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Abstract

A major challenge for machine learning is in-
creasing the availability of data while respect-
ing the privacy of individuals. Here we combine
the provable privacy guarantees of the differ-
ential privacy framework with the flexibility of
Gaussian processes (GPs). We propose a method
using GPs to provide differentially private (DP)
regression. We then improve this method by
crafting the DP noise covariance structure to ef-
ficiently protect the training data, while min-
imising the scale of the added noise. We find
that this cloaking method achieves the greatest
accuracy, while still providing privacy guaran-
tees, and offers practical DP for regression over
multi-dimensional inputs. Together these meth-
ods provide a starter toolkit for combining dif-
ferential privacy and GPs.

1 Introduction

As machine learning algorithms are applied to an in-
creasing range of personal data types, interest is increas-
ing in mechanisms that allow individuals to retain their
privacy while the wider population can benefit from in-
ferences drawn through assimilation of data. Simple
‘anonymisation’ through removing names and addresses
has been found to be insufficient [Sweeney, 1997, |Ganta
et al.| [2008]]. Instead, randomisation-based privacy meth-
ods (such as differential privacy, DP) provide provable pro-
tection against such attacks.

In this paper we investigate corrupting a Gaussian pro-
cess’s (GP’s) fit to the data in order to make aspects of the
training data private. Importantly this paper addresses the
problem of making the training outputs (y) of GP regres-
sion private, not its inputs. To motivate this, consider in-
ference over census data. The inputs to our GP are the
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locations of every household in the country during a cen-
sus. Note that the presence of a residential property need
not be private. The values associated with that location
(e.g. the person’s religion or income) are private. Thus we
can release the locations of the census households (in X)
but protect the census answers (in y). A second example is
from a project in which the method has already been ap-
plied, analysing road collision data in Kampala, Uganda.
Collision times and locations (which are public record) are
entered in X, with the vehicles involved, the ages and gen-
ders of the victims, kept private (in y). We are able to make
differentially private inference around (for example) the
times/places where children are most likely to be involved
in collisions, providing useful insights, while ensuring that
information about the victims is kept private.

We approach the problem of applying DP to GPs by find-
ing a bound on the scale of changes to the GP’s posterior
mean function, in response to perturbations in the train-
ing outputs. We then use the results from|Hall et al.|[2013]]
to add appropriate Gaussian DP noise (Section|[2). We find
however that the added DP noise for this initial method is
too large for many problems. To ameliorate this we con-
sider the situation in which we know a priori the locations
of the test points, and thus can reason about the specific
correlation structure in the predictions for given pertur-
bations in the training outputs (Section [3). Prior knowl-
edge of the query is not unusual in methods for applying
DP. Assuming the Gaussian mechanism is used to provide
the DP noise, we are able to find the optimal noise covari-
ance to protect training outputs. Finally we compare this
strategy for inducing privacy with a DP query using the
Laplace mechanism on bin means [Dwork and Roth| 2014,
section 3.4], and show that it provides greater accuracy
for a given privacy guarantee for our example dataset. |
It is worth emphasising that we can still release the GP’s
covariance structure (as this only depends on the input lo-
cations, which we assume to be public) and the scale of the
DP added noise. Thus the user is able to account for the un-
certainty in the result. This paper combines the ubiquity
of GP regression with the rigorous privacy guarantees of-
fered by DP. This allows us to build a toolkit for applying
DP to a wide array of problems amenable to GP regression.

*corresponding author: m.t.smith@sheffield.ac.uk
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Related Work

