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Abstract

Generative Adversarial Networks (GANS)
have become a widely popular framework
for generative modelling of high-dimensional
datasets. However their training is known
to be difficult. This work presents a rig-
orous statistical analysis of GANs provid-
ing straight-forward explanations for com-
mon training pathologies such as vanishing
gradients. Furthermore, it proposes a new
training objective, Kernel GANs, and demon-
strates its practical effectiveness on real-
world data sets. A key element in the anal-
ysis is the distinction between training with
respect to the (unknown) data distribution,
and its empirical counterpart. To overcome
issues in GAN training, we pursue the idea
of smoothing the Jensen-Shannon Divergence
(JSD) by incorporating noise in the input dis-
tributions of the discriminator. As we show,
this effectively leads to an empirical version
of the JSD in which the true and the gener-
ator densities are replaced by kernel density
estimates, which leads to Kernel GANs.

1 INTRODUCTION

Generative Adversarial Networks (GANs), introduced
by (Goodfellow et al.| (20144a), have become a widely
popular framework for generative modeling using deep
neural networks. While practitioners find that GANs
— particularly for image data — produce sharp and re-
alistic samples, it is well recognized that GANs are
difficult to train. Key challenges are: vanishing gradi-
ents, local optima leading to mode collapse, high sen-
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sitivity to hyperparameters, and finding the right bal-
ance between generator and discriminator training in
the adversarial set-up (Dinh et al.| (2016)); |Goodfellow
(2016); |Goodtellow et al| (2014b); Metz et al.| (2016]);
Radford et al.| (2015a); [Salimans et al.| (2016])).

Various authors have proposed practical modifications
of GAN training to address these issues. However, only
recently have authors begun to analyze them mathe-
matically and develop principled solutions. An impor-
tant step in this direction was the work by |Arjovsky
and Bottou| (2017, which led to the idea of Wasser-
stein GANs as elaborated in |Arjovsky et al. (2017)
and further developed by |Gulrajani et al.| (2017). Two
important insights were: 1) training the discrimina-
tor in GANSs till optimality may provably result in
vanishing gradients, and 2) the Jensen-Shannon Di-
vergence (JSD) doesn’t yield meaningful information
about convergence of distributions if their intersection
with the support of the limit-distribution has measure
zero. Another important contribution was the work by
Metz et al.|(2016), who proposed to unroll discrimina-
tors in the GAN training objective in order to avoid
degenerate optima and vanishing gradients.

Contributions. Our work makes three major contri-
butions.

e First, a rigorous mathematical framework to ana-
lyze GANSs, which yields a remarkably simple ex-
planation of the vanishing gradient problem.

e Second, a novel training objective, Kernel GANs,
backed with a principled theoretical analysis along
with an empirical study that highlights practical
aspects of Kernel GAN training.

e Finally, experimentation with different training
setups that scale Kernel GANs to large datasets
and establish their practical usefulness.

Our mathematical framework allows us to formulate
the results in |Arjovsky and Bottou| (2017) more gener-
ally, and it addresses obscurities in the original the-
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ory developed in (Goodfellow et al| (2014a). It ap-
pears that a major source of confusion has been the
missing distinction between the GAN training objec-
tive with respect to the (unknown) target density, and
its empirical counterpart used in practical training.
This was recently independently pointed out by |Arora;
et al.| (2017), however, without deriving the implica-
tions stated in the present work.

To overcome GAN training pathologies, we analyze
approaches for smoothing the JSD in the training ob-
jective. We pursue the idea of adding noise terms to
the inputs of the discriminator. As we show, this leads
to an empirical version of the JSD in which the true
and the generator densities are replaced by kernel den-
sity estimates. We establish almost sure convergence
of this Kernel GAN objective and conditions under
which it is asymptotically unbiased.

We support the theoretical analysis with extensive ex-
perimentation. Particular emphasis is on understand-
ing the effect of the kernel bandwidth in the training
algorithm. We also study the generalization of Ker-
nel GANs by comparing the fidelity and the diversity
of generated samples with baseline methods. Further-
more, we extend the setup to enable generative mod-
elling of large-scale real-world datasets.

Related work. In its attempt to establish a rigorous
mathematical framework for understanding properties
of GANSs, this work is related to |Arjovsky and Bot-
tou (2017). However, our framework is more general,
e.g., many of the results (Theorem in particu-
lar) cover both discrete and continuous distributions,
and no parametric family assumptions are imposed on
the generators. Moreover we clarify the consequences
of working with empirical distributions in training,
which leads to a remarkably simple explanation of the
pathologies discussed in |Arjovsky and Bottou (2017).

