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Abstract

We study the problem of (provably) learn-
ing the weights of a two-layer neural network
with quadratic activations. In particular,
we focus on the under-parametrized regime
where the number of neurons in the hidden
layer is (much) smaller than the dimension
of the input. Our approach uses a lifting
trick, which enables us to borrow algorith-
mic ideas from low-rank matrix estimation.
In this context, we propose two novel, non-
convex training algorithms which do not need
any extra tuning parameters other than the
number of hidden neurons. We support our
algorithms with rigorous theoretical analysis,
and show that the proposed algorithms en-
joy linear convergence, fast running time per
iteration, and near-optimal sample complex-
ity. Finally, we complement our theoretical
results with several numerical experiments.

1 Introduction

The re-emergence of neural networks (spurred by the
advent of deep learning) has had a remarkable im-
pact on various sub-domains of artificial intelligence
(AI) including object recognition in images, natural
language processing, and automated drug discovery,
among many others. However, despite the success-
ful empirical performance of neural networks for these
AT tasks, provable methods for learning neural net-
works remain relatively mysterious. Indeed, training a
network of even moderate size requires solving a very
large-scale, highly non-convex optimization problem.

In this paper, we (provably) resolve several algorith-
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Figure 1: Two-layer polynomial neural network.

mic challenges that arise in the context of a special
class of (shallow) neural networks by making connec-
tions to the better-studied problem of low-rank matriz
estimation. Our hope is that a rigorous understanding
of the fundamental limits of training shallow networks
can be used as building blocks to obtain theoretical
insights for more complex networks.

1.1 Setup

Consider a shallow (two-layer) neural network archi-
tecture, as illustrated in Figure 1. This network com-
prises p input nodes, a single hidden layer with r neu-
rons with activation function o(z), first layer weights
{w;}j—; C RP, and an output layer comprising of a
single node and weights {o;}7_; C R. If o(2) = 22,
then the above network is called a polynomial neural
network (Livni et al., 2014). More precisely, the input-
output relationship between an input, x € RP, and the
corresponding output, y € R, is given by:

T r
)= ajo(wfz) =Y ajw;,z)’
j=1 j=1

In this paper, our focus is in the so-called “under-
parameterized” regime where r < p. Our goal is to
learn this network, given a set of training input-output
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pairs {(z;, y;)}~,. We do so by finding a set of weights
{aj,w;}i_; that minimize the following empirical risk:
n P ==Y - O
min a) = — RS
e , g 2 W 00 (1)

where the rows of W and the entries of « indicate the
first-and second-layer weights, respectively. Numer-
ous recent papers have explored (provable) algorithms
to learn the weights of such a network under distri-
butional assumptions on the input data (Livni et al.,
2014; Lin & Ye, 2016; Janzamin et al., 2015; Tian,
2016; Zhong et al., 2016; Soltanolkotabi et al., 2017;
Li & Yuan, 2017)*.

Clearly, the empirical risk defined in (1) is extremely
nonconvex (involving fourth-powers of the entries of
w;, coupled with the squares of «;). However, this
can be circumvented using a clever lifting trick: if we
define the matrix variable L. = > "_, ajw;w], then
the input-output relationship becomes:

i L), (2)

where x; € R? denotes the i training sample. More-
over, the variable L, is a rank-r matrix of size p X p
Therefore, (1) can be viewed as an instance of learn-
ing a fixed (but unknown) rank-r symmetric matrix
L, € RP*P with r < p, from a small number of rank-
one linear observations given by A; = x;zl. While
still non-convex, low-rank matrix estimation problems
such as (2) are much better understood. Two specific
instances in statistical learning include:

. T
Ui = x; Lex; = (zix

Matrix sensing and matrix completion. Recon-
structing low-rank matrices from (noisy) linear mea-
surements of the form y; = (X, L) impact several ap-
plications in control and system identification (Fazel,
2002), collaborative filtering (Candes & Recht, 2009;
Recht et al., 2010), and imaging. The problem (2) spe-
cializes the matrix sensing problem to the case where
the measurement vectors X; are constrained to be
themselves rank-one.