A DP algorithm[Dwork et al} 2006, Dwork and Roth}
2014] allows privacy preserving queries to be performed
by adding noise to the result, to mask the influence of in-
dividual data. This perturbation can be added at any of
three stages in the learning process [Berlioz et al., |2015]:
to the (i) training data, prior to its use in the algorithm,
(ii) to components of the calculation (such as to the gra-
dients or objective) or (iii) to the results of the algorithm.
In this paper we focus on (iii) (adding the DP noise to the
predictions in order to make aspects of the training data
private). Considerable research has investigated the sec-
ond of these options, in particular fitting parameters using
an objective function which has been perturbed to render
it differentially private [e.g.|Chaudhuri et al[2011, Zhang
et all [2012] with respect to the training data, or more re-
cently, [Song et al| [2013] described how one might per-
form stochastic gradient descent with DP updates. Some
attention has also been paid to non-parametric models,
such as histograms [Wasserman and Zhou}|2010] and other
density estimators, such as the method described in Hall
et al| [2013] which performs kernel density estimation
(there are also parametric DP density estimators, such as
those described by [Wu et al| [2016] who use Gaussian
mixtures to model density). For regression, besides us-
ing a perturbed objective function, one can also use the
subsample-and-aggregate framework, as used by Dwork
and Lei| [2009} section 7], effectively protecting the para-
metric results of the regression. Heikkil4 et al|[2017] use
a similar idea for fitting parameters in a distributed, DP
manner.

There are very few methods to perform DP non-
parametric regression. To conduct a comparison we chose
a binning method in which we make the data private by
manipulating the bin means (using the Laplace mecha-
nism) as other methods were not appropriate. For exam-
ple, |Chaudhuri et al.| [2011], Rubinstein et al.| [2012] and
Song et al.|[2013]] were for classification, whileZhang et al.
[2012]] was for parametric models and only considered lin-
ear (and logistic) regression. It may be possible to extend
their work, but this would be beyond the scope of the pa-
per. [Wasserman and Zhou! [2010] use histogram queries.
Machanavajjhala et al.| [2008]] use the less strict ‘indistin-
guishability’ definition. In summary, there is a dearth of
methods for performing non-parametric differentially pri-
vate regression. In particular there is an absence of re-
search applying differential privacy to Gaussian processes
(in Hall et al|[2013] they make use of GP’s properties to
provide DP to functions and vectors, but do not do the con-
verse, making the GP’s predictions private).

Differential Privacy

Briefly we reiterate the definition of differential privacy,
from Dwork and Roth| [2014]. To query a database in a
differentially private manner, a randomised algorithm R

is (g, 6)-differentially private if, for all possible query out-
puts m and for all neighbouring databases D and D’ (i.e.
databases which only differ by one row),

P(R(D) € m) < eEP(R(D’) € m) +6.

This says that we want each output value to be almost
equally likely regardless of the value of one row: we do
not want one query to give an attacker strong evidence
for a particular row’s value. € puts a bound on how much
privacy is lost by the query, with a smaller € meaning more
privacy. d says this inequality only holds with probability
1—9.

2 Applying Differential Privacy to a
Gaussian Process

The challenge is as follows; we have a dataset in which
some variables (the inputs, X)) are public, for example the
latitude and longitude of all homes in a country. We also
have a variable we want to keep secret (y, e.g. income).
We want to allow people to make a prediction about this
variable at a new location, while still ensuring that the
dataset’s secret variables remain private. In this section
we fit a standard GP model to a dataset and calculate the
bound on the scale of the perturbation we need to add to
the posterior mean to provide a DP guarantee on the train-
ing outputs.

Hall et al.| [2013] extended DP to functions. Consider a
function, f, that we want to evaluate (with privacy guar-
antees). If the family of functions from which this func-
tion is sampled lies in a reproducing kernel Hilbert space
(RKHS) then one can consider the function as a point in
the RKHS. We consider another function, f, that has been
generated using identical data except for the perturbation
of one row. The distance, ||f — f’||, between these points
is bounded by the sensitivity, A. The norm is defined to
be ||g|| = v/{9, g) - Specifically the sensitivity is written
A > supp, |l fo— fpr|| . [Hall et al{[2013] showed that
one can ensure that a perturbation of f, f, is (¢, 8)-DP by
adding a (scaled) sample GG from a Gaussian process prior
(which uses the same kernel as f),

F=r+ 2% )

9

where DP is achieved if

c(6) > \/2log(2/0) (2)
Relating this to the definition of DP, finding A allows us
to know how much the function f can change between
neighbouring databases. We then choose the scale of the
noise added by the randomised algorithm, M, to mask
these changes.

