with d degrees of freedom. Matrix S is intro-
duced to ensure unbiasedness of the kernel approxima-
tion [16]. With D > d, several weighted orthonormal
matrices can be generated independently from (12),
and concatenated to form VORF. It turns out that
z⊤
VORF

zVORF
with zVORF

generated as in (9), with
VORF replacing V, has variance smaller than σ2[16].
Through such orthogonal-promoting RF generation,
the number of random features needed to achieve cer-
tain accuracy can be markedly reduced.

The RF-based online kernel learning scheme in this
section presumes that κ is known a priori. Since this
is not generally possible, it is more prudent to adap-
tively select kernels from a dictionary with a set of
kernel functions, for which the online ensemble learn-
ing scheme in the next section will play a key role.

2.2 Online MKL in stationary settings

Here we preselect a dictionary of possible kernel func-
tions, and then adaptively combine kernels in the dic-
tionary [3]. Specifically, given a dictionary of kernels
{κp}Pp=1 and the RKHSHp induced by κp, the solution
of (2) is expressible in a separable form as [27]

ft(x) :=

P∑

p=1

w̄p,tfp,t(x) (13)

where fp,t(x) belongs to RKHS Hp, for p = 1, . . . , P ,
and w̄p,t ∈ [0, 1] denotes the normalized weight for the
pth kernel-based function estimator at time slot t.

To make use of the dictionary, {w̃p,t}Pp=1 should be
learnt and adjusted in an online fashion. This task fits
well the celebrated online learning paradigm, a.k.a.,
online prediction with expert advice [28, 29]. Specif-
ically, treating {w̃p,t} as an expert, we formulate the
multi-kernel based learning problem as an online pre-
diction task with expert advice. Upon obtaining a
data sample, the un-normalized weights are updated
according to the loss incurred by each learner as

wp,t+1 = wp,t exp(−ηℓt(fp,t(xt))) (14)

where η ∈ (0, 1) is a chosen constant that controls
the adaptation rate of {wp,t}. Relative to {wp,t}, the
normalized weights in (13) w̄p,t := wp,t/

∑P
p=1 wp,t, ∀t.

Moreover, it can be observed that when fp,t incurs
larger relative to other fp′,t with p′ 6= p loss at time
slot t, the corresponding combination weight decreases
in the next time slot. In other words, a more accurate
learner tends to play more important role in predicting
the upcoming data.

However, relative to the generic expert advice prob-
lem [28, 29], the difference here is that the kernel-based
function estimator itself performs efficient online learn-
ing scheme for self-improvement. Indeed, the random
feature approximation in Section 2.1 enables the effi-
cient and scalable self-learning for each kernel-specific
expert. Specifically, for the expert associated with ker-
nel p, a feature representation zp(xt) will be randomly
generated from a kernel-specific distribution given da-
tum xt (cf. (9)), where we use zp(xt) = zVp

(xt) for
notational simplicity, and each function estimator at
time t can be written as

fp,t(xt) ≃ θ
⊤
p,tzp(xt) (15)

where θp,t is the parameter in (6) at time t for kernel
p. Similar to (11), the pth kernel, θp,t is updated via

θp,t+1 = θp,t − η∇ℓ(θ⊤
p,tzp(xt), yt) (16)

where we use ℓ(fp,t(xt), yt) = ℓ(θ⊤
p,tzp(xt), yt). The

Raker algorithm is summarized in Algorithm 1.

Complexity. At the t-th iteration of Algorithm 1,
the memory required is fixed and of order O(D).
Regarding computational overhead, the per-iteration
computational complexity is of order O(D) compared
with at leastO(dt) for OMKL [22], hence the proposed
algorithm is more computationally efficient than con-
ventional MKL [4] or OMKL. This explains the effec-
tiveness of the novel Raker algorithm.

2.3 Static regret analysis

To analyze the performance of Raker, we assume that
the following conditions are satisfied.