Covariance sketching. Estimating a high-
dimensional covariance matrix, given a stream of inde-
pendent samples {s;}72,, s; € RP, involves maintain-
ing the empirical estimate @ = F[s;s] |, which can
require quadratic (O(p?)) space complexity. Alterna-
tively, one can record a sequence of m < p? linear
sketches of each sample: z; = x7s; for i = 1,...,m.
At the conclusion of the stream, sketches correspond-
ing to a given vector x; are squared and aggregated
to form a measurement: y; = E[22] = E[(z]'s:)?] =

"While quadratic activation functions are rarely used
in practice, stacking multiple such two-layer blocks can be
used to simulate networks with higher-order polynomial
and sigmoidal activations (Livni et al., 2014).

x7Qx;, which is nothing but a linear sketch of Q of
the form (2). Again, several matrix estimation meth-
ods that “invert” such sketches exist; see Cai & Zhang
(2015); Chen et al. (2015); Dasarathy et al. (2015).

1.2 Our contributions

In this paper, we make concrete algorithmic progress
on solving low-rank matrix estimation problems of the
form (2). In the context of learning polynomial neural
networks, once we have estimated a rank-r symmetric
matrix L,, we can always produce weights {«a;, w,} by
an eigendecomposition of L,.

In general, a range of algorithms for solving (2) (or
variants thereof) exist in the literature, and can be
broadly classified into two categories:

(i) convex approaches, all of which involve enforcing
the rank-r assumption in terms of a convex penalty
term, such as the nuclear norm (Fazel, 2002; Recht
et al., 2010; Cai & Zhang, 2015; Chen et al., 2015; Cai
et al., 2010);

(ii) monconver approaches based on either alternat-
ing minimization (Zhong et al., 2015; Lin & Ye, 2016)
or greedy approximation (Livni et al., 2014; Shalev-
Shwartz et al., 2011).

Both types of approaches suffer from severe computa-
tional difficulties, particularly when the data dimen-
sion p is large. Even the most computationally effi-
cient convex approaches require multiple invocations
of singular value decomposition (SVD) of a (poten-
tially) large px p matrix, which can incur cubic (O(p?))
running time. Moreover, even the best available non-
convex approaches require a very accurate initializa-
tion, and also require that the underlying matrix L,
is well-conditioned; if this is not the case, the running
time of all available methods again inflates to O(p?),
or worse.

In this paper, we take a different approach, and show
how to leverage recent results in low-rank approxima-
tion to our advantage (Musco & Musco, 2015; Hegde
et al., 2016). Our algorithm is also non-convex; how-
ever, unlike all earlier works, our method does not
require any full SVD calculations. Specifically, we
demonstrate that a careful concatenation of random-
ized, approximate SVD methods, coupled with appro-
priately defined gradient steps, leads to efficient and
accurate matrix estimation.

To our knowledge, this work constitutes the first
nearly-linear time method for low-rank matrix esti-
mation from rank-one observations. Consequently, in
the context of learning two-layer polynomial networks,
our method is the first to exhibit nearly-linear running
time, is nearly sample-optimal for fixed target rank r,
and is unconditional (i.e., it makes no assumptions on
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the condition number of L, or the weight matrix W).
Numerical experiments reveal that our methods yield
a very attractive tradeoff between sample complexity
and running time for efficient matrix estimation.

1.3 Techniques

At a high level, our method can be viewed as a vari-
ant of the seminal algorithms proposed in Jain et al.
(2010) and Jain et al. (2014), which essentially per-
form projected (or proximal) gradient descent with
respect to the space of rank-r matrices. However,
since computing SVD in high dimensions can be a
bottleneck, we cannot use this approach directly. To
this end, we use the approrimation-based matrix es-
timation framework proposed in Hegde et al. (2016).
This work demonstrates how to carefully integrate ap-
proximate SVD methods into singular value projection
(SVP)-based matrix estimation algorithms; in partic-
ular, algorithms that satisfy certain “head” and “tail”
projection properties (explained below in Section 2)
are sufficient to guarantee robust and fast convergence.
Crucially, this framework removes the need to compute
even a single SVD, as opposed to factorized methods
which necessarily require one or multiple SVDs, to-
gether with stringent condition number assumptions.