We next extend these results, from[Hall et al.| [2013], to the
predictions of a GP. In the GP case we have some data (at
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inputs X and outputs y). We assume for this paper that
the inputs are non-private (e.g. people’s ages), while the
outputs are private (e.g. number of medications).

The mean function of a GP posterior lies in an RKHS. We
need to add a correctly scaled sample to ensure its DP re-
lease. It will become clear that the covariance function
does not need perturbation as it does not contain direct
reference to the output values.

Using the notation of Rasmussen and Williams|[[2006], the
predictive distribution from a GP at a test point x, has
mean f, = k] (K'+ U%I)_l vy, and variance V[f,] =
k(z,,x.) — k] (K’ + ai[)fl k., where f, is the mean
of the posterior, k(x., x.) is the test point’s prior variance,
k. is the covariance between the test and training points,
K’ is the Gram matrix describing the covariance between
the training points, o2 is the variance of the iid noise added
to each observation and y are the outputs observed values
of the training data.

Ignoring any previous parameter selection, the variance
does not depend on the training output values (in y) so
we only need to make the mean function private.

We can rewrite the above expression for the mean as

the weighted sum of n kernel functions, f(x.) =
> aik(x;, @), where o = (K’ + U%I)fl y. For sim-
plicity in the following we replace K’ + 021 with K, ef-
fectively combining a general kernel with a white-noise
kernel. To apply the DP algorithm described by Hall et al.
[2013] we need to find the (squared) distance in RKHS be-
tween the original and perturbed functions,

(@) — for (@)%
= (fol@a) = for (@), fo(@a) = for(@a)) . ()

In [Hall et al|[2013] section 4.1], the vector « is identical
to «’ with the exception of the last element n. In our case
the inputs are identical (we are not trying to protect this
part of the data). Instead it is to the values of y (and hence
) that we need to offer privacy. To compute the norm
in , we consider the effect a difference between y and
(perturbed) ¥’ has on the mean prediction function fp at
T

fo(@s) — for(zs) =
Zaik(az*,xi) —

zn:agk‘(a:*,:ci)
i=1
- Z (i — af) k(xy, ), (4)

i=1

where @ = K ~'y and (the perturbed) o’ = K~'y/. In
the kernel density estimation example inHall et al{[2013],
all but the last term in the two summations cancel as the

A Standard (g =100)

180 P
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Figure 1: Heights and ages of female !Kung San. Figure A,
standard GP method. Figure B, cloaking method. One can
get an intuition for the utility of the DP output by con-
sidering the example DP samples. In Figure A one can
see they deviate considerably from the actual mean, even
with € = 100. The cloaking method, using ¢ = 1, is able
to provide reasonable predictions over the domain of the
training data (although not in outlier regions). Solid blue
lines, posterior means of the GPs; grey lines, DP samples;
Black and grey dashed lines, SE and iSE confidence in-
tervals for DP noise respectively; blue area, GP posterior
variance (excluding noise). § = 0.01, A = 100 cm.

« terms were absent. In our case however they remain
and, generally, o; # «f. We therefore need to provide
a bound on the difference between the values of o and
o’. The difference between the two vectors is, « — o’ =
K~'(y —v') . As K does not contain private information
itself (it is dependent purely on the input and the features
of the kernel) we can find a value for the bound using a
specific K. See the supplementary material for a weaker,
general, upper bound, for when the inputs are not known.

The largest change we protect against is a perturbation in
one entry of y of at most +d. Therefore we assume that
all the values of y and y’ are equal except for the last el-
ement which differs by a value, which we will assume is
a worst case of =d. Thus all the elements of y — ¥’ are
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zero, except for the last, which equals +d. The result of
multiplying K ~! with the vector y — ¥’ is the last col-
umn of K ! scaled by +d. Equation 4| then effectively
adds up the scaled last column, +d[K ~1]. ,,, but with each
value scaled by the kernel’s value at that point, k(. ;).
We initially assume that the kernel values are bound be-
tween -1 and 1 (not unreasonable, as many kernels, such
as the exponentiated quadratic, have this property, if we
normalise our data). Thus a worst case result of the sum is
for the positive values in the scaled column, +=d[K ~!]. , to
be multiplied by 1 and for the negative values to be multi-
plied by —1. Thus the largest result will be the sum of the
last column’s absolute (d-scaled) values. Finally, the use
of the last column is arbitrary, so we can bound (4) by the
maximum possible sum of any column’s absolute values
in K~ (ie. the infinity nornl’), times d; i.e. d||K ||~

