
Efficient and principled score estimation
with Nyström kernel exponential families:

Supplementary material
We now prove Theorems 1 and 2, as well as providing a finite-sample bound with explicit constants (Theorem 3).

In Appendix A, we begin with a review of necessary notation and definitions of all necessary objects, as well as
an overview of relevant theory for the full kernel exponential family estimator by Sriperumbudur et al. (2017). In
Appendix B, we establish a representer theorem for our Nyström estimator and prove Theorem 1. We address
consistency and convergence in Appendix C, by first decomposing and bounding the error in Appendix C.1, then
developing probabilistic inequalities in Appendix C.2, and finally collecting everything into a final bound to prove
Theorem 2 in Appendix C.3. Appendix D establishes auxiliary results used in the proofs, including tools for
dimension subsampling, and in particular a concentration inequality for sums of correlated random operators in
Appendix D.2.

A Preliminaries

We will first establish some definitions that will be useful throughout, as well as overviewing some relevant results
from Sriperumbudur et al. (2017).

A.1 Notation

Our notation is mostly standard: H is a reproducing kernel Hilbert space of functions Ω ⊆ Rd → R with inner
product 〈·, ·〉H and norm ‖·‖H, with a kernel k : Ω × Ω → R given by the reproducing property, k(x, y) =
〈k(x, ·), k(y, ·)〉H. The reproducing property for kernel derivatives (Steinwart and Christmann 2008, Lemma 4.34)
will also be important: 〈∂ik(x, ·), f〉H = ∂if(x) as long as k is differentiable; the same holds for higher-order
derivatives.

We use ‖·‖ to denote the operator norm ‖A‖ = supf :‖f‖H≤1|〈f,Af〉H|, and A∗ for the adjoint of an operator
A : H1 → H2, 〈Af, g〉H2 = 〈f,A∗g〉H1 . λmax(A) denotes the algebraically largest eigenvalue of A. For elements
f ∈ H1, g ∈ H2 we define f ⊗ g to be the tensor product, viewed as an operator from H2 to H1 with
(f ⊗ g)h = f〈g, h〉H2

; note that (f ⊗ g)∗ = g ⊗ f and that A(f ⊗ g)B = (Af)⊗ (B∗g).

C1(Ω) denotes the space of continuously differentiable functions on Ω, and Lr(Ω) the space of r-power Lebesgue-
integrable functions.

As in the main text, x(a,i) will denote x(a−1)d+i.

A.2 Operator definitions

The following objects will be useful in our study: C, ξ, and their estimators were defined by Sriperumbudur et al.
(2017). C is similar to the standard covariance operator in similar analyses (Caponnetto and De Vito 2007; Rudi
et al. 2015).

Definition 1. Suppose we have a sample set X = {Xa}a∈[n] ⊂ Rd. For any λ > 0, define the following:

C = Ex∼p0

[
d∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·)

]
: H → H; Cλ = C + λI (10)

ξ = −Cf0 = Ex∼p0

[
d∑
i=1

∂ik(x, ·)∂i log q0(x) + ∂2
i k(x, ·)

]
∈ H (11)

ZX =

n∑
b=1

d∑
i=1

e(b,i) ⊗ ∂ik(Xb, ·) : H → Rnd;

here e(b,i) ∈ Rnd has component (b− 1)d+ i equal to 1 and all others 0.



Define estimators of (10) and (11) by

Ĉ =
1

n
Z∗XZX =

1

n

n∑
a=1

d∑
i=1

∂ik(Xa, ·)⊗ ∂ik(Xa, ·) : H → H; Ĉλ = Ĉ + λI (12)

ξ̂ =
1

n

n∑
a=1

d∑
i=1

∂ik(Xa, ·)∂i log q0(Xa) + ∂2
i k(Xa, ·) ∈ H. (13)

Further define:

N∞(λ) := sup
x∈Ω

d∑
i=1

∥∥∥C− 1
2

λ ∂ik(x, ·)
∥∥∥2

H

N ′∞(λ) := sup
x∈Ω
i∈[d]

∥∥∥C− 1
2

λ ∂ik(x, ·)
∥∥∥2

H
.

Here, ZX evaluates derivatives of its input at the points of X, (ZXf)(b,i) = ∂if(Xb), whereas Z∗X constructs
linear combinations: for α ∈ Rnd, Z∗Xα =

∑n
b=1

∑d
i=1 α(b,i)∂ik(Xb, ·).

A.3 Assumptions

We will need the following assumptions on p0, q0, and H:

(A) (Well-specified) The true density is p0 = pf0 ∈ P, for some f0 ∈ F .

(B) supp p0 = Ω is a non-empty open subset of Rd, with a piecewise smooth boundary ∂Ω := Ω̄ \ Ω, where Ω̄
denotes the closure of Ω.

(C) p0 is continuously extensible to Ω̄. k is twice continuously differentiable on Ω× Ω, with ∂α,αk continuously
extensible to Ω̄× Ω̄ for |α| ≤ 2.

(D) ∂i∂i+dk(x, x′)|x′=xp0(x) = 0 for x ∈ ∂Ω, and for all sequences of x ∈ Ω with ‖x‖2 → ∞ we have have
p0(x)

√
∂i∂i+dk(x, x′)

∣∣∣
x′=x

= o
(
‖x‖1−d

)
for each i ∈ [d].