However, a direct application of (projected) gradient
descent does not succeed for matrix estimation prob-
lems obeying (2); two major obstacles arise:
Obstacle 1. It is well-known the measurement opera-
tor that maps L, to y does not satisfy the so-called Re-
stricted Isometry Property over rank-r matrices (Cai
& Zhang, 2015; Chen et al., 2015; Zhong et al., 2015);
therefore, all statistical and algorithmic correctness ar-
guments of Hegde et al. (2016) no longer apply.
Obstacle 2. The algebraic structure of the rank-one
observations in (2) inflates the running time of com-
puting even a simple gradient update to O(p?) (irre-
spective of the algorithmic cost of rank-r projection,
whether done using exact or approximate SVDs).

We resolve Obstacle 1 by studying the concentra-
tion properties of certain linear operators of the form
of rank-one projections, leveraging an approach first
proposed in Zhong et al. (2015). We show that a non-
trivial “bias correction” step, coupled with projected
descent-type methods, within each iteration is suffi-
cient to achieve fast (linear) convergence. To be more
precise, define the operator A such that (A(L.)); =
' L.z; for i = 1,...,m, where z; is a standard nor-
mal random vector. A simple calculation shows that
at any given iteration ¢, if L; is the current estimate
of the underlying matrix variable, then we have:

EA*A(L; — L,) = 2(L; — L) + Tr(Ly — L)1,

where the operator Tr(-) denotes the trace of a matrix

and the expectation is taken with respect to the ran-
domness in the z;’s. The left hand side of this equation
(roughly) corresponds to the expected value of the gra-
dient in each iteration, and it is clear that while the
gradient points in the “correct” direction L; — L, it is
additionally biased by the extra Tr(.) term. Motivated
by this, we develop a new descent scheme by carefully
accounting for this bias. Interestingly, the sample com-
plexity of our approach only increases by a mild factor
(specifically, an extra factor r together with polylog-
arithmic terms) when compared to the best available
techniques. Moreover, this scheme exhibits linear con-
vergence in theory, and shows very competitive perfor-
mance in experimental simulations.

We resolve Obstacle 2 by carefully exploiting the
rank-one structure of the observations. In partic-
ular, we develop a modification of the randomized
block-Krylov SVD (or BK-SVD) algorithm of Musco
& Musco (2015) to work for the case of certain “im-
plicitly defined” matrices; specifically, we design a ran-
domized SVD routine where the input is a linear op-
erator that is constructed using vector-valued compo-
nents. This modification, coupled with the tail-and
head-projection arguments developed in Hegde et al.
(2016), enables us to achieve a fast per-iteration com-
putational complexity. In particular, our algorithm
strictly improves over the (worst-case) per-iteration
running time of all existing algorithms; see Table 1.

2 Main results

2.1 Preliminaries

Let us first introduce some notation. Throughout this
paper, ||-||7 and ||-||2 denote the matrix Frobenius and
spectral norm, respectively, and Tr(-) denotes matrix
trace. The phrase “with high probability” indicates
an event whose failure rate is exponentially small. We
assume that the training data samples (z,y) obey a
generative model (2) written as:

Y= ZQ;U(@U;‘, z))=alL.x+¢ (3)
j=1

where L, € RP*P is the “ground-truth” matrix (with
rank equal to 7), and ¢’ € R is additive noise. Define
A : RPXP — R™ such that:

A(L,) = [zT Loz, 2l Loas, .. I

T
T LT,

and each z; ‘& (0,I) is a normal random vector
in R? for ¢ = 1,...,m. The adjoint operator of A is
defined as A*(y) = Y.~ y;z;xy . Also, noise vector
is shown by e € R™; throughout the paper (for the
purpose of analysis) we assume that e is zero-mean,



Towards Provable Learning of Polynomial Neural Networks

Table 1: Summary of our contributions and comparison with existing algorithms. Here, 8 =

number of L.

2L denotes the condition

Algorithm Sample complexity (m)  Total Running Time
Convex O(pr) O %)

GECO N/A O (P’ log(@)poly(r)
AltMin-LRROM O (prtlog®(p)B?log(2)) O (mprlog( f) +p %)
gFM O(pr® B2 log(1)) O (mprlog(z) +p?)
EP-ROM [This paper] O (pr2 log*(p) log(%)) (mp2 1og(%))
AP-ROM [This paper] O (pr® log*(p) log(1)) O (mprlog(p) log(1)

subgaussian with i.i.d entries, and independent of z;’s
The goal is to learn the rank-r matrix parameter L*
from as few samples as possible.