To reduce the scale of the DP noise a little more, we very
briefly consider a slightly more restrictive case, that the
value of the kernel is bound between [0, 1]. The bound is
then calculated by finding the infinity norm for the fol-
lowing two matrices, and taking the larger. In one K !
is modified so that all negative-values are ignored, in the
other all values are initially negated, before the negative-
values are discarded. We shall call this bound, b(K ~1).
The two options described are necessary to allow us to
account for the uncertainty in the sign of y — y’, whose
magnitude is bound by d but in an unknown direction. Re-
turning to the calculation of the sensitivity, we can expand
and substitute into (3):

Ifp(x) = for ()l
= <Z(ai —dk(x, i), Y (0 — af)k(z., xl)>

i=1 i=1 H

()

To reiterate, we use our constraint that the chosen kernel
has a range of 0 to 1, so the summations above will have a
magnitude bounded by d b(K ~1). This means that an up-
per bound on the sensitivity is, || fp(z«) — f(z+)]|% <
d? b(K ~1)2. If two training points (with differing output
values) are very close together, the mean function (and
thus the bound described above) can become arbitrarily
large if the Gaussian noise term o2 is small. However in
reality if very nearby points have different values then the
underlying system presumably has some noise involved,
which we model as additional Gaussian noise. Thus the
off diagonals of K would remain smaller than the values
on the diagonal, leading to a reasonable bound. In all the
datasets examined so far, the selected Gaussian noise pa-
rameter has always been sufficiently large to avoid an ex-
cessively large bound. In general model selection for our

The infinity norm of a symmetric square matrix is the max-
imum of the sums of the absolute values of the elements of rows
(or columns); max;  _ ; [Mi;|

DP GP will need to trade off between relying on single data
points (i.e. low noise, causing the DP noise to be large) or
relying on individual points less, due to the larger Gaus-
sian noise term (making the non-DP prediction less accu-
rate, but reducing the scale of the DP bound).

!Kung San women example

We use, as a simple demonstration, the heights and ages
of 287 women from a census of the !Kung [Howell, N
1967]]. We are interested in protecting the privacy of their
heights, but we are willing to release their ages. We have
set the lengthscale a priori, to 25 years as from our prior ex-
perience of human development this is the timescale over
which gradients Vary We can find the empirical value
of our sensitivity bound on the inverse covariance matrix,
b(K ~') and the value of ¢(4), from (2). Substituting in our
given values in (1) we find that we should scale our GP
samples by 28.53. Figure [I]A shows that even with large
¢ the DP noise overwhelms the function we want to esti-
mate (consider the spread of DP samples in the figure). It
is worth noting that, if the sensitivity of the training data
had been smaller (for example count or histogram data,
with A = 1) then this method could produce usable pre-
dictions at reasonable . In the following section we find
we are able to considerably reduce the scale of the DP noise
by insisting that we are given the test input points a priori.

3 The Cloaking Method

The method described in the previous section is limited to
low-sensitivity datasets (i.e. those for which adding a sin-
gle individual would not cause much change in the poste-
rior mean, such as histogram/count data) due to the exces-
sive scale of the noise added. We now introduce an alterna-
tive we refer to as cloaking, that allows a considerable re-
duction in the DP noise added but at the cost of needing to
know the test point inputs a priori. We approach this new
method by first reasoning about the direction (across test
points) noise is added by the earlier (Section [2) method,
and comparing its effect to the effect of modifying a train-
ing point. The sensitivity in the earlier methods needed to
be quite high because the noise added (sampled from the
prior covariance) is not necessarily in the direction a pertur-
bation in a training output would cause.