Similar to Wasserstein GANs (Arjovsky et al|(2017)),
our approach overcomes pathologies in GAN training
by smoothing the discrepancy between distributions
with disjoint support. However, our training objec-
tive can be regarded as a non-parameteric estimate of
JSD, which allows for the study of asymptotic proper-
ties (the first of its kind in the GAN literature as far as
we know). Among all the different variants of GANs,
we find our approach has the closest resemblance with
the works by [Dziugaite et al.| (2015)), |Li et al.| (2015)
and, most recently, |Li et al| (2017)), which also plugs
kernel density estimates into the GAN training objec-
tive. However, these authors optimize generative mod-
els with respect to the Maximum Mean Discrepancy
(MMD) criterion. Contrastingly, our approach retains
the adversarial setup; in fact, it can be regarded as
unrolling the discriminator in the GAN training ob-

jective till optimality, which is similar in spirit to the
methodology proposed by [Metz et al.| (2016). Our ap-
proach involves annealing strategies for controlling the
complexity of kernels, which is similar in spirit to Ada-
GANSs (Tolstikhin et al.| (2017)) where the complexity
of distribution is controlled by gradually adding com-
ponents to a mixture model.

Outline of this paper. The mathematical frame-
work and theoretical findings are established in Section
which also introduces the novel training objective.
Section [3| provides practical aspects of training with
respect to that objective, and discusses experimental
results. Section [4] concludes the paper. Proofs, im-
plementation details and additional experiments are
included in the Appendix.

2 THEORETICAL ANALYSIS

2.1 Preliminaries

Let (Q, F,P) be a probability space. Consider mea-
surable spaces (X, .A) (the output space) and (Z,C)
(latent space). Let G denote a set of measur-
able functions g Z — X (generators), and
D a set of measurable functions d : X — [0,1]
(discriminators). Let p be a measure on (X, A). For
the remainder of this paper, let X and Z be fixed ran-
dom variable from (Q, F,P) onto (X, A) and (Z,C),
respectively. We will make frequent use of the follow-
ing assumptions:

(Al) The distribution of X is absolutely continuous
with respect to u.

(A2) For every g € G, the distribution of g(Z) is ab-
solutely continuous with respect to .

As a consequence, X has a p-density p and g(Z) has
a p-density p'9) for every g € G. Given iid samples
X1, Xo, ..., X, from the distribution of X, our goal
is to learn a generator g such that P(g(Z) € A) =
P(X € A) for all A € A, or, equivalently, p = p(9) p-
almost everywhere. The next theorem establishes the
existence of such a g under the following assumptions:

(A3) X is a Peano space, i.e., X is a compact, con-
nected, and locally connected metric space.

(A4) X is the support of X, i.e., there doesn’t exist
an r € X with an open neighborhood B, in the
topology of X such that P(X € B,) = 0.

Theorem 2.1. Suppose that (Al)-(A4) hold. More-
over suppose that Z = [0,1], C is the Borel o-algebra
on [0,1], and Z is uniformly distributed on Z. Then

there exists a continuous surjection g : Z — X such
that P(g(Z) € A) =P(X € A) for all A € A.
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There has been some confusion in the GAN literature
about the exact conditions that are required to obtain
this result. For example,|/Goodfellow| (2016) states that
the “the only requirements” for pl9) to have “full sup-
port” on X are - the dimension of Z be “at least as
large as the dimension of X7, and g be differentiable.
This isn’t accurate as Z may have smaller dimension,
as long as its cardinality is not smaller than the one
of X, and the distribution of Z is non-atomic. Differ-
entiability of ¢ is not required in theory. To obtain
an invertible and differentiable mapping g, the dimen-
sion of Z must not be smaller than the dimension of
X. The result in Theorem [2.1] relies on a construction
using space-filling curves, which aren’t differentiable.

2.2 GAN Training — Theoretical Case

The GAN approach (Goodfellow et al.| (2014al)) for
learning ¢ is as follows: for d € D and g € G let

V(d,g) = E[log(d(X))] + E[log(1 - d(9(2)))]. (1)

The relation of V(d,g) to density ratio estimation
(which becomes apparent in equation below) is
discussed in Mohamed and Lakshminarayanan| (2016]).
Intuitively, we wish the discriminator d(z) to be close
to 1 if  is more likely under the distribution of X, and
close to 0 if = is more likely under the distribution of
g9(Z). Hence, the optimal d given a fixed generator g
would attempt to maximize V (-, g), and the optimal g
is the one which solves the minmax problem

arg min ( max V' (d, g)) . (2)

7 9€G deD

The following theorem, which generalizes Proposition
1 and Theorem 1 in |Goodfellow et al.| (2014a)), shows
that the max and (arg)min in are well-defined.
Note that our formulation neither requires g to be dif-
ferentiable, nor X' to be continuous.