In our analysis, we require the operators A and A* to
satisfy the following regularity condition with respect
to the set of low-rank matrices. We call this the Con-
ditional Unbiased Restricted Isometry Property, abbre-
viated as CU-RIP(p):

Definition 1. Consider fized rank-r matrices L1 and
Ly. Then, A is said to satisfy CU-RIP(p) if there
exists 0 < p < 1 such that

1
Hm—h—%ﬁmmfh)

- Ly - A(Lz))IH2 < PHLl - L2H2'

2m

Let U, denote the set of all rank-r matrix subspaces,
i.e., subspaces of RP*P which are spanned by any r
atoms of the form wv” where u,v € RP are unit ¢5-
norm vectors. We use the idea of head and tail approx-
imate projections with respect to U, first proposed
in Hegde et al. (2015), and instantiated in the context
of low-rank approximation in Hegde et al. (2016).

Definition 2 (Approximate tail projection). T
RP*P — U, is a e-approzimate tail projection algo-
rithm if for all L € RP*P_ T returns a subspace W =
T(L) that satisfies: | L — PWLHF (14+¢)||L—L.|F,
where L, is the optimal rank-r approzimation of L.

Definition 3 (Approximate head projection). H :
RP*P — U, is a e-approximate head projection if for
all L € RP*P | the returned subspace V.= H(L) satis-
fies: |PvL|p > (1—¢€)||Ly||F, where L, is the optimal
rank-r approximation of L.

2.2 Algorithms and theoretical results

We now propose methods to estimate L, given knowl-
edge of {z;,y;}1™ . Our first method is somewhat com-
putationally inefficient, but achieves very good sample
complexity and serves to illustrate the overall algorith-
mic approach. Consider the non-convex, constrained

risk minimization problem:

1 m
min = — E TLz 2
LeRPxp 2m (4)
s.t.  rank(L) <r

To solve this problem, we first propose an algorithm
that we call Exact Projections for Rank-One Matriz
estimation, or EP-ROM, described in pseudocode form
in Algorithm 12.

We now analyze this algorithm. First, we provide a
theoretical result which establishes statistical and op-
timization convergence rates of EP-ROM. More pre-
cisely, we derive an upper bound on the estimation er-
ror (measured using the spectral norm) of recovering
L.. Due to space constraints, we defer all the proofs
to the appendix.

Theorem 4 (Linear convergence of EP-ROM). Con-
sider the sequence of iterates (L) obtained in EP-
ROM. Assume that in each iteration the linear opera-
tor A satisfies CU-RIP(p) for some 0 < p < %, then
EP-ROM outputs a sequence of estimates Ly such that:

[Liy1 — Lull2 < q||Le — L),

1 T *
+ %(H el + HA eHQ), (5)
where 0 < q < 1.

The contraction factor, ¢, in Equation (5) can be ar-
bitrary small if we choose m sufficiently large, and we
elaborate it in Theorem (6). The second and third
term in (5) represent the statistical error rate. In the
next Theorem, we show that these error terms can be
suitably bounded. Furthermore, Theorem 4 implies
(via induction) that EP-ROM exhibits linear conver-
gence; please see Corollary 7.

Theorem 5 (Bounding the statistical error). Con-
sider the generative model (3) with zero-mean subgaus-
sian noise e € R™ with i.i.d. entries (and independent

of the x;’s) such that T = maxi<j<m |€jlly, (Here,

2In Alg 1, P, denotes the projection operator onto the
set of rank-r matrices.
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Algorithm 1 EP-ROM

Inputs: y, number of iterations K, independent data samples {z¢,z5... 2t } for t =1,..., K, rank r

Outputs: Estimates L
Initialization: Ly < 0,7+ 0
Calculate: j = % S
while ¢t < K do

rrm

Liy1 = Pp (Le — 55 2oy (@) T Leat — ys) al(2h)” — (5517 A(Le) — 39)1)

2m 7

t+—t+1
end WhileA
Return: L = Lg

I - ||, denotes the 1o-norm; see Definition 11 in the
appendiz). Then, with probability at least 1 — v, we
have:

1 1 log?
17 + H—A*e P& PPy (6)
m m m ~

<C//
‘2_ T

where CY > 0 is constant which depends on .