Consider the simple case of two training and two test
points, illustrated in figure[2] Subfigure B illustrates (with
an ellipse) the shape of the noise added to the predictions
if we sample from the prior (as in Section [2). Subfigures
C-F illustrate changes caused by the perturbation of the

*Hyperparameters are all set a priori, but appear precise as the
data outputs were normalised to have ;1 = 0 and o = 1. Kernel
variance o2 = 7.722 cmg, Gaussian white noise O‘% = 14% cm?,
DP: § = 0.01, ¢ = 50.0, A = 100 cm (enforced by rectifying all
values to lie 50 cm of the mean).
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Original Method (adding samples from prior)

Figure 2: A illustrates the mechanism in Sectionin
which a scaled sample from the prior has been added
to the test points f. (grey stars) to produce DP private
predictions (black stars) f; using (I). The model’s
long lengthscale means this moves the two test points
up and down together (as they have a high covari-
ance). Changing just one of the training points could
not cause such changes in the test outputs. In B we
plot the two test points against each other with the

AL scaled prior
Al - *f*@) B covaria%ce
""""" f*(z) S
N S
= ]
..... =
= - YZ) Q)
=agt =
S “}” S
(o
f*m
inputs
Effect of perturbing Yy,
f*(z)

output f,, O

original predictions a grey star and the DP private
predictions a black star. The covariance of the added
DP noise is indicated with an ellipse.

In C we change just one of the training points, y 1),
by adding a perturbation d to it. Using (8) we can see
that test point f, (1) increased, while f, (o) decreased
slightly. The two test points are plotted against each
other in figure D. The grey ellipse indicates the co-
variance of the original method’s noise. The new pre-
diction is ‘enclosed’ by the covariance of the DP noise

inputs
Effect of perturb{glg Yo
‘.*"““ f*(2)

(@]

m

output f,, =
s}

output f,

as the change must be indistinguishable from the DP
™  noise.

In E and F we perturb the second training point, ¥
and plot the two test points against each other again.
These figures demonstrate how changing single
training points can not cause perturbations like those
the original method adds, in figure A. The original
method, by sampling from the scaled prior, is adding
more noise than we need. Instead we should be
sampling from a smaller covariance which only adds

]
f*m f*(1) noise where necessary.
il‘lputs output f*m Figures G and H illustrating this alternative covari-

Cloaking Method

(adding samples with alternative covariance)

ance (ellipse in H). A DP noise sample has been added,
using (7), that is as small as possible by selecting the
covariance using the cloaking mechanism, while still
masking the possible perturbations one could cause
by changing single training points. Note that the per-
turbed locations from figure D and F (indicated with
faint grey stars) are enclosed by the new covariance
ellipse.

G A, H
. ’ Sl
S f*(z) *5‘
o
= o
s +
o =3
£ o
i
fuss inputs output f,
*a
@ Training points O Perturbed training points
Predictions X Predictions when perturbed

4 Predictions+DP noise

training data to the predictions. The figure demonstrates
that the prior does not provide the most efficient source of
noise. In particular the large amount of correlated noise
that is added in A and B is not necessary. Perturbations
in individual training points cannot cause such correlated
noise in the test outputs. To summarise; there is no per-
turbation in a single training point’s output which could
cause the predictions to move in the direction of the prior’s
covariance.

Differential Privacy for vectors of GP predictions

From Hall et al.| [2013] proposition 3]: given a covariance
matrix M and vectors of query results (in our case GP
posterior mean predictions) f, and f, from neighbouring
databases D and D’, we define the bound,

sup ||M~H2(E — )]z < A (6)
D~D’
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A is a bound on the scale of the prediction change, in term
of its Mahalanobis distance with respect to the added noise
covariance. The algorithm provides a (¢, §)-DP output by
adding scaled samples from a Gaussian distribution,

Z (7)
€

where Z ~ N;(0, M) and using function ¢ from (2). We
want M to have the greatest covariance in those direc-
tions most affected by changes in training points. We are
able to compute K, the covariance between all training
points (incorporating sample variance) and K. the co-
variance between training and test points. Given the train-
ing outputs y, we can find the mean predictions for all test
points simultaneously, f, = K, ;K ~'y. The cloaking ma-
trix C = K, ;K ! describes how the test points change
wrt changes in training data. We use it to write the per-
turbed test values as

f=f+C{y -vy). (®)