(E) (Integrability) For all i ∈ [d], each of

∂i∂i+dk(x, x′)|x′=x ,
√
∂2
i ∂

2
i+dk(x, x′)

∣∣∣
x′=x

, ∂i log q0(x)
√
∂2
i ∂

2
i+dk(x, x′)

∣∣∣
x′=x

are in L1(Ω, p0). Moreover, q0 ∈ C1(Ω).

(F) (Range space) f0 ∈ range(Cβ) for some β ≥ 0, and
∥∥C−βf0

∥∥
H < R for some R < ∞. The operator C is

defined by (10).

(G) (Bounded derivatives) supp(q0) = H, and the following quantities are finite:

κ2
1 := sup

x∈Ω
i∈[d]

∂i∂i+dk(x, x′)|x′=x , κ
2
2 := sup

x∈Ω
i∈[d]

∂2
i ∂

2
i+dk(x, x′)

∣∣
x′=x

, Q := sup
x∈Ω
i∈[d]

|∂i log q0(x)| .

(H) (Bounded kernel) κ2 := supx∈Ω k(x, x) is finite.

These assumptions, or closely related ones, were all used by Sriperumbudur et al. (2017) for various parts of
their analysis. Assumptions (B) to (D) ensure that the form for J(p0‖p) in (2) is valid. Assumption (E) implies
J(p0‖pf ) is finite for any pf ∈ P . Assumption (G) is used to get probabilistic bounds on the convergence of the
estimators, and implies Assumption (E). Note that κ2

2 <∞ and Q <∞ can be replaced by L2(Ω, p0) integrability
assumptions as in Sriperumbudur et al. (2017) without affecting the asymptotic rates, but κ2

1 < ∞ is used to
get Nyström-like rates. Assumption (H) is additionally needed for the convergence in Lr, Hellinger, and KL
distances.

Note that under (G), N∞(λ) ≤ dN ′∞(λ) ≤ dκ2
1

λ , and ‖C‖ ≤ dκ2
1.
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A.4 Full-data result

This result is essentially Theorem 3 of Sriperumbudur et al. (2017).

Lemma 1. Under Assumptions (A) to (E),

J(f) = J(p0‖pf ) =
1

2
〈f − f0, C(f − f0)〉H =

1

2
〈f, Cf〉H + 〈f, ξ〉H + J(p0‖q0).

Thus for λ > 0, the unique minimizer of the regularized loss function Jλ(f) = J(f) + 1
2λ‖f‖

2
H is

fλ = argmin
f∈H

Jλ(f) = −C−1
λ ξ = C−1

λ Cf0.

Using the estimators (12) and (13), define an empirical estimator of the loss function (3), up to the additive
constant J(p0‖q0), as

Ĵ(f) =
1

2
〈f, Ĉf〉H + 〈f, ξ̂〉H.

There is a unique minimizer of Ĵλ(f) = Ĵ(f) + 1
2λ‖f‖

2
H:

fmλ,n = argmin
f∈H

Ĵλ(f) = −Ĉ−1
λ ξ̂.

fmλ,n can be computed according to Theorem 4 of Sriperumbudur et al. (2017), using (4) and (5).

A.5 Subsampling

In our Nyström projections, we will consider a more general HY than (6), allowing any finite-dimensional subspace
of H.
Definition 2 (Subsampling operators). Let Y = {ya}a∈[m] ⊂ H be some basis set, and let its span be HY =
span(Y ); note that (6) uses y(a,i) = ∂ik(Ya, ·). Then define

ZY =

m∑
a=1

ea ⊗ ya : H → Rm;

let ZY have singular value decomposition ZY = UΣV ∗, where Σ ∈ Rt×t for some t ≤M . Note that V V ∗ = PY is
the orthogonal projection operator onto HY , while V ∗V is the identity on Rt.

For an operator A : H → H, let
gY (A) = V (V ∗AV )−1V ∗. (14)

The projected inverse function gY , defined by Rudi et al. (2015), will be crucial in our study, and so we first
establish some useful properties of it.

Lemma 2 (Properties of gY ). Let A : H → H be a positive operator, and define Aλ = A + λI for any λ > 0.
The operator gY of (14) satisfies the following:

(i) gY (A)PY = gY (A),

(ii) PY gY (A) = gY (A),

(iii) gY (Aλ)AλPY = PY ,

(iv) gY (Aλ) = (PYAPY + λI)−1PY , and

(v) ‖A
1
2

λ gY (Aλ)A
1
2

λ ‖ ≤ 1.
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Proof. (i) and (ii) follow from V ∗PY = V ∗V V ∗ = V ∗ and PY V = V V ∗V = V , respectively. (iii) is similar:
gY (Aλ)AλPY = V (V ∗AλV )−1V ∗AλV V

∗ = V V ∗. For (iv),

PY = V V ∗ = V (V ∗AλV )(V ∗AλV )−1V ∗ = V (V ∗AλV )V ∗V (V ∗AλV )−1V ∗.