To establish linear convergence of EP-ROM, we as-
sume that the CU-RIP holds at each iteration. The
following theorem certifies this assumption.

Theorem 6 (Verifying CU-RIP). At any iteration t of
EP-ROM, with probability at least 1 — &, CU-RIP(p)
is satisfied with parameter p < % provided that m =

O ((sizpfr2 logSplog(%’)) for some 6 > 0.

Integrating the above results, together with the as-
sumption of availability of a batch of m indepen-
dent samples in each iteration, we obtain the follow-
ing corollary formally establishing linear convergence.
We acknowledge that this assumption of “fresh sam-
ples” is somewhat unrealistic and is an artifact of our
proof techniques; nonetheless, it is a standard mech-
anism for proofs for non-convex low-rank matrix esti-
mation (Hardt, 2014; Zhong et al., 2016)

Corollary 7. After K iterations, with high probability
the output of EP-ROM satisfies:

cy  |plog’p
Lk = Lull2 < ¢™ || L2 + (7

1—g¢q m

where C is given in (6). Thus, under all the assump-
tions in theorem 4, to achieve e-accuracy for estima-
tion of L, in terms of the spectral norm, EP-ROM
needs K = O(log(@)) iterations. Based on Theo-
rems 5, 6, and Corollary 7, the sample complexity of
EP-ROM scales as m = O (pr2 10g4p10g(%)).

While EP-ROM exhibits linear convergence, the per-
iteration complexity is still high since it requires pro-
jection onto the space of rank-r matrices, which neces-
sitates the application of SVD. In the absence of any

spectral assumptions on the input to the SVD, the per-
iteration running time of EP-ROM can be cubic, which
can be prohibitive. Overall, we obtain a running time
of O(p*r?) in order to achieve e-accuracy (please see
Section 5.3 in the appendix for a longer discussion).

To reduce the running time, one can instead replace a
standard SVD routine with approximation heuristics
such as Lanczos iterations (Lanczos, 1950); however,
these may not result in algorithms with provable con-
vergence guarantees. Instead, following Hegde et al.
(2016), we can use a pair of inaccurate rank-r projec-
tions (in particular, tail-and head-approximate projec-
tion operators). Based on this idea, we propose our
second algorithm that we call Approximate Projection
for Rank One Matriz estimation, or AP-ROM. We dis-
play the pseudocode of AP-ROM in Algorithm 2.

The specific choice of approximate SVD algorithms
that simulate the operators 7(.) and H(.) is flexi-
ble. We note that tail-approximate projections have
been widely studied in the numerical linear algebra
literature (Clarkson & Woodruff, 2013; Mahoney &
Drineas, 2009; Rokhlin et al., 2009); however, head-
approximate projection methods are less well-known.
In our method, we use the randomized Block Krylov
SVD (BK-SVD) method proposed by Musco & Musco
(2015), which has been shown to satisfy both types
of approximation guarantees (Hegde et al., 2016).
One can alternatively use LazySVD, recently proposed
by Allen-Zhu & Li (2016), which also satisfies both
guarantees. The nice feature of these methods is that
their running time is independent of the spectral
gap of the matrix. We leverage this property to show
asymptotic improvements over other fast SVD meth-
ods (such as the power method).

We briefly discuss the BK-SVD algorithm. In particu-
lar, BK-SVD takes an input matrix with size p x p with
rank r and returns a r-dimensional subspace which ap-
proximates the top right r singular vectors of the in-
put. Mathematically, if A € RP*P is the input, A, is
the best rank-r approximation to it, and Z is a basis
matrix that spans the subspace returned by BK-SVD,
then the projection of A into Z, B = ZZT A satisfies
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Algorithm 2 AP-ROM

Inputs: y, number of iterations K, independent data samples {z¢,z5... 2t } for t =1,..., K, rank r

Outputs: Estimates L
Initialization: Ly < 0,7+ 0
Calculate: j = % S
while ¢t < K do

Lign=T (Lt -H ( . 221 ((xg)Tthg - yz‘) h(x}

2m
t+—t+1
end WhileA

Return: L = Lg

rrm

' = (510 AL — 39)1))

the following relations:

[A=Blr<(1+e)|A-AlF,

luf AATu; — 2, AAT 2| < eo?, |,

where € > 0 is defined as the tail and head pro-
jection approximate constant, and u; denotes the i*"
right eigenvector of A. In Appendix-B of Hegde et al.
(2016), it has been shown that the per-vector guaran-
tee can be used to prove the approximate head projec-
tion property, i.e., ||B|lr > (1 —¢)||A4:||F.