Yanning Shen, Tianyi Chen, Georgios B. Giannakis

Algorithm 1 Raker for stationary settings

1: Input: Kernels κp, p = 1, . . . , P , step size η > 0,
and number of random features D.

2: Initialization: θ1 = 0.
3: for t = 1, 2, . . . , T do
4: Receive a streaming datum xt.
5: Construct zp(xt) via (9) for p = 1, . . . , P .
6: Predict ft(xt) via (13) with fp,t(xt) in (15).
7: for p = 1, . . . , P do
8: Obtain loss ℓ(θ⊤

p,tzp(xt), yt).
9: Update wp,t+1 via (14).

10: Update θp,t+1 via (16).
11: end for
12: end for

Assumption 1 For every slot t, the loss function

ℓ(θ⊤zV(xt), yt) in (10) is convex w.r.t. θ.

Assumption 2 For θ belonging to a bounded set Θ,

the loss is bounded; i.e., ℓ(θ⊤zV(xt), yt) ∈ [−1, 1], and
has bounded gradient; i.e., ‖∇ℓ(θ⊤zV(xt), yt)‖ ≤ L.

Assumption 3 Each κp is a shift-invariant kernel

with bounded entry, i.e., κp(xi,xj)≤ 1, ∀xi,xj. Also

‖x‖ ≤ 1 and ‖f∗
Hp

‖1 :=
∑T

t=1 |α∗
t | ≤ C.

Assumption 1 enforces convexity of the loss, which is
standard in online convex optimization (OCO) [25].
Assumption 2 ensures the losses are bounded, and the
gradient of the loss function are bounded, which is
also called L-Lipschitz continuity that is also common
in OCO [30]. Assumption 3 bounds the norm of the
optimal function [23]. When the boundedness of the
losses is common given the bounded datum xt, the
Lipschitz continuity is also not restrictive. Consider-
ing the kernel-based ridge regression as an example,
the gradient w.r.t. θ is (θ⊤zV(xt)− yt)zV(xt). Since
the loss function is bounded, e.g., ‖θ⊤zV(xt)−yt‖ ≤ 1,
and the random feature in (9) can be bounded by
‖zV(xt)‖ ≤ 1, thus the constant L can be bounded
by L ≤ 1 using the Cauchy-Schwartz inequality. In
general, Assumptions 1-3 are common in kernel-based
learning tasks [4, 27, 23].

With regard to performance of an online algorithm,
static regret is commonly adopted as a metric by most
OCO schemes, and measures the difference between
the aggregate loss of an OCO algorithm and that of the
best fixed solution in hindsight [25, 30]. Specifically,
for the sequence of online functions {ft} generated by
a kernel learning algorithm A, its static regret is

RegsA(T) :=
T∑

t=1

ℓt(ft(xt))−
T∑

t=1

ℓt(f
∗(xt)) (17)

where the best static function estimator f∗(·) is ob-

tained through the following batch optimization

f∗(·) ∈ argmin
f∈F

T∑

t=1

ℓt(f(xt)) (18)

where the function space is F :=
⋃

p∈P Hp by default,
with Hp representing the RKHS induced by κp. With
this definition in hand, we first establish the static
regret of our Raker approach in the following lemma.

Lemma 1 Consider Assumptions 1 and 2 are satis-

fied, and f∗
p (·) denotes the best static solution in (18)

with Fp := {fp|fp(x) = θ
⊤zp(x), ∀θ ∈ R

2D}. For the

sequences {fp,t} and {w̄p,t} generated by the Raker al-

gorithm, the following bound holds

T∑

t=1

ℓt

(P∑

p=1

w̄p,tfp,t(xt)

)

−
T∑

t=1

ℓt(f
∗
p (xt))

≤ lnP

η
+
‖θ∗

p‖2
2η

+
ηL2T

2
+ ηT (19)

where θ
∗
p is formed by the parameters of the best func-

tion estimator in Fp, i.e., f
∗
p (x) =

(
θ
∗
p

)⊤
zp(x).