We assume one training item ¢ has been perturbed, by at
most +d: y, = y; £ d. As y; is the only training out-
put value perturbed, we can see that the change in the
predictions is dependent on only one column of C, c;;
f/ — f. = +dc; This can be substituted into the bound
on A in (6). Rearranging the expression for the norm (and
using M’s symmetry);

| AM = 2¢;||o = (dM%¢;) T (M~ 2¢;)

=d%c] M~ ¢,

We want to find M such that the noise sample Z is small
but also that A is minimised. A common way of describ-
ing that noise scale is to consider the determinant (gener-
alised variance), the square root of the determinant (pro-
portional to the volume of a confidence interval), or the
log of the determinant (proportional to the differential en-
tropy of a k-dimensional normal distribution (plus a con-
stant) In ((27e)* |2|) /2. We use the latter but they will all
have similar results. We show in the supplementary mate-
rial that the optimal M = ", )\icic;r with the X found us-
ing gradient descent, 0L /O\; = c;rM ~le;+1. Wereturn
to the example of the !Kung San women data to demon-
strate the improvement in privacy efficiency. Figure
illustrates the results for a reasonable value of ¢ = 1

The input domain is deliberately extended to demonstrate
some features. First, where data is most concentrated the
scale of the added noise is small. The effect one training
point has there on the posterior prediction will be over-
whelmed by its neighbours. A less intuitive finding is that
the DP noise is greatest at about 110 years, far from the
nearest data point. This is because the data’s concentra-
tion acts like a pivot providing leverage to the outliers’ ef-
fect on the posterior mean. Figure [2E partly demonstrates

EQ kernel, 6 = 0.01, lengthscale 25 years, Gaussian white
noise 14 cm
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Figure 3: 4766 property prices in a 10,000 km? square
around London (2013-16). Dots, property locations; cir-
cles, DP price predictions at test points. Predicted price
indicated by circle area. The scale of the DP noise indi-
cated by transparency (Opaque: no DP noise. Transparent:
DP noise std is at least 40% of A). Non-DP predictions
indicated by contours from £215k to £437k. ¢ = 1 and
0 = 0.01. Areas (A) with high concentrations of training
data have little DP noise, areas with few data have much
more DP noise (B). Areas far from data return to GP’s
prior mean, and have little DP noise added (C). Interest-
ing ‘bridging’ effects between data concentrations cause
the DP noise to remain low as the posterior is ‘supported’
at both sides of areas with low density (e.g. D).

this, with the test point f ;(2) being changed slightly more
than the perturbation in the training point. The third ob-
servation is that the added DP noise eventually approaches
zero away from the training data; the posterior mean will
equal the prior mean regardless of the training data’s out-
puts. The RMSE without DP was 6.8cm and with (1, 0.01)-
DP, 12.2cm, suggesting that this provides quite large, but
practical levels of DP perturbation. The 200 test point in-
puts that make up the graph’s predictions are exactly those
specified as part of the cloaking algorithm (X,); a large
number of nearby test points does not degrade the quality
of the predictions as they are all very highly correlated.
The noise that is already added to ensure a test point does
not breach DP, is almost exactly the noise that is needed
by its close neighbours. As a further example we consider
a spatial dataset of 4766 property sales since 2013 from the
Land Registry|[2017] in Londonﬂ Although this is a public

*Thresholded to between £100k and £500k (so the sensitivity
was bounded). ¢ = 1 and § = 0.01, lengthscale 15 km, Gaussian
variance £2400k?.
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dataset, one could imagine the outputs representing more
private data (e.g. income or BMI). Figure [3|illustrates how
the DP noise scale varies over the city. Training points are
marked by dots. Test points are marked by the larger cir-
cles. Note how in areas where the training is concentrated
the DP noise added is small, while in sparse areas the noise
added is high. In the corners of the map, where there are
no data, return to the GP prior’s mean, and have little DP
noise added.

Hyperparameter optimisation

So far in this paper we have selected the values of the
kernel hyperparameters a priori. To demonstrate a DP
method for their selection we evaluate the sum squared
error (SSE) of k-fold cross-validation iterations for each
hyperparameter configuration and select the optimum us-
ing the exponential mechanism (a method for selecting an
item to maximise a utility, e.g. negative SSE, under DP con-
straints). Details of the method (including bounds on the
sensitivity) can be found in the supplementary material.