We now establish that AP-ROM also exhibits linear
convergence, while obeying similar statistical proper-
ties as EP-ROM. We have the following results:

Theorem 8 (Convergence of AP-ROM). Consider the
sequence of iterates (Li) obtained in AP-ROM. As-
sume that in each iteration t, A satisfies CU-RIP(p')
for some 0 < p' < 1, then AP-ROM outputs a sequence
of estimates Ly such that:

|Li41 — Lillr < 1] Lt — Li||p
+ ¢ (|1Te\ + HA*e

L), (8
2+ 9 + V1-¢2), ¢ =

% (2 —ec+ ¢(2—18)(z:-5))7 and p=(1—e)(1—p')—p.
Similar to Theorem 6, we can show that CU-RIP is sat-
isfied in each iteration of AP-ROM with probability at
least 1 —¢, provided that m = O ((%Zpr3 log?’plog(’g)).
Hence, we require a factor-r increase compared to be-

fore. Overall, we have the following result:

Corollary 9. The output of AP-ROM satisfies the
following after K iterations with high probability:

C"q! prlogSp
L _L* < I\NK L* T 42 X
Lk lF < (@)™ IL<llr + 5 g p

(9)

where ¢ =

where ¢§ and ¢4 have been defined in Theorem 8.

Hence, under the assumptions in Theorem &, in
order to achieve e-accuracy in the estimation of

L, in terms of Frobenius norm, AP-ROM requires
K = O(log(@)) iterations. From Theorem 8 and
Corollary 9, we observe that the sample-complexity
of AP-ROM (i.e., the number of samples m to
achieve a given accuracy) slightly increases as m =
O (pr®log* plog(1)).

2.3 Improving running time

The above analysis of AP-ROM shows that instead
of using exact rank-r projections (as in EP-ROM),
one can use instead tail and head approximate pro-
jection which is implemented by the BK-SVD method
of Musco & Musco (2015). The running time for this
method is given by (5(p2r) if r <« p. While the run-
ning time of the projection step is gap-independent,
the calculation of the gradient (i.e., the input to the
head projection method #) is itself the major bottle-
neck. In essence, this is related to the calculation of
the adjoint operator, A*(d) = Y1", dPDz;xzT, which
requires O(p?) operations for each sample. Coupled
with the sample-complexity of m = Q(pr?), this means
that the running time per-iteration scaled as Q(p*r?),
which overshadows any gains achieved during the pro-
jection step (please see Section 5.3 in the appendix)

To address this challenge, we propose a modified
version of BK-SVD for head approximate projection
which uses the special rank-one structures involved in
the calculation of the gradients. We call this method
Modified BK-SVD, or MBK-SVD. The basic idea is
to implicitly evaluate each Krylov-subspace iteration
within BK-SVD, and avoid any explicit calculation of
the adjoint operator A* applied to the current esti-
mate. Due to space constraints, the pseudocode as
well as the running time analysis of MBK-SVD is de-
ferred to the appendix. We have:

Theorem 10. AP-ROM (with modified BK-SVD)
runs in time K = O (p2r4 logz(%)polylog(p)).

3 Prior art

Due to space constraints, we only provide here a brief
(and incomplete) review of related work, and describe
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Figure 2: Comparison of algorithms. (a) Phase transition plot with p = 100. (b) Evolution of the objective function
versus number of iterations with p = 100, m = 8500, and noise level ¢ = 0.1. (¢) Running time of the algorithm with

p = 1000 and m = 75000.
how our method differs from earlier techniques.