In addition to the static regret bound of the Raker al-
gorithm, the next theorem characterizes the difference
between the loss of online MKL algorithm relative to
the best functional estimator in the original RKHS.

Theorem 2 In addition to the conditions of Lemma

1, consider that Assumption 3 is also satisfied. If

f∗
Hp

is the best static function estimator in (18) be-

longing to the RKHS Hp, with probability at least

1− 28
(σp

ǫ

)2
exp

(−Dǫ2

4d+8

)
, the following bound holds

T∑

t=1

ℓt

(
P∑

p=1

w̄p,tfp,t(xt)

)

− min
p∈{1,...,P}

T∑

t=1

ℓt

(

f∗
Hp

(xt)
)

≤ lnP

η
+
(1+ǫ)‖f∗

Hp
‖21

2η
+
ηL2T

2
+ηT+ǫLT ‖f∗

Hp
‖1 (20)

where ǫ > 0 is a constant, d is the original feature

dimension, and D is the number of random features,

while σ2
p := E

πκp

V
[v⊤v] is the second moment of ran-

dom features. Setting η = ǫ = O(1/
√
T) leads to

RegsRaker(T) = O(
√
T) (21)

where the benchmark is from the RKHS
⋃

p∈P Hp.

Observe that the probability in (20) gets larger as D
increases. For a given ǫ, one can always find an appro-
priate D to ensure a positive probability. Hence, for
subsequent discussions, we only use “with high proba-
bility” (w.h.p.) to simplify the exposition. Theorem 2

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

demonstrates that with appropriate choice of param-
eters, the novel Raker algorithm achieves sub-linear
regret relative to the best static functional estimation
in the original function space

⋃

p∈P Hp.

3 Online Ensemble MKL in

Non-stationary Environments

The Racker algorithm in Section 2 is capable of com-
bining different kernel learners ‘on the fly.’ Target-
ing an optimal scheme in dynamic environments, an
adaptive Raker approach (termed AdaRaker) will
be developed in this section.

3.1 An ensemble online MKL approach

To improve performance of the online MKL algorithm,
the choice of learning rate η in (14) and (16) can be
crucial. Especially in dynamic environments, a large
learning rate helps better track the variation of the
optimal function estimator, while a smaller one allows
the algorithm to tune the unknown parameters in a
fine-grained manner. As a result, the optimal choice
of ηt explicitly depends on the variability of the op-
timal function estimator [7, 12]. However, it is often
impractical to choose a sequence of optimal stepsizes
{ηt}, whenever the variability of underlying environ-
ments is unknown a priori. In this context, we develop
an adaptive Raker method next.

Akin to combining multiple RF-based kernel predic-
tors in Section 2, the idea here is to hedge between
multiple Raker learners with different learning rates.
We consider each Raker instance in Algorithm 1 as a
black box algorithm AI , where the subscript I rep-
resents the algorithm running on interval I := [I, Ī]
starting from slot I to slot Ī. Let a pre-selected set
I collect all these intervals, the design of which will
be specified later. At the beginning of each inter-
val I ∈ I, a new instance of online Raker algorithm
AI is initialized with an interval-specific learning rate
η(I) := min{1/2, η0/

√

|I|} with constant η0 > 0. Due
to the possible overlapping between intervals, multiple
Raker algorithms AI will be run in parallel. In this
case, the set I(t) collects all the active intervals at the
current slot t, given by

I(t) := {I ∈ I | t ∈ [I, Ī]}, ∀t ∈ T . (22)

For each Raker instance AI with I ∈ I(t), let f
(I)
t (·)

denote its output at time t that is a combination
of multiple kernel-based function estimators, and let