But V (V ∗AλV )V ∗ = V (V ∗AV + λV ∗V )V ∗ = (PYAPY + λI)PY , so we have

PY = (PYAPY + λI)PY gY (Aλ);

left-multiplying both sides by (PYAPY + λI)−1 and using (ii) yields the desired result. Finally,(
A

1
2

λ gY (Aλ)A
1
2

λ

)2

= A
1
2

λ gY (Aλ)AλgY (Aλ)A
1
2

λ

= A
1
2

λV (V ∗AλV )−1V ∗AλV (V ∗AλV )−1V ∗A
1
2

λ

= A
1
2

λV (V ∗AλV )−1V ∗A
1
2

λ

= A
1
2

λ gY (Aλ)A
1
2

λ ,

so that A
1
2

λ gY (Aλ)A
1
2

λ is a projection. Thus its operator norm is either 0 or 1, and (v) follows.

B Representer theorem for Nyström optimization problem (Theorem 1)

We will first establish some representations for fmλ,n in terms of operators on H (in Lemma 3), and then show
Lemma 4, which generalizes Theorem 1. This parallels Appendix C of Rudi et al. (2015).
Lemma 3. Under Assumptions (A) to (E), the unique minimizer of Ĵ(f) + λ‖f‖2H in HY is

fmλ,n = −(PY ĈPY + λI)−1PY ξ̂ = −gY (Ĉλ)ξ̂. (15)

Proof. We begin by rewriting the minimization using Lemma 1 as

fmλ,n = argmin
f∈HY

Ĵλ(f)

= argmin
f∈HY

1

2
〈f, Ĉf〉H + 〈f, ξ̂〉H +

1

2
λ‖f‖2H

= argmin
f∈HY

1

2
〈PY f, ĈPY f〉H + 〈PY f, ξ̂〉H +

1

2
λ‖f‖2H

= argmin
f∈HY

1

2

〈
1√
n
ZXPY f,

1√
n
ZXPY f

〉
H

+ 〈f, PY ξ̂〉H +
1

2
λ‖f‖2H

= argmin
f∈HY

1

2

∥∥∥∥ 1√
n
ZXPY f

∥∥∥∥2

H
+ λ

〈
f,

1

λ
PY ξ̂

〉
H

+
1

2
λ‖f‖2H +

1

2
λ

∥∥∥∥ 1

λ
PY ξ̂

∥∥∥∥2

H

= argmin
f∈HY

1

2

∥∥∥∥ 1√
n
ZXPY f

∥∥∥∥2

H
+

1

2
λ

∥∥∥∥f +
1

λ
PY ξ̂

∥∥∥∥2

H
.

This problem is strictly convex and coercive, thus a unique fmλ,n exists. Now, for any f ∈ H, we have∥∥∥∥f +
1

λ
PY ξ̂

∥∥∥∥2

H
=

∥∥∥∥PY f +
1

λ
PY ξ̂

∥∥∥∥2

H
+ ‖(I − PY )f‖2H ,

so that the problem

argmin
f∈H

1

2

∥∥∥∥ 1√
n
ZXPY f

∥∥∥∥2

H
+

1

2
λ

∥∥∥∥f +
1

λ
PY ξ̂

∥∥∥∥2

H
will yield a solution in HY . This problem is also strictly convex and coercive, so its unique solution must be fmλ,n.
By differentiating the objective, we can then see that

1
nPY Z

∗
XZXf

m
λ,n + λfmλ,n + PY ξ̂ = 0(

PY ĈPY + λI
)
fmλ,n = −PY ξ̂,

which since Ĉ is positive yields the first equality of (15). The second follows from Lemma 2 (iv).
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Lemma 4 (Generalization of Theorem 1). Under Assumptions (A) to (E), fmλ,n can be computed as

fmλ,n = Z∗Y βY =

m∑
a=1

(βY )aya

βY = −( 1
nB

T
XYBXY + λGY Y )†hY , (16)

where BXY ∈ Rnd×m, GY Y ∈ Rm×m, hY ∈ Rm are given by

(BXY )(b,i),a = 〈∂ik(Xb, ·), ya〉H (17)
(GY Y )a,a′ = 〈ya, ya′〉H

(hY )a = 〈ξ̂, ya〉H.

Proof. First, BXY = ZXZ
∗
Y , GY Y = ZY Z

∗
Y , and hY = ZY ξ̂. For example, (17) agrees with

ZXZ
∗
Y =

[
n∑
b=1

d∑
i=1

e(b,i) ⊗ ∂ik(Xb, ·)

][
m∑
a=1

ya ⊗ ea

]

=

n∑
b=1

d∑
i=1

m∑
a=1

〈∂ik(Xb, ·), ya〉H
[
e(b,i) ⊗ ea

]
.

Recall the full-rank factorization of pseudo-inverses: if a matrix A of rank r can be written as A = FG for F , G
each of rank r, then A† = G†F † (Ben-Israel and Greville 2003, chap. 1, sec. 6, ex. 17).

Now we can show that the claimed form (16) matches fmλ,n from (15):

−Z∗Y
(

1
nB

T
XYBXY + λGY Y

)†
hY = −Z∗Y

(
1
nZY Z

∗
XZXZ

∗
Y + λZY Z

∗
Y

)†
ZY ξ̂

= −Z∗Y
(
ZY ĈλZ

∗
Y

)†
ZY ξ̂

= −V ΣU∗
(

(UΣ)(V ∗ĈλV )ΣU∗
)†
UΣV ∗ξ̂

= −V ΣU∗(ΣU∗)†(V ∗ĈλV )†(UΣ)†UΣV ∗ξ̂

= −V ΣU∗UΣ−1(V ∗ĈλV )−1Σ−1U∗UΣV ∗ξ̂

= −V (V ∗ĈλV )−1V ∗ξ̂

= −gY (Ĉλ)ξ̂ = fmλ,n.