Problems involving low-rank matrix estimation have
received significant attention from the machine learn-
ing community over the last few years; see Davenport
& Romberg (2016) for a recent survey. In early works
for matrix estimation, the observation operator A is
assumed to be parametrized by m independent full-
rank p X p matrices that satisfy certain restricted isom-
etry conditions (Recht et al., 2010; Liu, 2011). In this
setup, it has been established that m = O(pr) ob-
servations are sufficient to recover an unknown rank-r
matrix L, in (3) (Candes & Plan, 2011), and this scal-
ing of sample complexity is statistically optimal.

In the context of provable methods for learning neu-
ral networks, two-layer networks have received special
attention. For instance, Livni et al. (2014) has con-
sidered a two-layer network with quadratic activation
function (identical to the model proposed above), and
proposed a greedy, improper learning algorithm: in
each iteration, the algorithms adds one hidden neu-
ron to the network until the risk falls below a thresh-
old. While this algorithm is guaranteed to converge,
its convergence rate is sublinear.

Recently, in Zhong et al. (2016), the authors have
proposed a linearly convergent algorithm for learn-
ing two-layer networks for several classes of activation
functions. They also derived an upper bound on the
sample complexity of network learning which is linear
in p, and depends polynomially on r and other spec-
tral properties of the ground-truth (planted) weights.
However, their theory does not provide convergence
guarantees for quadratic functions; this paper closes
this gap. Note that our focus here is not the estima-
tion of the weights {a;,w;} themselves, but rather,
any network that gives the same input-relationship..
As a result, our guarantees are stated in terms of the
low-rank matrix L.. Furthermore, unlike their algo-
rithm, our sample complexity does not depend on the
spectral properties of ground-truth weights.

Other works have also studied similar two-layer se-
tups, including Janzamin et al. (2015); Tian (2016);
Soltanolkotabi et al. (2017); Li & Yuan (2017). In
contrast with these results, our framework does not
assume the over-parameterized setting where the num-
ber of hidden neurons r is greater than p. In addition,
we explicitly derive a sample complexity that is linear
in p, as well as demonstrate linear time convergence.
Also, observe that if we let L, to be rank-1, then
Problem (2) is known as generalized phase retrieval for
which several excellent algorithms are known (Candes
et al., 2013, 2015; Netrapalli et al., 2013). However,
our problem is more challenging as it allows L, to have
arbitrary rank-r.

We now briefly contrast our method with other al-
gorithmic techniques for low-rank matrix estimation.
Broadly, two classes of such techniques exist. The first
class of matrix estimation techniques can be catego-
rized as approaches based on convex relaxation (Chen
et al., 2015; Cai & Zhang, 2015; Kueng et al., 2017;
Candes et al., 2013). For instance, the authors in Chen
et al. (2015); Cai & Zhang (2015) demonstrate that the
observation operator A satisfies a specialized mixed-
norm isometry condition called the RIP-¢5/¢;. Fur-
ther, they show that the sample complexity of matrix
estimation using rank-one projections matches the op-
timal rate O(pr). However, these methods advocate
using either semidefinite programming (SDP) or prox-
imal sub-gradient algorithms (Boyd & Vandenberghe,
2004; Goldstein et al., 2014, 2015), both of which are
too slow for very high-dimensional problems.

The second class of techniques can be categorized
as non-convex approaches, which are all based on
a factorization-based approach initially advocated by
Burer & Monteiro (2003). Here, the underlying low-
rank matrix variable is factorized as L, = U VT, where
U,V € RP*" (Zheng & Lafferty, 2015; Tu et al., 2016).
In the Altmin-LRROM method proposed by Zhong
et al. (2015), U and V are updated in alternative fash-
ion. However, the setup in Zhong et al. (2015) is dif-



Towards Provable Learning of Polynomial Neural Networks

ferent from this paper, as it uses an asymmetric ob-
servation model, in which observation y; is given by
Y = a:ZTL*zi with z; and z; being independent ran-
dom vectors. Our goal is to analyze the more challeng-
ing case where the observation operator A is symmet-
ric and defined according (3). In a subsequent work
(called the generalized factorization machine) by Lin
et al. (2017), U and V are updated based on the con-
struction of certain sequences of moment estimators.