ℓt(f
(I)
t (xt)) represent its instantaneous loss. The out-

put of the ensemble learner A at time t is the weighted

combination of all the learners’ outputs {f (I)
t , ∀I ∈

I(t)}. With h
(I)
t denoting the weight of the Raker

instance AI , we will update it online via

h
(I)
t+1 =







0, if t /∈ I

η(I), if t = I

h
(I)
t exp

(
− η(I)r

(I)
t

)
, else

(23)

where I is the first time slot of interval I, and the loss
of AI relative to the overall loss is

r
(I)
t = ℓt(ft(xt))− ℓt(f

(I)
t (xt)), ∀I ∈ I(t). (24)

Intuitively, one would wish to decrease (increase) the
weights of those instances with small (large) losses in
future rounds. Using update (23), and defining the

normalized weight as h̄
(I)
t = h

(I)
t /

∑

J∈I(t) h
(J)
t , the

overall output is given by

ft(x)=
∑

I∈I
h̄
(I)
t f

(I)
t (x)=

∑

I∈I
h̄
(I)
t

∑

p∈P
w̄

(I)
p,t f

(I)
p,t (x) (25)

where {w̄(I)
p,t } are the weights of the kernel combination

generated by learner AI (cf. (13)). The AdaRaker
scheme is summarized in Algorithm 2.

Selecting judiciously variable-length intervals in I can
affect performance critically. The criterion for achiev-
ing interval regret has been discussed in [31]. In-
stead, our pursuit is an ensemble MKL method in
environments with unknown dynamics using scalable
RF-based function approximants. When each interval
is long, the Raker algorithm works well on each in-
terval if the loss function is slow-varying, but incurs
a higher loss when the objective experiences a rapid
change. On the other hand, a short interval can hedge
against a possibly rapid change, but its performance
on each interval could be degraded. A simple yet effi-
cient interval partitioning scheme follows.

Illustration of interval sets: One example is to

partition the entire horizon into intervals with length

20, 21, 22, Intervals of length 2j with a given j ∈ N

are consecutively assigned without overlapping start-

ing from t = 2j. In this case, define a set of inter-

vals Ij = [Ij , Īj] such that the length of the intervals

|Ij | = Īj − Ij + 1 = 2j , j ∈ N. Therefore, each time

slot t is covered by a set of at most ⌈log2 t⌉ intervals,

which forms the active set of intervals I(t) at time t.

3.2 Regret analysis in dynamic environments

Section 2.3 implicitly assumes that the optimal func-
tion estimator does not change with time. In non-
stationary environments however, the optimal function
may change over time. The focus here is to provide
theoretical justification of AdaRaker in those settings.

Yanning Shen, Tianyi Chen, Georgios B. Giannakis

Algorithm 2 AdaRaker for non-stationary settings

1: Initialization: learner weights {h(I)
1 }, and their

learning rates {η(I)}.
2: for t = 1, 2, . . . , T do

3: Obtain f
(I)
t (xt) from each MKL AI , I ∈ I(t).

4: Predict ft(xt) via Raker combination (25).
5: Observe function ℓt, and incur ℓt(ft(xt)).
6: for I ∈ I(t) do
7: Incur loss ℓt(f

(I)
t (xt)) and update f

(I)
t (·).

8: Update weights h
(I)
t+1 via (23).

9: end for
10: end for

In response to the quest for improved benchmarks, we
consider dynamic regret in this context. The notion of
dynamic regret (a.k.a. tracking regret) has been intro-
duced in [12, 31, 32] to offer a competitive performance
measure of online algorithms. It is defined as

RegdA(T) :=
T∑

t=1

ℓt(ft(xt))−
T∑

t=1

ℓt(f
∗
t (xt)) (26)

where the benchmark is formed via a sequence of best
dynamic solutions {f∗

t } for the online problem, i.e.,

f∗
t (·) ∈ argmin

f∈F
ℓt(f(xt)) (27)

where F :=
⋃

p∈P Hp by default, with Hp representing
the RKHS induced by κp. It follows from the defini-
tions (18) and (27) that the dynamic regret is always
larger than the static regret in (17). Therefore, a sub-
linear dynamic regret implies a sub-linear static regret,
but not vice versa. Given a sequence of loss functions
{ℓt}, the goal is to generate a sequence of functions
{ft} that minimize the dynamic regret. Before ana-
lyzing the dynamic regret of AdaRaker, we first intro-
duce an intermediate result regarding the static regret
on any sub-interval I ⊆ T .