Theorem 1 is the specialization of Lemma 4 to y(a,i) = ∂ik(Ya, ·).

B.1 Relationship to “lite” kernel exponential families

The lite kernel exponential family of Strathmann et al. (2015) obtains a solution in H′Y = span{k(y, ·)}y∈Y , where
in that paper it was assumed that Y = X, k(x, y) = exp

(
−τ−1‖x− y‖2

)
, and q0 was uniform. Their estimator,

given by their Proposition 1, is

α = −τ
2

(A+ λI)−1b (18)

A =

d∑
i=1

−[DxiK −KDxi ]
2 b =

d∑
i=1

(
2

τ
(Ksi +DsiK1− 2DxiKxi)−K1

)

where xi =
[
X1i . . . Xni

]T, si = xi � xi with � the elementwise product, Dx = diag(x), and K ∈ Rm×m has
entries Kaa′ = k(Xa, Xa′).
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Lemma 4 allows us to optimize over H′Y ; we need not restrict ourselves to Y = X, uniform q0, or a Gaussian
kernel. Here ya = k(Ya, ·), and we obtain

β′Y = −
(

1

n
(B′XY )TB′XY + λG′Y Y

)†
h′Y .

Using that for the Gaussian kernel k

∂ik(x, y) = −2

τ
(xi − yi)k(x, y) ∂2

i+dk(x, y) =
2

τ

[
2

τ
(xi − yi)2 − 1

]
k(x, y),

we can obtain with some algebra similar to the proof of Strathmann et al. (2015)’s Proposition 1 that when
Y = X and q0 is uniform,

h′X =
2

nτ
b (B′XX)TB′XX =

4

τ2
A G′XX = K.

Thus

β′X = −
(

4

nτ2
A+ λK

)†
2

nτ
b = −τ

2

(
A+

1

4
nτ2λK

)†
b. (19)

(19) resembles (18), except that our approach regularizes A with 1
4nτ

2λK rather than λI. This is because, despite
claims by Strathmann et al. (2015) in both the statement and the proof of their Proposition 1 that they minimize
Ĵ(f) + λ‖f‖2H, they in fact minimize Ĵ(f) + 1

2nτ
2λ‖α‖22. Our solutions otherwise agree.

C Consistency and convergence rate of the estimator (Theorem 2)

To prove the consistency and convergence of fmλ,n, we will first bound the difference between fmλ,n in terms of
various quantities (Appendix C.1), which we will then study individually in Appendix C.2 to yield the final result
in Appendix C.3. Appendix D gives auxiliary results used along the way.

C.1 Decomposition

We care both about the parameter convergence ‖fmλ,n − f0‖H and the convergence of pmλ,n = pfmλ,n to p0 in various

distances. But by Lemma 1, we know that J(p0‖pmλ,n) = 1
2

∥∥∥C 1
2 (fmλ,n − f0)

∥∥∥2

H
. Lemma 20 additionally shows that

the Lr, KL, and Hellinger distances between the distributions can be bounded in terms of ‖fmλ,n − f0‖H. Thus it
suffices to bound ‖Cα(fmλ,n − f0)‖H for α ≥ 0.
Lemma 5. Under Assumptions (A) to (F), let α ≥ 0 and define

c(a) := λmin(0, a− 1
2 )‖C‖max(0, a− 1

2 ), CY := ‖C
1
2

λ (I − V V ∗)‖2.

Then

‖Cα(fmλ,n − f0)‖H ≤ R (2CY + λ) c(α)c(β)

+
1√
λ

∥∥∥CαĈ− 1
2

λ

∥∥∥(‖ξ̂ − ξ‖H + ‖Ĉ − C‖R
((

2CY√
λ

+
√
λ

)
c(β) + ‖C‖β

))
.

Proof. We will decompose the error with respect to the best estimator for a fixed basis:

fmλ := argmin
f∈HY

1

2
〈f, PY CPY f〉H + 〈f, PY ξ〉H +

1

2
λ‖f‖2H

= −(PY CPY + λI)−1Pyξ = −gY (Cλ)ξ = gY (Cλ)Cf0.

Then we have
‖Cα(fmλ,n − f0)‖H ≤ ‖Cα(fmλ,n − fmλ )‖H + ‖Cα(fmλ − f0)‖H. (20)

We’ll tackle the second term first.
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Approximation error This term covers both approximation due to the basis HY and the bias due to
regularization. We’ll break it down using some ideas from the proof of Rudi et al. (2015)’s Theorem 2:

f0 − fmλ = (I − gY (Cλ)C)f0

= (I − gY (Cλ)Cλ + λgY (Cλ)) f0

= (I − gY (Cλ)Cλ(V V ∗)− gY (Cλ)Cλ(I − V V ∗) + λgY (Cλ)) f0

= ((I − V V ∗)− gY (Cλ)Cλ(I − V V ∗) + λgY (Cλ)) f0,

where in the last line we used Lemma 2 (iii). Thus, using Assumption (F) and Lemma 2 (v),

