
Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence

Supplementary Material

Deriving and optimising the cloaking variables

When solving for M , we put an arbitrary (positive)
bound on ∆ of 1, as any scaling of ∆ caused by ma-
nipulating M , will scale the determinant of M by the
inverse amount.6

We will express our problem as trying to maximise the
entropy of a k-dimensional Gaussian distribution with
covariance P = M−1;

Maximise ln (|P |), subject to n con-
straints, 0 ≤ c>i Pci ≤ 1.

Considering just the upper bounds and expressing this
as a constraint satisfaction problem using Lagrange
multipliers we have L = ln |P | +

∑
i λi(1− c>i Pci).

Di�erentiating (and setting to zero), ∂L
∂P = P−1 −∑

i λicic
>
i = 0. We also have the slackness conditions

(for all i), λi(c
>
i Pci − 1) = 0 and we also require

that λi ≥ 0. Rearranging the derivative, we have,
P−1 =

∑
i λicic

>
i . Note that as λi ≥ 0, P−1 is posi-

tive semi-de�nite (psd),7 thus the initial lower bound
(that c>i Pci ≥ 0) is met. The upper bound (that
c>i Pci ≤ 1) is achieved if the λi are correctly chosen,
such that the Lagrange and slackness conditions are
met.

We now must maximise the expression for L wrt
λj . To assist with this we rewrite our expres-
sion for P−1 =

∑
i λicic

>
i = CΛC>, where

C = [c1, c2...cn] = K∗fK
−1 and Λ is a di-

agonal matrix of the values of λi. The sum-
mation in the expression for L,

∑
i λi(1− c>i Pci)

can be written as Tr
(
Λ + C>PCΛ

)
. Substi-

tuting in our de�nition of P , we can write
the summation as: Tr

(
Λ + C>(CΛC>)−1CΛ

)
=

Tr
(
Λ + C>C−>Λ−1C−1CΛ

)
. Assuming C is invert-

ible, the summation becomes Tr
(
Λ + Λ−1Λ

)
. Di�er-

entiating this wrt λj equals one. We can use this result

6For example if we write a new ∆′ with M as mM , we
see that we can take out the m term from ∆′'s inequality,
leaving ∆′ = m−1/2∆. When we scale Z, which has co-
variance mM by this new value of ∆′ the covariance of the
scaled Z equals (∆′)2mM = (m−1/2∆)2mM = ∆2M , the
magnitude change cancels, so any positive value of ∆ (e.g.
1) will su�ce for the optimisation. Also: in the following
we ignore d and reintroduce it at the end of the derivation
by de�ning ∆ = d instead of it equalling 1.

7The summation is of a list of positive semi-de�nite
rank-one matrices. One can see that such a sum is also
positive semi-de�nite (to see this, consider distributing z>

and z over the summation).

0 500 1000 1500 2000

Duration / s

0

50

100

150

200

250

300

350

C
o
u
n
t

Figure 4: The duration of 5000 Citi Bike journeys.
Note the e�ect caused by thresholding at 2000 s.

to �nd the gradient of L wrt λj :

∂L

∂λj
=

∂L

∂|P |
∂|P |
∂λj

+
∂

∂λj

∑
i

λi(1− c>i Pci)

= |P |−1|P |Tr
(
P−1P 2cjc

>
j

)
+ 1

= Tr
(
Pcjc

>
j

)
+ 1

= c>j M
−1cj + 1

(10)

This can be solved using a gradient descent method,
to give us those values of λi which minimise log |M |
while ensuring ∆ ≤ 1.

Citi Bike duration distribution

Figure 4 illustrates the distribution of journey times
and the e�ect of thresholding.

Algorithms

Algorithm 2 describes the Cloaking method. Algo-
rithm 1 describes the earlier method, from Section 2.

Hyperparameter selection

So far in this paper we have selected the values of the
kernel hyperparameters a priori. Normally one may
maximise the marginal likelihood to select the values
or potentially integrates over the hyperparameters. In
di�erential privacy we must take care when using pri-
vate data to make these choices. Previous work exists
to perform this selection, for example Kusner et al.
[2015] describes a method for performing di�erentially
private Bayesian optimisation, however their method
assumes the training data is not private. Kusner et al.
[2015] do suggest that the work of Chaudhuri and Vin-
terbo [2013] may allow Bayesian Optimisation to work
in the situation in which the training data also needs
to be private.