Lemma 3 Suppose Assumptions 1-3 are satisfied,

and define the static regret on any interval I ⊆ T as

RegsA(|I|) :=
∑

t∈I

ℓt(ft(xt))−
∑

t∈I

ℓt(f
∗
I (xt)) (28)

where |I| denotes the length of interval I, and the fixed

solution is f∗
I ∈argminf∈

⋃
p∈P

Fp

∑

t∈I ℓt(f(xt)), with

Fp := {fp|fp(x) = θ
⊤zp(x), ∀θ ∈ R

2D}. Then for

any interval I ⊆ T , the following bound holds

RegsAdaRaker(|I|) ≤ C0

√

|I|+ C1 lnT
√

|I| (29)

where C0 and C1 are fixed positive constants.

Lemma 3 implies that by combining Raker learners
with different learning rates, AdaRaker can achieve
sub-linear static regret at any interval I with arbitrary
interval length. This also holds for intervals overlap-
ping with multiple intervals. Clearly, the best fixed
solution in (28) is interval specific, which can vary over
different intervals. Therefore, the functions generated
by AdaRaker can compete with a time-varying com-
parator. Indeed, this intuition will become concrete in
the next theorem, where the dynamic regret is estab-
lished for our AdaRaker approach.

Theorem 4 Suppose Assumptions 1-3 are satisfied,

and define the accumulated variation of losses as

V({ℓt}Tt=1) :=
T∑

t=1

max
f∈F

∣
∣ℓt+1(f(xt+1))−ℓt(f(xt))

∣
∣ (30)

where the function space is F :=
⋃

p∈P Hp. Then

AdaRaker yields a dynamic regret in (26) bounded by

RegdAdaRaker(T) ≤(2 + C0 + C1 lnT)T
2

3V
1

3 ({ℓt}Tt=1)

=Õ
(

T
2

3V
1

3 ({ℓt}Tt=1)
)

, w.h.p. (31)

where C0 and C1 are universal constants, and Õ ne-

glects the terms with a polynomial log T rate.

Theorem 4 asserts that the AdaRaker’s dynamic regret
depends on the variation of loss functions in (30) and
the horizon T . Interesting enough, whenever the loss
functions do not vary on average, i.e., V({ℓt}Tt=1) =
o(T), our AdaRaker approach is able to achieve sub-
linear dynamic regret.

4 Experiments

The present section tests the performance of our novel
algorithms for online regression tasks. We compared
Raker and AdaRaker with online multi-kernel learning
algorithm (OMKL) [22] and its adaptive version that
we term AdaMKL, and online (single) kernel based
learning using Gaussian kernels (RBF) with band-
width σ2 = {0.1, 1, 10}. Note that AdaMKL has not
been proposed in literature, but we add it only for com-
parison purposes. All the considered MKL approaches
use Gaussian kernels with σ2 = {0.1, 1, 10}, step-sizes
of the single kernel based learning algorithms are set to
η = 1/

√
T for all algorithms, and η = 0.5 and λ = 0.01

for all MKL approaches. Entries of {xt} and {yt} are
normalized to lie in [0, 1]. For RF-based approaches,
D = 50 orthogonal random features were used.