4 Results

For comparison we binned the data (with added Laplace
noise) to provide DP-predictions. Briefly, we bin the data,
and add samples from the Laplace distribution with scale
Af /e where Af is the bin sensitivity (equal to the max-
imum change possible in height, divided by the number
of data points in that bin), then fit a GP to these, now
noisy, bin values. We use both a simple Exponentiated
Quadratic (EQ) kernel and a kernel that models a latent
function which treats the observations as integrals over
each bin. We found this often does better than simple bin-
ning when the data is noisy. We did not include the stan-
dard GP method (from Section |2) as we found it not com-
petitive.

For the !Kung dataset, we applied the hyperparameter se-
lection technique to the cloaking mechanism’s outputs
and compared it to the results of binning. We found
that hyperparameter selection, for one or two parameters,
caused a reduction in RMSE that was noticeable but not
impractical. Specifically we used the exponential mecha-
nism with the negative-SSE of 100-fold Monte-Carlo cross-
validation runs to select hyperparameter combinations
(testing lengthscales of between 3 and 81 years, and Gaus-
sian noise variance of between 1.12 cm? and 12.72 cm?),
which we tested against a validation set to provide the ex-
pected RMSE. We fixed the DP ¢ to 1 for both the expo-
nential mechanism and the cloaking and binning stages.
The simple binning method (depending on bin size) had
a RMSE of 23.4-50.7 cm, the integral method improved
this to 14.2-20.8 cm. With no DP on parameter selection
the cloaking method’s RMSE would be 14.3 cm (compa-
rable to the integral kernel’s best bin size result). If we

however select its hyperparameters using the exponential
mechanism, the RMSE worsens to 17.4 cm. Thus there is
a small, but manageable cost to the selection. Using data
from the New York City bike sharing scheme, |Citi Bike
[2013ﬂ we predict journey time, given the latitude and
longitude of the start and finish stations. The 4d Exponen-
tiated Quadratic (EQ) kernel had lengthscales of between
0.02 and 0.781 degrees (latitude or longitude, equivalent
to roughly 1.8 km to 75 km. o2 = 15812 2,1 = 0.05°,
0, = 16052 s2. Durations were thresholded to a maxi-
mum of 2000 s.

We tested values of € between 0.2 and 1.0 (with ¢ fixed at
0.01) and with DP disabled. Monte Carlo cross-validation
was used to make predictions using the DP framework
(4900 training, 100 test journeys). For comparison we
binned the training data into between 81 and 10,000 bins,
then computed DP means for these bins. These DP val-
ues were used as predictions for the test points that fell
within that bin (those bins without training data were set
to the population mean). Table [1| summarises the exper-
imental results. The new cloaking function achieves the
lowest RMSE, unless both ¢ and the lengthscales are small.
With no DP the short-lengthscale cloaking method pro-
vides the most accurate predictions, as this is not affected
by the binning and is capable of describing the most detail
in the spatial structure of the dataset. The simple binning
becomes less accurate with more bins, probably due to low
occupancy rate (in a random training example, with 10,000
bins, only 11% were occupied, and of those 40% only had
one point) and a form of overfitting. As (1,0.01)-DP noise
is added the simple-binning degrades quickly due to high
DP noise added to low-occupancy bins. [Xu et al|[2013]]
also describes a similar phenomenon. Predictions using
the GP with an integral kernel fitted to these DP bin counts
appears to provide some robustness to the addition of DP
noise. As ¢ is further reduced, the cloaking method does
better at longer lengthscales which allow more averaging
over the training data. Simple binning becomes increas-
ingly compromised by the DP noise.