Theorem 2.2. Suppose (Al)-(A2) hold. Then
Vidg) = [ [loxd@e

+ log(1 — d(@))p'®) (@) du(z) (3)

for all d € D and g € G. Hence, for any fized g € G,
any d € D which mazimizes V(g,d) has the form
p(z)
d = — 4
@ = @+ 9w W

for p-almost every x € X, implying that

p(z)
max V(g,d) = /X[p(x)logp(pr(g)(x)

P9 (z)
+pg($)10gm dp(z). (5)

Assuming that (A3)-(A4) also hold, any generator g €
G that minimizes is such that p'9 = p p-almost
everywhere, and mingeg maxqep V(g,d) = —log(4).

The next theorem shows that the optimal discrimina-
tor d in can be “perfect” if the overlap of the two
distributions p and p(9) has measure zero. It gener-
alizes Theorem 2.1 and 2.2 in |Arjovsky and Bottou
(2017), which are stated for the special case of P and
P9) being not-perfectly-aligned submanifolds of R¥.

Theorem 2.3. Suppose (A1)-(A3) hold. For fized
g € G, let P,PY9 C X be such that {x € X |p(x) >
0} € P and {x € X|p9(x) > 0} C PY. Suppose
p(PNPD) =0, u(d(P\P9D)) =0 (where I(-) de-
notes the topological boundary) and p(0(P9\P)) = 0.
Then the optimal d in satisfies P(d(X) = 1) =1
and P(d(g(Z)) = 0) = 1. Moreover, without loss of
generality, d is continuous p-almost everywhere and,
in the special case X = R¥, the gradient Vd(z) ewists
and Vd(x) =0 for p-almost every x € X.

In practice, the discriminator being constant on P and
P poses problems. In particular, when ¢ is fixed
and d is trained till optimality, the gradients Vd(x)
may vanish and further updates of ¢ may become im-
possible. In their Lemma 1 and 2, |Arjovsky and Bot-
tou| (2017)) establish that this is almost surely going
to occur when the dimension of Z is smaller than the
dimension of X, and g is parameterized by a standard
neural network. As we show next, it is more directly
an inevitable consequence of using an empirical version
of the objective in practical GAN training.

2.3 GAN Training — Empirical Case

Let X} be a random variable following the empirical
distribution of X, ..., X,. By I(-) we denote the
indicator function which evaluates to 1 if the statement
in brackets is true, and to 0 otherwise. Note that,
conditionally on X, ..., X, the distribution of X is

1 n
P(X; € AlXy,...,X,) = = IX;€A)
=1

n-

for A € A, and an analogous statement holds for the
distribution of ¢g(Z}) conditional on Z1, ..., Z,. It is
important to note that practical GAN training (such
as in Algorithm 1 in |Goodfellow et al| (2014a)) is not
with respect to the theoretical objective 7 but with
respect to its empirical counterpart

Va(d, g) == E[log(d(X;))| X1, ..., Xy]

+E[1og(1 —d(g(Z)) | 21,y - - Zn] .(6)

It appears there has been a wideheld belief among
GAN practitioners that optimizing V,,(d, g) leads to
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discriminators and generators with the same proper-
ties as stated in Theorem As the following the-
orem shows, this isn’t true in general. We add sub-
scripts d,, and g,, to emphasize the dependency of dis-
criminator and generator on the sample size n.

Theorem 2.4. Suppose (Al)-(A4) hold. For fized g €
G, any d,, € D mazimizing V,,(d, g) in @ has the form

22;1 I(X; =)+ 22;1 I(g(Z;) = =)

for x € {X1,..., X0} U{9(Z1),...,9(Z,)} (for all
other x € X, the value d,(x) is arbitrary). If
the cardinality of {Zy, ..., Z,} is greater than or
equal to the cardinality of {X1, ..., X,}, then any
gn € G minimizing @ for d = d, is such that
(020 9a(Za)t = (X1, X

The first insight from Theorem is a remarkably
simple explanation for vanishing gradients in GAN
training: Theorem states general conditions under
which the gradient of the generator may vanish when
the discriminator is optimal. Theorem [2.4 shows that,
for gradients with respect to the empirical training ob-
jective (@, these conditions are satisfied unless any of
the training samples X; and generated samples g(Z;)
coincide. A sufficient condition for avoiding such coin-
cidence is that both X and Z are continuous, and g is
not constant on any subset A of Z for which g(A) has
strictly positive measure p.