Datasets. Performance is tested on several bench-
mark datasets [33]. The twitter dataset consists of
time series of T = 6, 000 samples with xt ∈ R

77 and

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

0 500 1000 1500 2000 2500 3000 3500
Iteration

10-2

10-1

100
M

SE
AdaMKL
OMKL

RBF(σ2=1)

RBF(σ2=10)

RBF(σ2=0.1)
AdaRaker
Raker

0 2000 4000 6000 8000
Iteration

10-3

10-2

10-1

100

M
SE

AdaMKL
OMKL

RBF(σ2=1)

RBF(σ2=10)

RBF(σ2=0.1)
AdaRaker
Raker

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration

10-3

10-2

10-1

100

M
SE

AdaMKL
OMKL

RBF(σ2=1)

RBF(σ2=10)

RBF(σ2=0.1)
AdaRaker
Raker

(a) (b) (c) (d)

Figure 1: MSE performance: a) Twitter; b) Tom’s hardware; c) energy efficiency; and, d) air quality.

AdaMKL OMKL RBF1 RBF10 RBF01 AdaRaker Raker
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 r
un

tim
e

AdaMKL OMKL RBF1 RBF10 RBF01 AdaRaker Raker
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 r
un

tim
e

AdaMKL OMKL RBF1 RBF10 RBF01 AdaRaker Raker
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 r
un

tim
e

AdaMKL OMKL RBF1 RBF10 RBF01 AdaRaker Raker
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 r
un

tim
e

(a) (b) (c) (d)

Figure 2: Normalized CPU time: a) Twitter; b) Tom’s hardware; c) energy efficiency; and, d) air quality.

the Tom’s hardware dataset contains T = 10, 000 fea-
ture vectors each of size 96, while yt represents the
average number of active discussion about a certain
topic on twitter and Tom’s hardware [34]. The energy
dataset consists of T = 10, 000 data, with xt ∈ R

27 de-
scribes the humidity and temperature in and outside
the rooms, and yt denotes the energy use of light fix-
tures in the house [35]. The air quality dataset collects
the sensor responses as {xt ∈ R

13}9,358t=1 , to predict the
concentration of polluting chemicals yt.

Performance. The performance of different al-
gorithms is plotted in Figure 1 in terms of the
mean-square error MSE(t) := (1/t)

∑t
τ=1 (yτ − ŷτ)

2.
Clearly, Raker achieves competitive performance, and
its adaptive variant AdaRaker consistently yields the
lowest MSE, especially when abrupt changes occur;
e.g., when the underlying models are changing. This
observation meets our intuition of designing AdaRaker
methods. Aligned with the motivation of using mul-
tiple kernels, all MKL methods outperform the algo-
rithms using only a single kernel. The normalized CPU
time of all the considered schemes is depicted in Fig-
ure 2. A sharp observation is that our RF-based MKL
methods including Raker and AdaRaker are computa-
tionally more efficient than other online (multi-)kernel
methods. Running multiple instances of Raker in par-
allel, the complexity of AdaRaker is higher than Raker,
but its runtime is still only around 20% of that of
AdaMKL, and similar to single-kernel alternatives.

5 Conclusions

We considered the multi-kernel learning problem in
non-stationary and adversarial environments. Lever-
aging recent advances in variance-reduced random fea-
ture approximation, we developed a scalable online
multi-kernel learning approach that we term Raker.
Endowing Raker with capability of tracking time-
varying optimal functions, we proposed AdaRaker
that is an ensemble version of Raker with variable
learning rates. Careful design allows AdaRacker to
adapt learning rates to non-stationary and possibly
adversarial environments. Rigorous analysis demon-
strates that without a-priori knowledge of environ-
ments, AdaRaker achieves sub-linear dynamic regret,
provided that either the loss function or the optimal
function solution does not change on average. To our
best knowledge, AdaRaker is the first algorithm that
optimally tracks nonlinear functions in non-stationary
settings with theoretical guarantees. Experiments on
real datasets validate the effectiveness of our methods.

Acknowledgements

This work is supported in part by the National Sci-
ence Foundation under Grant 1500713 and 1711471,
and NIH 1R01GM104975-01. Tianyi Chen is also sup-
ported by the Doctoral Dissertation Fellowship from
the University of Minnesota.