We decided instead that, due to the low-dimensionality
of many hyperparameter problems, a simple grid
search, combined with the exponential mechanism may

Di�erentially Private Regression with Gaussian Processes

Algorithm 1 Using the initial DP algorithm

Require: M, the GP model (the kernel, hyperparameters and training inputs and normalised outputs)
Require: X∗ ∈ RP×D, (the matrix of test inputs)
Require: d > 0, data sensitivity (maximum change possible) & ε > 0, δ ≥ 0, the DP parameters

1: function DifferentiallyPrivateRegression(X∗, M , d, ε, δ)
2: K ← M.get_K . covariance between training points
3: ∆ ← d2b(K−1)2

4: f∗, σ
2
∗ ← M.get_predictions(X∗) . Calculate non-DP predictions

5: f̃∗ ← f∗ + (∆dc(δ)/ε)z . z ∼ N (0,K)
6: return f̃∗, σ2

∗
7: end function

8: function b(K−1)
9: return max(| − [K−1A]−|∞, |[K−1A]+|∞)
10: end function

11: function c(δ)
12: return

√
2log(2/δ)

13: end function

allow the selection of an acceptable set of hyperparam-
eters. For the utility function we considered using the
log marginal likelihood, with additional noise in the
data-�t term to capture the e�ect of the DP noise.
However for simplicity in estimating the bound and to
avoid over�tting we simply used the sum square er-
ror (SSE) over a series of K-fold cross-validation runs,

which for a given fold is
∑N
i=1 (y∗i − yti)2, with pre-

dictions y∗ and test values yt.

Before proceeding we need to compute a bound on
the sensitivity of the SSE. To brie�y recap, the DP
assumption is that one data point has been perturbed
by at most d. We need to bound the e�ect of this
perturbation on the SSE. First we realise that this data
point will only be in the test set in one of the K folds.
In the remaining folds it will be in the training data.

If the perturbed data point is in the training data (y),
then we can compute the sensitivity of the SSE. The
perturbation this would cause to the predictions (y∗)
is described using standard GP regression (and the
cloaking matrix). Speci�cally a change of d in train-
ing point j will cause a dcjk change in the test point
predictions, where cjk is the jth column of the cloak-
ing matrix for the kth fold.

To compute the perturbation caused by the change in
the training data, we note that the SSE is e�ectively
the square of the euclidean distance between the pre-
diction and the test data. We are moving the predic-
tion by dcjk. The largest e�ect that this movement
of the prediction point could have on the distance be-
tween prediction and test locations is if it moves the
prediction in the opposite direction to the test points.

Thus it can increase (or decrease) the distance between
the test and predictions by the largest length of dcjk
over training points. Hence for one of the folds, the
largest change in the SSE is d2 maxj |cjk|22.

If the perturbed data point, j, was in the test data then
the SSE will change by (y∗j + d− ytj)2−(y∗j − ytj)2 =
d2 + 2d(y∗j − ytj). The last part of the expression
(the error in the prediction for point j) is unbounded.
To allow us to constrain the sensitivity we enforce a
completely arbitrary bound of being no larger than
±4d, thresholding the value if it exceeds this. Thus a
bound on the e�ect of the perturbation is d2+2d×4d =
d2 + 8d2 = 9d2.

The SSE of each fold is added together to give an over-
all SSE for the cross-validation exercise. We sum the
K − 1 largest sensitivities and add 9d2 to account for
the e�ect of the single fold in which the perturbing
data point, j, will be in the test set. The perturba-
tion could have been in the test data in any of the
folds. We assumed it was in the fold with the smallest
training-data sensitivity to allow us to make the re-
sult a lower bound on the sensitivity of the SSE to the
perturbation. If it had been in any other fold the sensi-
tivity would have been less (as more sensitivity would
be contributed by the sum over the training sensitivi-
ties). Thus the sensitivity of the SSE over the K folds

is; 9d2 +
∑K−1
k=1 d2 maxj |cjk|22 (where the k folds are

ordered by decreasing sensitivity)

We compute the SSE and the SSE's sensitivity for each
of the hyperparameter combinations we want to test.
We then use the computed sensitivity bound with the
exponential mechanism to select the hyperparameters.

Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence

Algorithm 2 Using the cloaking algorithm

Require: M, the GP model (the kernel, hyperparameters and training inputs and normalised* outputs)
Require: X∗ ∈ RP×D, (the matrix of test inputs)
Require: d > 0, data sensitivity (maximum change possible) & ε > 0, δ ≥ 0, the DP parameters

1: function DifferentiallyPrivateCloakingRegression(X∗, M , d, ε, δ)
2: C ← M.get_C(X∗) . Compute the value of the cloaking matrix (K∗fK

−1)
3: λ ← findLambdas(C)
4: M ← calcM(λ, C) . Calculate the DP noise covariance matrix
5: ∆ ← calcDelta(λ, C)†

6: c ←
√

2log 2
δ

7: y∗, σ
2
∗ ← M.get_predictions(X∗) . Calculate non-DP predictions

8: ỹ∗ ← y∗ + (∆dc/ε)z . z ∼ N (0,M)
9: return ỹ∗, σ2

∗
10: end function

11: functionM.get_C(X∗)
12: FromM compute K∗f and K−1 . Compute covariances between training and test points
13: C ← K∗fK

−1

14: return C
15: end function

16: function findLambdas(C)
17: λ ← Uniform(0.1, 0.9) . Initialise randomly‡

18: α ← 0.05 . Learning rate
19: do
20: dL

dλ ← CalcGradient(λ, C)

21: ∆λ ← −dLdλα
22: λ ← λ+ ∆λ

23: while ∆λ > 10−5

24: return λ
25: end function

26: function calcGradient(λ, C)
27: M ← calcM(λ, C)
28: for 0 ≤ j < N do . N, number of columns in cloaking matrix, C.
29: [dLdλ]j ← −Tr