dn(z) =

The second insight is that, when training with respect
to @, there is no theoretical guarantee that p(9») = p
p-almost everywhere for the optimal generator g, —
which contradicts Proposition 2 in |Goodfellow et al.
(2014a). The only guarantee is that, when applied
to Z1,...,Zn, gn should reproduce the training sam-
ples Xq,...,X,. Note: this does not imply that g,
will solely reproduce training samples; in theory, the
samples generated on Z \ {Z1,...,Z,} are arbitrary.
Hence, in contrary to the reasoning in Metz et al.
(2016) and |Arjovsky et al.| (2017, the optimal g, is
not necessarily a Dirac function at the x € X to which
d,, assigns the highest values.

In practice, these undesirable properties could be mit-
igated for the following reasons: 1) the discriminator
and generator function spaces D and G have limited
capacity, hence the properties of d,, and g, may only
hold approximately; 2) similarly, alternate training of
the generator and discriminator, or not training till
optimality could alter the form of d,, and g,, thereby
circumventing pathologies.

2.4 Smoothing the Training Objective

A natural approach to avoid the issues pointed out in
Theorem 2.3]and Theorem 2.4]is to smooth the Jensen-

Shannon Divergence (JSD) in the training objective by
adding noise to the input distributions of the optimal
discriminator. We use the following assumption:

(A5) In addition to (A3), (X,+) is a topological
group.

This allows us to consider the convolutions p * p(€)
and p9) % p(©), which are the p-densities of X + ¢ and
9(Z) + ¢, respectively. The idea is to use, instead of
the discriminator in , a modified version

) pxp'9(x)
S I R R CIC M

If the support of p(¢) is sufficiently large, then the sup-
ports of p*pl© and p9) x p(©) will overlap. Hence, it is
not possible to construct an optimal d* with the prop-
erties in Theorem [2.3] On the other hand, by the same
arguments as in Theorem [2.2] the generator g minimiz-
ing is such that p(@ % p(9) = px p(® y-almost ev-
erywhere, which implies p(9) = p y-almost everywhere,
i.e. the optimal generator g(Z) with respect to the the-
oretical objective still recovers the distribution of X.
Next, we derive the form of the optimal discriminator
for the modified empirical objective.

Theorem 2.5. Suppose (A1)-(A5) hold and let g € G
be fized. If we replace X and g(Z};) in (6) by X} +
e and g(Z}) + €, respectively, then the discriminator
minimizing the objective has the form

dp(z) =

Sy p' (e — Xi)
i PO (= Xi) 4+ 300 pO(x —g(Zi))

for x € X. Same as in Theorem if the cardi-
nality of {Z1,...,Z,} 1is greater than or equal to the
cardinality of {X1,...,X,}, then any g € G min-
imizing the objective @ for d = d¥ is such that
{g;(zl)v cee 79:1(271)} = {Xla ceey Xn}

Note that the smoothing of distributions outlined here
is mot equivalent to adding noise to the samples X,
coey Xpoor g(Zy), ..., g(Z,) before optimizing the
empirical objective, which would lead to the same re-
sult as in @ In fact, € is never sampled explicitly; it
is only involved here through the computation of the
convolved densities.

(9)

As Theorem [2.5shows, smoothing the empirical distri-
butions X and g(Z}) results in an optimal discrim-
inator d; which, if the support of p© is sufficiently
large, won’t cause vanishing gradients. However, there
is still no guarantee that the optimal generator g (Z)
recovers the distribution of X apart from reproducing
training samples. In the following section we discuss a
new training objective which addresses this issue.
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2.5 Kernel GANs

For all of further analyses we assume X = RF 4 is
absolutely continuous with respect to the Lebesgue
measure on R¥, Z C R!, and ® ¢ R™ for some
k,I,m € N. Moreover, we assume that G is param-
eterized by 6 € ©. We write gy for the generator pa-
rameterized by 6, and p(®) for the density of go(Z).