‖Cα(fmλ − f0)‖H ≤ ‖C
α(I − V V ∗)f0‖H + ‖CαgY (Cλ)Cλ(I − V V ∗)f0‖H + λ ‖CαgY (Cλ)f0‖H

≤
∥∥∥CαC− 1

2

λ

∥∥∥︸ ︷︷ ︸
Sα

∥∥∥C 1
2

λ (I − V V ∗)Cβ
∥∥∥∥∥C−βf0

∥∥
H︸ ︷︷ ︸

≤R

+
∥∥∥CαC− 1

2

λ

∥∥∥︸ ︷︷ ︸
Sα

∥∥∥C 1
2

λ gY (Cλ)C
1
2

λ

∥∥∥︸ ︷︷ ︸
≤1

∥∥∥C 1
2

λ (I − V V ∗)Cβ
∥∥∥∥∥C−βf0

∥∥
H︸ ︷︷ ︸

≤R

+ λ
∥∥∥CαC− 1

2

λ

∥∥∥︸ ︷︷ ︸
Sα

∥∥∥C 1
2

λ gY (Cλ)C
1
2

λ

∥∥∥︸ ︷︷ ︸
≤1

∥∥∥C− 1
2

λ Cβ
∥∥∥
H︸ ︷︷ ︸

Sβ

∥∥C−βf0

∥∥
H︸ ︷︷ ︸

≤R

.

Because (I − V V ∗) is a projection, we have∥∥∥C 1
2

λ (I − V V ∗)Cβ
∥∥∥ ≤ ∥∥∥C 1

2

λ (I − V V ∗)2C
1
2

λ

∥∥∥∥∥∥C− 1
2

λ Cβ
∥∥∥ ≤ ∥∥∥C 1

2

λ (I − V V ∗)
∥∥∥2

Sβ .

We can also bound the terms Sa as follows. When a ≥ 1
2 , the function x 7→ xa/

√
x+ λ is increasing on [0,∞), so

that
Sa =

∥∥∥C− 1
2

λ Ca
∥∥∥
H

=
‖C‖a√
‖C‖+ λ

≤ ‖C‖a− 1
2 .

When instead 0 ≤ a < 1
2 , we have that

Sa =
∥∥∥C− 1

2

λ Ca
∥∥∥
H
≤ max

x≥0

xa√
x+ λ

=
√

2aa
(

1
2 − a

) 1
2−a λa−

1
2 ≤ λa− 1

2 .

Combining the two yields
Sa ≤ λmin(0, a− 1

2 )‖C‖max(0, a− 1
2 ) = c(a),

and so

‖Cα(fmλ − f0)‖H ≤ R
(

2
∥∥∥C 1

2

λ (I − V V ∗)
∥∥∥2

+ λ

)
c(α)c(β). (21)

Estimation error Let D = PY CPY , D̂ = PY ĈPY . Then

fmλ = −(D + λI)−1PY ξ = − 1

λ
(D + λI −D)(D + λI)−1PY ξ = − 1

λ
(PY ξ +Dfmλ ),

and so the error due to finite n is

fmλ − fmλ,n = (D̂ + λI)−1PY ξ̂ + fmλ

= (D̂ + λI)−1
(
PY ξ̂ + (D̂ + λI)fmλ

)
= (D̂ + λI)−1

(
PY ξ̂ + D̂fmλ + λfmλ

)
= (D̂ + λI)−1

(
PY ξ̂ + D̂fmλ − PY ξ −Dfmλ

)
= (D̂ + λI)−1

(
PY (ξ̂ − ξ) + (D̂ −D)fmλ

)
= (D̂ + λI)−1

(
PY (ξ̂ − ξ) + (D̂ −D)(fmλ − f0) + (D̂ −D)f0

)
.
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We thus have, using ‖PY ‖ ≤ 1,∥∥Cα(fmλ − fmλ,n)
∥∥
H ≤

∥∥∥Cα(PY ĈPY + λI)−1PY

∥∥∥(‖ξ̂ − ξ‖H + ‖Ĉ − C‖‖fmλ − f0‖H + ‖Ĉ − C‖ ‖f0‖H
)
.

We have already bounded ‖fmλ − f0‖H, and have ‖f0‖H ≤ ‖Cβ‖‖C−βf0‖H ≤ R‖C‖β . Using Lemma 2 (iv) and
(v), we have ∥∥∥Cα(PY ĈPY + λI)−1PY

∥∥∥ =
∥∥∥CαgY (Ĉλ)

∥∥∥ ≤ ∥∥∥CαĈ− 1
2

λ

∥∥∥∥∥∥Ĉ 1
2

λ gY (Ĉλ)Ĉ
1
2

λ

∥∥∥∥∥∥Ĉ− 1
2

λ

∥∥∥
≤ 1√

λ

∥∥∥CαĈ− 1
2

λ

∥∥∥ ,
and so ∥∥Cα(fmλ − fmλ,n)

∥∥
H ≤

∥∥∥CαĈ− 1
2

λ

∥∥∥
√
λ

(
‖ξ̂ − ξ‖H + ‖Ĉ − C‖

(
‖fmλ − f0‖H +R‖C‖β

) )
. (22)

The claim follows by using (21) and (22) in (20).