(
M+C:jC

>
:j

)
+ 1

30: end for
31: return dL

dλ
32: end function

33: function calcM(λ, C)
34: M ←

∑
i λiC:iC

>
:i

35: return M
36: end function

37: function calcDelta(λ, C)
38: M ← calcM(λ, C)
39: ∆ ← maxj C>:jM

+C:j

40: return ∆
41: end function
*We assume the user will handle normalisation.
†Although we should have optimised M such that ∆ ≤ 1, it may not have completely converged, so we compute the ∆
bound for the value of M we have actually achieved.
‡We have found that occasionally the algorithm fails to converge. To con�rm convergence we have found it useful to
reinitialise and run the algorithm a few times.

Di�erentially Private Regression with Gaussian Processes

To summarise, to use the exponential mechanism one
evaluates the utility u(x, r) for a given database x and
for elements r, from a range. One also computes the
sensitivity of this utility function by picking the high-
est sensitivity of any of the utilities; in this case each
utility corresponds to a negative SSE, and each sensi-
tivity corresponds to the sum described above.

∆u , max
r∈R

max
x,y
|u(x, r)− u(y, r)|

(where x and y are neighbouring databases).

The exponential mechanism selects an element r with
probability proportional to:

exp

(
εu(x, r)

2∆u

)
Note that for a given privacy budget, some will need
to be expended on this selection problem, and the rest
expended on the actual regression.

E�ect of privacy on optimum hyperparameter
selection

A �nal interesting result is in the e�ect of the level of
privacy in the regression stage on the selection of the
lengthscale. This is demonstrated in the distribution
of probabilities over the lengthscales when we adjust
ε. Figure 5 demonstrates this e�ect. Each column
is for a di�erent level of privacy (from none to high)
and each tile shows the probability of selecting that
lengthscale. For low privacy, short lengthscales are
acceptable, but as the privacy increases, averaging over
more data allows us to give more accurate answers.

Privacy on the training inputs

To release the mean function such that the training
inputs remain private, we need a general bound on
the in�nity norm of the covariance function, that does
not depend explicitly on the values of X.

Varah [1975] show that if J is strictly diagonally dom-
inant8 then:

||J−1||∞ ≤ max
1≤i≤n

1

∆i(J)
= b(J)

where we have de�ned this bound as b(J−1). We also
de�ne ∆i(J) = |Jii| −

∑
j 6=i |Jij |, i.e. the sum of the

o� diagonal elements in row i subtracted from the di-
agonal element.

8A matrix, J , is strictly diagonally dominant if ∆i(J) >
0 for all 1 ≤ i ≤ n.

None 1 0.5 0.2 0.1
DP ε value

1.0

3.0

9.0

27.0

81.0

Le
n
g
th

sc
a
le

 /
 y

e
a
rs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: E�ect of varying the di�erential privacy pa-
rameter, ε, on the likelihood of selecting each length-
scale. Colour indicates probability of parameter se-
lection. With low privacy, a short lengthscale is ap-
propriate which allows the GP to describe details in
the data. With high privacy, a longer lengthscale is
required, which will average over large numbers of in-
dividual data points.

So if K is strictly diagonally dominant (which is
achieved if the inputs are su�ciently far apart, and/or
if su�cient uncertainty exists on the outputs), then
we have a bound on the sums of its rows. The above
bound means that,

n∑
i=1

αi − α′i ≤ ∆yb(J
−1) (11)

To ensure su�cient distance between inputs, we could
use inducing variables, which can be arbitrarily placed,
so that the above constraints on the covariance matrix
are observed.

Integral Kernel

We used a custom kernel in the Citi Bike comparison to
make predictions over the binned DP-noisy dataset. In
summary the observations were considered to be the
integrals over each bin (provided by multiplying the
noisy means by the sizes of the bins). The predictions
were made at points on the latent function being inte-
grated. This allowed us to make predictions from the
binned data in a principled manner.

Considering just one dimension. To compute the co-
variance for the integrated function, F (·), we integrate
the original EQ kernel, kff (·, ·), over both its input
values,

kFF ((s, t), (s′, t′)) = α

∫ t

s

∫ t′

s′
kff (u, u′) du′du,

so that given two pairs of input locations, correspond-

Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence

ing to two de�nite integrals, we can compute the co-
variance between the two.

Similarly we can calculate the cross-covariance kFf be-
tween F and f . Both kFF and kFf can be extended to
multiple dimensions. Each kernel function contains a
unique lengthscale parameter, with the bracketed ker-
nel subscript index indicating these di�erences. We
can express the new kernel as the product of our one
dimensional kernels:

kFF =
∏
i

kFF (i)((si, ti), (s
′
i, t
′
i)),

with the cross covariance given by

kFf =
∏
i

kFf(i)((si, ti), (s
′
i, t
′
i)).

The above expressions can then be used to make pre-
dictions of the latent function f given observations of
its de�nite integrals.