It is instructive to note the resemblance of the op-
timal discriminator in @ to a ratio of kernel den-
sities: Let K : X — R be a measurable, bounded
and square-integrable function (kernel), and o > 0
(bandwidth). For x € X consider the kernel density
estimates

of p(z) and p®(z). Choosing K = pl©, we can
regard as a kernel estimate of the density ratio
p(x)/(p(x) +p@ (x)). Our key idea is to plug the opti-
mal discriminator @D back into the empirical training
objective @, i.e., consider V,,(d, g) with d = d7. This
results in the Kernel GAN training objective:

K,(0,0,¢) =

1 n
*Zlog cr( 7,) '
n A ~(0)

i=1 Do (X ) + Pno(Xi) + 2¢
Phes(90(Z:)) +
) + Pro(

12
b (90(Z ))+2</7 -

n i=1 ﬁn,a' (99( )
where ¢ > 0 is a regularizer to avoid underflow issues.
In contrast to conventional GAN training, only the
generator is explicitly updated when optimizing .
The discriminator d, is updated implicitly through
changes in the density estimates (L1]). Note that plug-
ging the optimal discriminator in into the training
objective @ can be regarded as unrolling the discrim-
inator same as in|Metz et al. (2016, where in our case
the discriminator is unrolled to closed-form optimality.

The following theorem establishes convergence of the
objective (12)).

Theorem 2.6. Suppose (A1)-(A5) hold. Moreover,
suppose p and p'» are bounded and uniformly contin-
uous for all € ©, and K has compact support and is
of the form K(x) = ¢(q(x)), where q is a polynomial
and ¢ a bounded non-negative function with bounded
variation. Let o, > 0 be a sequence asymptotically

equivalent to Cn' for some finite constant C' and

5 €(0,1). Then
T}LH;OKn(HaUm(P) =
p(x) + ¢
. oo s
P (x) +

+p@ () log Jau@) (13)

p(z) + p?(z) + 2¢
P-almost surely for all 8 and ¢ > 0.

The regularizer ¢ > 0 is required for establishing the
convergence in . It results in estimates of the the-
oretical JSD that are asymptotically biased. In partic-
ular, while K,,(0,0,,¢) converges to —log(4) (which
is the minimum value of JSD) if 6 is such that p = p,
it may converge to smaller values for other values of
6. Hence, minimizing K, (0,0, ) would not result
in a generator ¢(?)(Z) recovering X (although ¢ can
be chosen arbitrarily small, hence the practical differ-
ence might be negligible). However, as we show in
Appendix A.2, if u(X) < oo, then K, (0,0,,¢) can
be modified such that its limit is minimized by a 6
recovering the distribution of X.

3 EXPERIMENTS

In this section, we first demonstrate the practical
learning of Kernel GANs on small and mid-sized
datasets — a Mixture-of-Gaussian (MOG) toy dataset
(Metz et al.| (2016])) and MNIST (LeCun et al.[(1998)).
Further, we study the effect of kernel bandwidth along
with practical approaches such as generating in a
lower-dimensional feature space that is independently
learned using an autoencoder.

Second, we establish practical usefulness of Ker-
nel GANs by scaling them to two high-dimensional
datasets: CIFAR-10 (Krizhevsky and Hinton| (2009))
and CelebA (Liu et al|(2015])). We enable this with a
modified training setup that involves kernel learning,
similar to |Li et al.| (2017)).

Finally, we perform various evalutions of the trained
generators. In a quantitative evaluation, we com-
pare Kernel GANs with MMD-based models (Li et al.
(2015), |Dziugaite et al| (2015), Li et al.| (2017)),
which also use kernel-based statistics, but in a non-
adversarial fashion. Implementation details for all the
experiments are stated in Appendix A.3 and A 4.

3.1 Learning Kernel GANs

Algorithm [If outlines our general training protocol for
learning the generator parameters 6 that minimizes

the training objective .
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Algorithm 1 Training Protocol

1: Input: Training samples X, distribution of latent
variable Z, initial kernel parameters o, initial gen-
erator parameters 6, regularizer ¢.
while stopping criterion not met do
Sample a minibatch X7, ..., X,, from X.
Generate iid samples Z1, ..., Z, from Z.
Update generator parameters 6 according to
gradients VoK, (6,0, ¢).
Update kernel parameters o.
7: end while
8: Output: Trained generator parameters 6.

>

Hyperparameters. Previously,|Li et al.|(2015) and
Dziugaite et al.| (2015]) used RBF kernels in their train-
ing objectives for generative models. While |Li et al.
(2015) deploys a mixture of RBF kernels, Dziugaite
et al.| (2015) uses Bayesian Optimization to determine
a suitable bandwidth. Moreover, both works suggest
to use the median-trick (Gretton et al| (2012))) as a
method to choose kernel bandwidths for computing
MMD statistics. Intuitively, small bandwidths push
the generator towards producing samples that are sim-
ilar to the training set. However, initial bandwidths
that are too small will not give gradients in areas that
are far from the modes of the training set. We there-
fore explored gradual reductions of the bandwidth dur-
ing training, similar to cooling schedules in simulated
annealing (e.g., Hajek| (1988]), Nourani and Andresen
(1998)). While the regularizer ¢ is required for deriv-
ing Theorem we didn’t find it to be critical in the
experiments and therefore set it to zero. A further in-
vestigation of the practical effect of ¢ will be part of
future work.