Yanning Shen, Tianyi Chen, Georgios B. Giannakis

References

[1] J. Shawe-Taylor and N. Cristianini, Kernel Meth-

ods for Pattern Analysis. Cambridge, United
Kingdom: Cambridge University Press, 2004.

[2] B. Dai, N. He, Y. Pan, B. Boots, and L. Song,
“Learning from conditional distributions via dual
embeddings,” in Proc. Intl. Conf. on Artificial

Intelligence and Statistics, Fort Lauderdale, FL,
Apr. 2017, pp. 1458–1467.

[3] C. Cortes, M. Mohri, and A. Rostamizadeh, “ℓ2-
regularization for learning kernels,” in Proc. Conf.

on Uncertainty in Artificial Intelligence, Mon-
treal, Canada, Jun. 2009, pp. 109–116.

[4] J. A. Bazerque and G. B. Giannakis, “Nonpara-
metric basis pursuit via sparse kernel-based learn-
ing: A unifying view with advances in blind meth-
ods,” IEEE Signal Processing Magazine, vol. 30,
no. 4, pp. 112–125, Jul. 2013.

[5] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker,
“Identifying suspicious URLs: An application of
large-scale online learning,” in Proc. Intl. Conf.

Mach. Learn., Montreal, Canada, Jun. 2009, pp.
681–688.

[6] C. Richard, J. C. M. Bermudez, and P. Honeine,
“Online prediction of time series data with ker-
nels,” IEEE Trans. Sig. Proc., vol. 57, no. 3, pp.
1058–1067, Mar. 2009.

[7] J. Kivinen, A. J. Smola, and R. C. Williamson,
“Online learning with kernels,” IEEE Trans. Sig.

Proc., vol. 52, no. 8, pp. 2165–2176, Aug. 2004.

[8] S. C. Hoi, R. Jin, P. Zhao, and T. Yang, “Online
multiple kernel classification,” Machine Learning,
vol. 90, no. 2, pp. 289–316, Feb. 2013.

[9] G. Wahba, Spline Models for Observational Data.
Philadelphia, PA: SIAM, 1990.

[10] Y. Shen, B. Baingana, and G. B. Gian-
nakis, “Nonlinear structural vector autore-
gressive models for inferring effective brain
network connectivity,” 2016. [Online]. Available:
https://arxiv.org/abs/1610.06551

[11] ——, “Kernel-based structural equation models
for topology identification of directed networks,”
IEEE Trans. Sig. Proc., vol. 65, no. 10, pp. 2503–
2516, May 2017.

[12] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary
stochastic optimization,” Operations Research,
vol. 63, no. 5, pp. 1227–1244, Sep. 2015.

[13] C. K. Williams and M. Seeger, “Using the
Nyström method to speed up kernel machines,”
in Proc. Advances in Neural Info. Process. Syst.,
Vancouver, Canada, Dec. 2001, pp. 682–688.

[14] C. Cortes, M. Mohri, and A. Talwalkar, “On the
impact of kernel approximation on learning ac-
curacy,” in Proc. Intl. Conf. on Artificial Intel-

ligence and Statistics, Sardinia, Italy, May 2010,
pp. 113–120.

[15] A. Rahimi and B. Recht, “Random features for
large-scale kernel machines,” in Proc. Advances in

Neural Info. Process. Syst., Vancouver, Canada,
Dec. 2007, pp. 1177–1184.

[16] X. Y. Felix, A. T. Suresh, K. M. Choromanski,
D. N. Holtmann-Rice, and S. Kumar, “Orthogo-
nal random features,” in Proc. Advances in Neural

Info. Process. Syst., Barcelona, Spain, Dec. 2016,
pp. 1975–1983.

[17] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E.
Ghaoui, and M. I. Jordan, “Learning the kernel
matrix with semidefinite programming,” J. Ma-

chine Learning Res., vol. 5, pp. 27–72, Jan. 2004.