Both the approaches of (Zhong et al., 2015) and (Lin
et al., 2017) require a spectral initialization which in-
volves running a rank-r SVD on a given p X p ma-
trix, and therefore the running time heavily depends
on the condition number (i.e., the ratio of the maxi-
mum and the minimum nonzero singular values) of L,.
To our knowledge, only three works in the matrix es-
timation literature require no full SVDs (Bhojanapalli
et al., 2016; Hegde et al., 2016; Ge et al., 2016). How-
ever, both Bhojanapalli et al. (2016) and Hegde et al.
(2016) assume that the restricted isometry property is
satisfied, which is not applicable in our setting. More-
over, Ge et al. (2016) makes stringent assumptions on
the condition number, as well as the coherence, of the
unknown matrix.

Finally, we mention that a matrix estimation scheme
using approximate SVDs (based on Frank-Wolfe type
greedy approximation) has been proposed for learn-
ing polynomial neural networks (Shalev-Shwartz et al.,
2011; Livni et al., 2014). Moreover, this approach has
been shown to compare favorably to typical neural
network learning methods (such as stochastic gradi-
ent descent). However, the rate of convergence is sub-
linear, and they provide no sample-complexity guaran-
tees. Indeed, the main motivating factor of our paper
was to accelerate the running time of such greedy ap-
proximation techniques. We complete this line of work
by providing (a) rigorous statistical analysis that pre-
cisely establishes upper bounds on the number of sam-
ples required for learning such networks, and (b) an
algorithm that provably exhibits linear convergence,
as well as nearly-linear per iteration running time.

4 Experimental results and discussion

We illustrate some experiments to support our pro-
posed algorithms. We compare EP-ROM and AP-
ROM with convex (nuclear norm) minimization as well
as the gFM algorithm of Lin & Ye (2016). To solve
the nuclear norm minimization, we use FASTA (Gold-
stein et al., 2014, 2015) which efficiently implements an
accelerated proximal sub-gradient method. For AP-
ROM, we consider our proposed modified BK-SVD
method (MBK-SVD). In addition, SVD and SVDS de-
note the projection step being used in EP-ROM. In

all the experiments, we generate a low-rank matrix,
L. = UUT, such that U € RP*" with r = 5 where
the entries of U is randomly chosen according to the
standard normal distribution.

Figures 2(a) and 2(b) show the phase transition of suc-
cessful estimation as well as the evolution of the ob-
jective function, %|ly — A(L)||3 versus the iteration
count ¢ for five algorithms. In figure 2(a), we have
used 50 Monte Carlo trials and the phase transition
plot is generated based on the empirical probability
of success; here, success is when the relative error be-
tween L (the estimate of L,) and the ground truth
L. (measured in terms of spectral norm) is less than
0.05. For solving convex nuclear norm minimization
using FASTA, we set the Lagrangian parameter, p i.e.,
pl| L« +3|ly — AL||% via a grid search. In Figure 2(a),
there is no additive noise. As we can see in this Figure,
the phase transition for the convex method is slightly
better than those for non-convex algorithms, which is
consistent with known theoretical results. However,
the convex method is improper, i.e., the rank of L is
much higher than the target rank. In Figure 2(b) we
consider an additive standard normal noise with stan-
dard deviation equal to 0.1, and average over 10 Monte
Carlo trials. As illustrated in this plot, all non-convex
algorithm have much better performance in decreasing
the objective function compared to convex method.

Finally, in Figure 2(c), we compare the algorithms in
the high-dimensional regime where p = 1000, m =
75000, and » = 5 in terms of running time. We let
all the algorithms run 15 iterations, and then compute
the CPU time in seconds for each of them. The y-axis
denotes the logarithm of relative error in spectral norm
and we report averages over 10 Monte Carlo trials.
As we can see, convex methods are the slowest (as
expected); the non-convex methods are comparable to
each other, while MBK-SVD is the fastest. This plot
verifies that our modified head approximate projection
routine is faster than other non-convex methods, which
makes it a promising approach for high-dimensional
matrix estimation applications.

Discusstion. It seems plausible that the matrix-based
techniques of this paper can be extended to learn net-
works with similar polynomial-like activation functions
(such as the squared ReLU). Moreover, similar algo-
rithms can be plausibly used to train multi-layer net-
works using a greedy (layer-by-layer) learning strategy.
Finally, it will be interesting to integrate our methods
with practical approaches such as stochastic gradient
descent (SGD).
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