MOG Toy Dataset. For the MOG dataset, Z was
a 100-dimensional standard normal distribution, and
the generator was a three-layer fully connected net-
work (128-relu-128-relu-128-tanh). Figure 1 shows the
evolution of the generator during training, as the band-
width o is gradually decreased. Initially the generated
samples g(Z) are dispersed randomly. As the o is de-
creased, they begin to concentrate around the modes
of the MOG distribution.

MNIST. We succesfully trained three different gen-
erative models for MNIST. Two of these sampled di-
rectly in the space of (28 x 28) greyscale images. The
third model used an autoencoder to map the images
onto a lower-dimensional feature space, in which the
generator was trained.

The three models used following architectures: a fully
connected network (FC); a deconvolutional network
with batch normalisation (DC); a fully connected net-

work for the feature space (FC-FS). We adopted the
architectures proposed in |Li et al.| (2015) for FC and
FC-FS, and the one proposed in|[Radford et al.| (2015a))
for DC. As latent variable Z, all models used samples
from a 10-dimensional uniform distribution. We use
a mixture of RBF kernels for training these models
(see the appendix for details) Generated samples are
shown in Figure I . We find that samples from
FC-FS have a very smooth appearance. DC generates
sharper samples than FC, but observes some artifacts.
A study of sharpness of generated samples for different
bandwidths is discussed in the appendix.

We observe that training randomly initialized net-
works can be numerically unstable for very small band-
widths, leading to artifacts in the produced images.
For very large bandwidths, we find that the generator
often collapses and produces undesired samples like
mean images. We noticed, however, that the genera-
tor model recovered when we increased or decreased
the bandwidth appropriately in subsequent training
iterations. An analysis is provided in the appendix.
This suggests that kernel bandwidths can be used as
“knobs” for correcting over- or underfitting of genera-
tive models during the training process.

3.2 Scaling Kernel GANs

Although sufficient in theory, we found it difficult to
train Kernel GANs with plain RBF kernels for col-
ored images. To impose more structure in kernel-based
training, Li et al.| (2015) suggest to use convolutional
autoencoders that learn a lower dimensional feature
space for images. |Li et al.|(2017)) use this approach for
training GMMN models on colored images but note
quality issues in the generated samples. Instead they
propose to learn a network which transforms the origi-
nal space into a lower dimensional space over which
the kernel is computed. We adopt their approach,
leading to a modified Kernel GAN training objective,
K, (v,0,0,¢), which is the same as , except that
the kernels operate on the space fy(X) instead of X:

e ZK(fw — fu(Xi ))7 (14)

ﬁ%oalp ZK (fw J;w(ge(zi))) (15)

The parameters {0, ¢} are learned in a min-max fash-
ion: mingmaxy K, (¢, 6,0, ¢). Similar to conventional
GAN training, 1 and 0 are optimized alternatingly. In
practice additional regularization is required for stable
learning. We use the experimental setup of |[Li et al.
(2017), which models the function fy;, as the encoder of
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Figure 1: MOG toy dataset. Blue: training points. Green: samples produced by the generator. The leftmost
figure is for the initial generator. Training phases for bandwidths (left to right): 0.8,0.4,0.2,0.1,0.05,0.025

(10,000 iterations were performed for each o).
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architecture (DC). (c): Fully connected network in feature space (FC-FS).

an autoencoder and regularizes the objective function
with the autoencoder reconstruction loss.

CIFARI10 and CelebA. We train Kernel GANs for
the CIFARI10 and CelebA datasets. We adopt and
appropriately rescale hyperparameters and regulariza-
tion weights of [Li et al.| (2017). We train a Deep
Convolutional architecture for both datasets. The di-
mension of the encoded space fi(X) is fixed to 100.
CIFARI10 is trained with a 128-dimensional standard
normal distribution for Z, and CelebA with a 64-
dimensional Z. Samples obtained from the generators
are shown in Figure 3] We find that they were quali-
tatively comparable to the results in [Li et al.| (2017]).