[18] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The
forgetron: A kernel-based perceptron on a bud-
get,” SIAM J. Computing, vol. 37, no. 5, pp.
1342–1372, Jan. 2008.

[19] Z. Wang, K. Crammer, and S. Vucetic, “Breaking
the curse of kernelization: Budgeted stochastic
gradient descent for large-scale svm training,” J.

Machine Learning Res., vol. 13, pp. 3103–3131,
Oct. 2012.

[20] R. Jin, S. C. Hoi, and T. Yang, “Online multiple
kernel learning: Algorithms and mistake bounds,”
in Proc. Intl. Conf. on Algorithmic Learning The-

ory, Canberra, Australia, Oct. 2010, pp. 390–404.

[21] D. Sahoo, S. C. Hoi, and P. Zhao, “Cost sensi-
tive online multiple kernel classification,” in Proc.

Asian Conf. Machine Learning, Hamilton, New
Zealand, Nov. 2016, pp. 65–80.

[22] D. Sahoo, S. C. Hoi, and B. Li, “Online multiple
kernel regression,” in Proc. Intl. Conf. on Knowl-

edge Discovery and Data Mining, New York,
USA, Aug. 2014, pp. 293–302.

[23] J. Lu, S. C. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu,
“Large scale online kernel learning,” J. Machine

Learning Res., vol. 17, no. 47, pp. 1–43, Apr. 2016.

[24] P. Bouboulis, S. Chouvardas, and S. Theodor-
idis, “Online distributed learning over networks
in RKH spaces using random fourier features,”
arXiv preprint:1703.08131, Mar. 2017.

Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments

[25] S. Shalev-Shwartz, “Online learning and on-
line convex optimization,” Found. and Trends in

Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011.

[26] K. Crammer, J. Kandola, and Y. Singer, “Online
classification on a budget,” in Proc. Advances in

Neural Info. Process. Syst., 2004, pp. 225–232.

[27] C. A. Micchelli and M. Pontil, “Learning the
kernel function via regularization,” J. Machine

Learning Res., vol. 6, pp. 1099–1125, Jul. 2005.

[28] V. G. Vovk, “A game of prediction with expert
advice,” in Proc. Annual Conf. Computational

Learning Theory, Santa Cruz, CA, Jul. 1995, pp.
51–60.

[29] N. Cesa-Bianchi and G. Lugosi, Prediction,

Learning, and Games. Cambridge, United King-
dom: Cambridge University Press, 2006.

[30] E. Hazan, “Introduction to online convex opti-
mization,” Found. and Trends in Mach. Learn.,
vol. 2, no. 3-4, pp. 157–325, 2016.

[31] A. Daniely, A. Gonen, and S. Shalev-Shwartz,
“Strongly adaptive online learning.” in Proc. Intl.

Conf. on Machine Learning, Lille, France, Jun.
2015, pp. 1405–1411.

[32] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and
K. Sridharan, “Online optimization: Competing
with dynamic comparators,” in Intl. Conf. Artifi-

cial Intell. and Stat., San Diego, CA, May 2015.

[33] M. Lichman, “UCI machine learn-
ing repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[34] F. Kawala, A. Douzal-Chouakria, E. Gaussier,
and E. Dimert, “Prédictions d’activité dans les
réseaux sociaux en ligne,” in 4ième Conférence

sur les Modèles et l’Analyse des Réseaux: Ap-

proches Mathématiques et Informatiques, 2013.

[35] L. M. Candanedo, V. Feldheim, and D. Deramaix,
“Data driven prediction models of energy use of
appliances in a low-energy house,” Energy and

Buildings, vol. 140, pp. 81–97, 2017.

[36] H. Luo, A. Agarwal, and J. Langford, “Efficient
contextual bandits in non-stationary worlds,”
arXiv preprint:1708.01799, Aug. 2017.