C.1.1 Remark on unimportance of ∂2
i k(x, ·) terms in the basis

This decomposition gives some intuition about why terms of the form ∂2
i k(x, ·), which are included in the basis of

the full-data solution but missing from our solution even when Y = X, appear to be unimportant (as we also
observe empirically).

The only term in the error decomposition depending on the specific basis chosen is the projection error term
‖C

1
2

λ (I − V V ∗)‖. Because the ∂2
i k(x, ·) directions are not particularly aligned with C, unlike the ∂ik(x, ·) terms,

whether they are included or not should not have a major effect on this term and therefore does not strongly
affect the bound.

Moreover, the primary places where Lemma 5 discards dependence on the basis are that in the estimation error
term, we bounded each of ‖PY (ξ̂− ξ)‖, ‖PY (Ĉ−C)PY ‖, and ‖Cα(PY ĈPY +λI)−1PY ‖ terms by simply dropping
the PY . For the C-based terms, we again expect that the ∂2

i k(x, ·) terms do not have a strong effect on the given
norms. Thus the only term that should be very directly affected is ‖PY (ξ̂ − ξ)‖; but since we expect that ξ̂ → ξ
relatively quickly compared to the convergence of Ĉ → C, this term should not be especially important to the
overall error.

C.2 Probabilistic inequalities

We only need Lemma 5 for α = 0 and α = 1
2 ; in the former case, we use

∥∥∥Ĉ− 1
2

λ

∥∥∥ ≤ 1/
√
λ. Thus we are left with

four quantities to control: ‖C 1
2 Ĉ
− 1

2

λ ‖, CY = ‖C
1
2

λ (I − V V ∗)‖2, ‖ξ̂ − ξ‖H, and ‖Ĉ − C‖.
Lemma 6. Let ρ, δ ∈ (0, 1). Under Assumptions (B) to (E) and (G), for any 0 < λ ≤ 1

3‖C‖, we have with
probability at least 1− δ that

‖C 1
2 Ĉ
− 1

2

λ ‖ ≤
1√

1− ρ
as long as

n ≥ max

(
4

3ρ
,

40dN ′∞(λ)

ρ2

)
log

40 TrC

λδ
.

Proof. Let γ := λmax

(
C
− 1

2

λ (C − Ĉ)C
− 1

2

λ

)
. Lemma 19 gives that ‖C 1

2 Ĉ
− 1

2

λ ‖ ≤
1√
1−γ . We bound γ with Lemma 17,

using Y ai = ∂ik(Xa, ·) so that E
∑d
i=1 Y

a
i ⊗ Y ai = C. This gives us that γ ≤ ρ with probability at least 1− δ as

long as

ρ ≤ 2w

3n
+

√
10dN ′∞(λ)w

n
,

which is satisfied by the condition on n.
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Lemma 7. Sample m points {Ya}a∈[m] iid from p0, and construct a subspace HY from those points in a way
determined below; let V V ∗ be the orthogonal projection onto HY . Choose ρ, δ ∈ (0, 1), and assume that λ ≤ 1

3‖C‖.
Then, under Assumptions (B) to (E) and (G)

CY = ‖C
1
2

λ (I − V V ∗)‖2 ≤ λ

1− ρ
with probability at least 1− δ in each of the following cases:

(i) We put all components of the m points in our basis: Y = {∂ik(Ya, ·)}i∈[d]
a∈[m], so that we have md components.

We require

m ≥ max

(
4

3ρ
,

40dN ′∞(λ)

ρ2

)
log

(
40

λδ
Tr(C)

)
.

(ii) Include each of the md components ∂ik(Ya, ·) with probability p, so that the total number of components is
distributed randomly as Binomial(md, p). The statement holds as long as

m ≥ max

 4

3ρ
,

40
(
d+ 1

p − 1
)
N ′∞(λ)

ρ2

 log

 40

λδ
Tr(C)

d+ 1
p − 1

d+ 15
(

1
p − 1

)
 .

(iii) For each of the m data points, we choose ` ∈ [1, d] components uniformly at random without replacement, so
that we have m` components. Assume here that d > 1; otherwise we necessarily have ` = d = 1, covered by
case (i). The statement holds as long as

m ≥ max

(
4

3ρ
,

40dN ′∞(λ)

ρ2

)
log

(
40

λδ
Tr(C)

(
1 + 14

d− `
`(d− 1)

))
.

Proof. Define the random operator RY : H → Rmd by RY := 1√
m

∑m
a=1

∑d
i=1

1
pai
eai ⊗ ∂ik(Ya, ·), where pai is the

probability that the corresponding component is included in the basis. Since pai > 0 for each (a, i) in these setups,
the operator RY is bounded. Note that rangeZ∗ = rangePY = HY and that ‖C

1
2

λ (I−V V ∗)‖2 = ‖(I−V V ∗)C
1
2

λ ‖2

as C
1
2

λ is symmetric. Thus we can apply Lemmas 18 and 19 to observe that

‖C
1
2

λ (I − V V ∗)‖2 ≤ λ
∥∥∥(R∗YRY + λI)−

1
2C

1
2

λ

∥∥∥2

≤ λ

1− λmax

(
C
− 1

2

λ (C −R∗YRY )C
− 1

2

λ

) .
It remains to bound the relevant eigenvalue by ρ. We do so with the results of Appendix D.2: Lemma 17 for (i),
Lemma 15 for (ii), and Lemma 16 for (iii).