3.3 Quantitative Evaluation

MNIST. Quantifying the performance of generative
networks — particularly their ability to generalize and
produce diverse samples — remains a challenging task
(Theis et al.| (2015); Wu et al.| (2017))). In this paper,
we report the following metrics:

Expected entropy (EE): Similar to |Salimans et al.
(2016)), we train a probabilistic classifier (LeNet (Le-
Cun et al.)) and compute the expected entropy of

the predicted probabilities for samples from g(Z). For
all metrics, we use Monte-Carlo estimates of expected
values, based on 10,000 samples. Expected nearest-
neighbour distance (ENN): To assess the similarity
of generated samples with the training set, we deter-
mine the expected value of the Euclidean distance be-
tween samples from g(Z) and their nearest neighbor
in the train set. LeNet score (LS): Motivated by the
Inception score (Salimans et al.l 2016), we compute
the exponential of the expected Kullback-Leibler di-
vergence between the predicted class probabilities for
samples ¢g(Z), and the frequency of classes (=digits)
in the MNIST train set. Jensen-Shannon divergence
(JSD): We estimate the JSD between the data distri-
bution and g(Z) by computing over the MNIST
test set and samples from ¢g(Z). We report the corre-
sponding values JSD-F and JSD-S of the first and
second term in . Maximum Mean Discrepancy
(MMD): Finally, we also report the MMD statistic
(Gretton et al.| (2012])).

Table [1] shows a comparison of different generators.
GMMN and GMMN-AE are the data- and code-
space Generative Moment Matching Networks pro-
posed in [Li et al.| (2015)). The numbers in the MNIST
Test column are obtained by using the MNIST test set
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Figure 3: Kernel GAN generated samples. (a): CIFARI10. (b): CelebA.

Table 1: Quantitative evaluation of different generators on MNIST

FC DC FC-FS GMMN-AE GMMN MNIST Test
EE 0.408  0.289 0.365 0.361 0.293 0.023
ENN 23.005 20.713 14.674 14.730 27.852 19.299
LS 6.601  7.464 6.916 6.948 7.408 9.752
JSD -1.384 -1.385 -1.371 -1.372 -1.383 -1.386
JSD-F -0.740 -0.740 -0.769 -0.776 -0.689 -0.693
JSD-S -0.644 -0.645 -0.603 -0.596 -0.694 -0.693
MMD 0.019  0.017  0.084 0.091 0.005 0.000

instead of generated samples; they can be regarded
as the performance of an ideal generator with opti-
mal trade-off between fidelity (EE), diversity (ENN,
LS), and overall consistency (JSD). In this regard, we
find that DC performs best among all trained gener-
ators: it achieves the lowest EE, comparable ENN,
and closest LS in comparison with MNIST Test. FC-
FS and GMMN-AE achieve high fidelity, but exhibit
less diversity. Interestingly, the two term of the JSD
are imbalanced for these models. We hypothesize that
keeping JSD-F and JSD-S balanced during training is
key to obtaining generators with good generalization
capacity.

CIFAR10. We compute the Inception score (Sali-
[mans et al] (2016)) mean and standard deviation for
5% 10k samples from a Kernel GAN which is trained
for 5,000 iterations. The score for held-out CIFAR10
images (which can be regarded as gold standard) is
11.95 (£ .20). Kernel GAN yields a score of 4.22 (+
.02), which is significantly higher than the scores of
GMMN-AE and GMMN (3.94 + .04 and 3.47 4+ .03,
respectively), but lower than the ones for MMD-GAN
and WGAN (6.17 £ .07 and 5.88 + .07 respectively,
2017)). We expect that optimizing hyperpa-
rameters and regularization weights for Kernel GANs
can yield improved scores.

4 CONCLUSIONS

We established a rigorous framework for analyzing sta-
tistical properties of Generative Adversarial Network
training. To overcome potential pathologies (in partic-
ular, vanishing gradients), we introduced a novel train-
ing objective, which can be regarded as minimizing
a non-parametric estimate of the Jensen-Shannon Di-
vergence. We analyzed its asymptotic properties and
showed its practical applicability.

We see several directions for future work: 1) Advance
the design of optimal kernels and strategies for an-
nealing the bandwidths. 2) Further analyze statistical
properties of the proposed training objective, in par-
ticular, the effect of the regularizer. 3) Investigate the
effect of imbalances between the first and second term
in the training objective; we believe this could lead to
the design of adaptive training protocols which ensure
both fidelity and diversity of generator samples. 4) In-
vestigate how the learning of the feature mapping fy,
proposed in Section affects the theoretical guaran-
tees.