5 Discussion

The cloaking method performs well, providing reasonably
constrained levels of DP noise for realistic levels of pri-
vacy and provides intuitive features such as less DP-noise
in those areas with the greatest concentration of training
data. The earlier method, described in Section [2] required
much more DP perturbation. For the cloaking method the
lengthscale provides a powerful way of trading off preci-

5163,000 subscribers, 600 stations located in a box bounded
between latitudes 40.6794° and 40.7872°, and longitudes
—74.0171° and —73.9299°. Unlike the house-price data we kept
the locations in these global coordinates. Each fold of the Monte
Carlo cross validation sampled 5000 rows from the 1,460,317
journeys in June 2016.
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lengthscale or bins No DP e=1 e=0.5 e=0.2
cloaking 0.781° 490 £14 493 +£13 498 £13 525 £19
0.312° 492 £15 497 +£12 502 £17 545 £26
0.125° 402£7 437 £21 476 £17 758 £94
0.050° 333+£11 434 £27 612 £78  1163+147
0.020° 314+12 478 £22 854 £54  1868+106
integral binning  10* bins 981 +5 586 £7 597 £12 627 £23
6 bins 641+6 640 £9 658 £17 736 +41
3% bins 643+6 649 £13 677 £22 770 £51
simple binning ~ 10* bins 596 £12 1064469 1927+191 4402+434
6 bins 587+ 11 768 £58 1202£206 2373+358
3% bins 550+ 12 575 £24 629 £58 809 £110

Table 1: RMSE (in seconds, averaged over 30-fold X-validation, + 95% ClIs) for DP predictions of Citi Bike journey
durations. Five lengthscales (in degrees latitude/longitude) and three bin resolutions were tested for the cloaking and
binning experiments respectively. The cloaking method, with the right lengthscale, makes more accurate predictions
than either of the binning methods. As we increase ¢, cloaking needs longer lengthscales to remain competitive as this

allows the predictions to ‘average’ over more training data.

sion in modelling spatial structure with the costs of in-
creasing DP-noise. We could exploit this effect by using
non-stationary lengthscales [e.g. |Snoek et al., |2014] Her-
lands et al} [2015], incorporating fine lengthscales where
data is common and expansive scales where data is rar-
efied. This could lead to DP noise which remains largely
constant across the feature space. To further reduce the DP
noise, we could manipulate the sample noise for individ-
ual output values. For the initial method, by adjusting the
sample noise for individual elements we can control the
infinity-norm. For the cloaking method, outlying training
points, around the ‘edge’ of a cluster, could have their sam-
ple noise increased. One important issue is how to make
DP GP predictions if we want to protect the values of the
training inputs. This could be approached by considering
a bound on the inverse-covariance function, a suggestion
is provided in the supplementary material.

Future work is also needed to address how one optimises
the hyperparameters of these models in a DP way. The
method described in Section [3| works but is far from op-
timal. It may be possible to extend methods that use DP
Bayesian optimisation to estimate values for hyperparam-
eters [Kusner et all|2015], or approximate the likelihood
function to work with the method described inHan et al.
[2014]. It would also be interesting to investigate how to
modify the objective function to incorporate the cost of DP
noise.

The actual method for releasing the corrupted mean func-
tion for the output-noise methods has not been discussed.
Options include releasing a set of samples from the mean
and covariance functions (a necessary step for the cloaking
method, as the test-points need specifying in advance), or
providing a server which responds with predictions given
arbitrary input queries, sampling from the same Gaussian
(for the cloaking method, querying new test points could
be achieved by conditioning on the outputs given previ-

ously). The examples given here all use the EQ kernel but
the cloaking method works with arbitrarily complex ker-
nel structures and it has no requirement that the covari-
ance function be stationary. GP classification is also an
obvious next step.

Finally, in unpublished work, we have found evidence that
the use of inducing inputs can significantly reduce the sen-
sitivity, and thus DP noise required by reducing the pre-
dictions’ dependency on outliers. Future work should be
undertaken to investigate the potential for further reduc-
ing the DP noise through the use of inducing inputs.

We have presented novel methods for combining DP and
GPs. In the longer term we believe a comprehensive set of
methodologies could be developed to enhance their appli-
cability in privacy preserving learning. We have applied
DP for functions to GPs and given a set of known test
points we were able to massively reduce the scale of per-
turbation for these points by considering the structure of
the perturbation sensitivity across these points. In partic-
ular we found that the cloaking method performed con-
siderably more accurately than the binning alternatives.
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