For the remaining two quantities, we use simple Hoeffding bounds:2

Lemma 8 (Concentration of ξ̂). Under Assumption (G), with probability at least 1− δ we have

‖ξ̂ − ξ‖H ≤
2d(Qκ1 + κ2)√

n

(
1 +

√
2 log 1

δ

)
.

Proof. Let

νa :=

d∑
i=1

(
∂i log q0(Xa)∂ik(Xa, ·) + ∂2

i k(Xa, ·)
)
− ξ,

so that ξ̂ − ξ = 1
n

∑n
a=1 νa, and for each a we have that E νa = 0 and

‖νa‖H ≤ 2 sup
x∈Ω

∥∥∥∥∥
d∑
i=1

∂i log q0(x)∂ik(x, ·) + ∂2
i k(x, ·)

∥∥∥∥∥
H

≤ 2d (Qκ1 + κ2) .

Applying Lemma 10 to the vectors νa gives the result.
2A Bernstein bound would allow for a slightly better result when κ1 and κ2 are large, at the cost of a more complex

form.
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Lemma 9 (Concentration of Ĉ). Under Assumption (G), with probability at least 1− δ we have

‖Ĉ − C‖ ≤ 2dκ2
1√
n

(
1 +

√
2 log 1

δ

)
.

Proof. Let

Cx :=

d∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·),

so that Ĉ = 1
n

∑
a=1 nCXa , C = ECx. We know that

‖Cx − C‖ ≤ 2

d∑
i=1

‖∂ik(x, ·)‖2H ≤ 2dκ2
1

‖Cx − C‖HS ≤ 2

d∑
i=1

sup
x∈Ω
‖∂ik(x, ·)‖2H ≤ 2dκ2

1,

so applying Lemma 11 shows the result.

C.3 Final bound

Theorem 3 (Finite-sample convergence of fmλ,n). Under Assumptions (A) to (G), let δ ∈ (0, 1) and define

Sδ := 1 +
√

2 log 4
δ . Sample basis m points {Ya}a∈[m] iid from p0, not necessarily independent of X, and choose a

basis as:

(i) All d components {∂ik(Ya, ·)}i∈[d]
a∈[m]: set w := 1, r := 0.

(ii) A random subset, choosing each of the md components ∂ik(Ya, ·) independently with probability p: set
w := dp+1−p

dp+80(1−p)/3 , r := 1
p − 1.

(iii) A random subset, choosing ` components ∂ik(Ya, ·) uniformly without replacement for each of the m points:
set w := 1 + 14 d−`

`(d−1) , r := 0. (If d = 1, use case (i).)

Assume that 0 < λ < 1
3‖C‖. When

m ≥ 90(d+ r)κ2
1

λ
log

160dκ2
1w

λδ
and n ≥ 90dκ2

1

λ
log

160dκ2
1

λδ
,

we have with probability at least 1− δ that both of the following hold simultaneously:

‖fmλ,n − f0‖H ≤ 7Rλmin( 1
2 , β)(dκ2

1)max(0, β− 1
2 )

+
2d

λ
√
n

(
Qκ1 + κ2 +Rκ2

1

(
7λmin( 1

2 , β)(dκ2
1)max(0, β− 1

2 ) + (dκ2
1)β
))

Sδ

‖C 1
2 (fmλ,n − f0)‖H ≤ 7Rλmin(1, β+ 1

2 )(dκ2
1)max(0, β− 1

2 )

+
2d
√

3√
λn

(
Qκ1 + κ2 +Rκ2

1

(
7λmin( 1

2 , β)(dκ2
1)max(0, β− 1

2 ) + (dκ2
1)β
))

Sδ.

Proof. Recall from Lemma 5 that

‖Cα(fmλ,n − f0)‖H ≤ R (2CY + λ) c(α)c(β)

+
1√
λ

∥∥∥CαĈ− 1
2

λ

∥∥∥(‖ξ̂ − ξ‖H + ‖Ĉ − C‖R
((

2CY√
λ

+
√
λ

)
c(β) + ‖C‖β

))
,

for c(α) = λmin(0,α− 1
2 )‖C‖max(0,α− 1

2 ).
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We’ll use a union bound over the results of Lemmas 6 to 9. Note that under Assumption (G), each of ‖C‖ and
TrC are at most dκ2

1 and N ′∞(λ) ≤ κ2
1/λ.

We first use ρ = 2
3 in Lemmas 6 and 7 to get that ‖C 1

2 Ĉ
− 1

2

λ ‖ ≤
√

3 and CY ≤ 3λ with probability at least δ
2 when

n and m are each at least

max
(
2, 90(d+ r)N ′∞(λ)

)
log

40 Tr(C)w

λ δ4
≤ 90(d+ r)κ2

1

λ
log

160dκ2
1w

λδ
,

where for m we use r and w as defined in the statement, and for n we use r = 0, w = 1; we also used that
λ < 1

3‖C‖ to resolve the max. The claim follows from applying Lemmas 8 and 9.