Mathieu Sinn, Ambrish Rawat

References

Martin Arjovsky and Léon Bottou. Towards princi-
pled methods for training generative adversarial net-
works. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma,
and Yi Zhang. Generalization and equilibrium in
generative adversarial nets (gans). arXiv preprint
arXww:1703.00575v2, 2017.

Vladimir I. Bogachev. Measure Theory. Springer Ver-
lag, Berlin, 2007.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gion. Density estimation using real nvp. arXiv
preprint arXiv:1605.085803, 2016.

Gintare Karolina Dziugaite, Daniel M. Roy, and
Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy opti-
mization. In Proceedings of the Thirty-First Con-
ference on Uncertainty in Artificial Intelligence,
UAT’15, pages 258-267, Arlington, Virginia, United
States, 2015. AUAI Press. ISBN 978-0-9966431-
0-8. URL http://dl.acm.org/citation.cfm?id=
3020847 .3020875.

Evarist Giné and Armelle Guillou. Rates of strong
uniform consistency for multivariate kernel density
estimators. Annales de 'Insitut Henri Poincaré, 38
(6):907-921, 2002.

Tan Goodfellow. Nips 2016 tutorial: Generative adver-
sarial networks. arXiv preprint arXiv:1701.00160,
2016.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Wade-Farley, Sherjil Ozair, and
Aaron Courville. Generative adversarial nets. Ad-

vances in Neural Information Processing Systems,
27:2672-2680, 2014a.

Tan Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiv:1412.6572, 2014b.

Arthur Gretton, Karsten M Borgwardt, Malte J
Rasch, Bernhard Schélkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine
Learning Research, 13(Mar):723-773, 2012.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky,
Vincent Dumoulin, and Aaron Courville. Im-
proved training of wasserstein gans. arXiv preprint
arXiw:1704.00028v1, 2017.

Bruce Hajek. Cooling schedules for optimal annealing.
Mathematics of Operations Research, 13(2):311-329,
1988.

Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiw:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86
(11):2278-2324, 1998.

Yann LeCun et al. Lenet-5, convolutional neural net-
works.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming
Yang, and Barnabas Péczos. Mmd gan: Towards
deeper understanding of moment matching network.
arXww preprint arXiw:1705.08584, 2017.

Yujia Li, Kevin Swersky, and Richard S Zemel. Gener-
ative moment matching networks. In ICML, pages
1718-1727, 2015.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. Deep learning face attributes in the wild.
CVPR, pages 3730-3738, 2015.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks.
arXiw preprint arXiw:1611.02163, 2016.

Shakir Mohamed and Balaji Lakshminarayanan.

Learning in implicit generative models. arXiv
preprint arXiv:1610.03483v4, 2016.
Yaghout Nourani and Bjarne Andresen. A com-

parison of simulated annealing cooling strategies.
J. Phys. A: Math. Gen., 31:8373-8385, 1998.

Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep con-
volutional generative adversarial networks. arXiv
preprint arXiw:1511.06434, 2015a.

Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep con-
volutional generative adversarial networks. arXiv
preprint arXiw:1511.06434, 2015b.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. Im-
proved techniques for training gans. Advances in
Neural Information Processing Systems, 29:2226—
2234, 2016.

Alan Henry Schoenfeld. Continuous measure-
preserving maps onto peano spaces. Pacific Journal
of Mathematics, 58(2):627-642, 1975.

Lucas Theis, Adron Van Den Oord, and Matthias
Bethge. A note on the evaluation of generative mod-
els. arXiv preprint arXiv:1511.01844, 2015.


http://dl.acm.org/citation.cfm?id=3020847.3020875
http://dl.acm.org/citation.cfm?id=3020847.3020875

Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-
rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural net-
works for machine learning, 4(2), 2012.

Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bous-
quet, Carl-Johann Simon-Gabriel, and Bernhard
Scholkopf. Adagan: Boosting generative models.
arXiv preprint arXiv:1701.02386, 2017.

Stephen Willard. General Topology. Dover Publica-
tions, Mineola, New York, 1970.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and
Roger Grosse. On the quantitative analysis of

decoder-based generative models. 5th International
Conference on Learning Representations, 2017.



	INTRODUCTION
	THEORETICAL ANALYSIS
	Preliminaries
	GAN Training – Theoretical Case
	GAN Training – Empirical Case
	Smoothing the Training Objective
	Kernel GANs

	EXPERIMENTS
	Learning Kernel GANs
	Scaling Kernel GANs
	Quantitative Evaluation

	CONCLUSIONS