Theorem 2 now follows from considering the asymptotics of Theorem 3, once we additionally make Assumption (H):

Proof of Theorem 2. Let b := min
(

1
2 , β

)
. Under Assumptions (A) to (G), as n→∞ Theorem 3 gives:

‖fmλ,n − f0‖H = Op0
(
λb + n−

1
2λ−1 + n−

1
2λb−1

)
= Op0

(
λb + n−

1
2λ−1

)
‖C 1

2 (fmλ,n − f0)‖H = Op0
(
λb+

1
2 + n−

1
2λ−

1
2 + n−

1
2λb−

1
2

)
= Op0

(
λb+

1
2 + n−

1
2λ−

1
2

)
as long as min(n,m) = Ω(λ−1 log λ−1). Choosing λ = n−θ, this requirement is min(n,m) = Ω(nθ log n) and the
bounds become

‖fmλ,n − f0‖H = Op0
(
n−bθ + nθ−

1
2

)
‖C 1

2 (fmλ,n − f0)‖H = Op0
(
n−bθ−

1
2 θ + n

1
2 θ−

1
2

)
.

Both bounds are minimized when θ = 1
2(1+b) , which since 0 ≤ b ≤ 1

2 leads to 1
2 ≥ θ ≥

1
3 , and the requirement on

n is always satisfied once n is large enough. This shows, as claimed, that

‖fmλ,n − f0‖H = Op0
(
n−

b
2(b+1)

)
J(p0‖pfmλ,n) = Op0

(
n−

2b+1
2(b+1)

)
when m = Ω

(
n

1
2(1+b) log n

)
.

The bounds on Lr, Hellinger, and KL convergence follow from Lemma 20 under Assumption (H).

D Auxiliary results

D.1 Standard concentration inequalities in Hilbert spaces

Lemma 10 (Hoeffding-type inequality for random vectors). Let X1, . . . , Xn be iid random variables in a
(separable) Hilbert space, where EXi = 0 and ‖Xi‖ ≤ L almost surely. Then for any ε > L/

√
n,

Pr

(∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥ > ε

)
≤ exp

(
−1

2

(√
nε

L
− 1

)2
)

;

equivalently, we have with probability at least 1− δ that∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥ ≤ L√
n

(
1 +

√
2 log 1

δ

)
.

Proof. Following Example 6.3 of Boucheron et al. (2013), we can apply McDiarmid’s inequality. The function
f(X1, . . . , Xn) =

∥∥ 1
n

∑n
i=1Xi

∥∥ satisfies bounded differences:∣∣∣∣∣
∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥−
∥∥∥∥∥ 1

n
X̂1 +

1

n

n∑
i=2

Xi

∥∥∥∥∥
∣∣∣∣∣ ≤

∥∥∥∥ 1

n
(X1 − X̂1)

∥∥∥∥ ≤ 2L

n
.
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Thus for ε ≥ E
∥∥ 1
n

∑
iXi

∥∥,
Pr

(∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ > ε

)
≤ exp

(
−
n
(
ε− E

∥∥ 1
n

∑
iXi

∥∥)2
2L2

)
.

We also know that

E

∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ ≤ 1

n

√√√√E

∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

=
1

n

√∑
i,j

E〈Xi, Xj〉 =
1

n

√∑
i

E‖Xi‖2 ≤
1

n

√
nL2 =

L√
n
,

so

Pr

(∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ > ε

)
≤ exp

−n
(
ε− L√

n

)2

2L2

 = exp

(
−1

2

(√
nε

L
− 1

)2
)

as desired. The second statement follows by simple algebra.

Lemma 11 (Hoeffding-type inequality for random Hilbert-Schmidt operators). Let X1, . . . , Xn be iid random
operators in a (separable) Hilbert space, where EXi = 0 and ‖Xi‖ ≤ L, ‖Xi‖HS ≤ B almost surely. Then for any
ε > B/

√
n,

Pr

(∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥ < ε

)
≤ exp

(
−1

2

(√
nε

L
− B

L

)2
)

;

equivalently, we have with probability at least 1− δ that∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥ ≤ 1√
n

(
B + L

√
2 log 1

δ

)
.

Proof. The argument is the same as Lemma 10, except that

E

∥∥∥∥∥ 1

n

∑
i

Xi

∥∥∥∥∥ ≤ 1

n

√√√√E

∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

HS

=
1

n

√∑
i,j

E〈Xi, Xj〉HS =
1

n

√∑
i

E‖Xi‖2HS ≤
B√
n

using ‖Xi‖ ≤ ‖Xi‖HS.

Lemma 12 (Bernstein’s inequality for a sum of random operators; Proposition 12 of Rudi et al. (2015)). Let H
be a separable Hilbert space, and X1, . . . , Xn a sequence of iid self-adjoint positive random operators on H, with
EX1 = 0, λmax(X1) ≤ L almost surely for some L > 0. Let S be a positive operator such that E[X2

1 ] � S. Let
β = log 2 TrS

‖S‖δ . Then for any δ ≥ 0, with probability at least 1− δ

λmax

(
1

n

n∑
i=1

Xi

)
≤ 2Lβ

3n
+

√
2‖S‖β
n

.

D.2 Concentration of sum of correlated operators

The following result is similar to Proposition 8 of Rudi et al. (2015), but the proof is considerably more complex
due to the sum over correlated operators.

We also allow for a random “masking” operation via the Uai . Lemma 13 applies to general sampling schemes Uai ;
Lemmas 15 to 17 specialize it to particular sampling schemes.

Lemma 13. Let Wa = (Y ai )i∈[d] be a random d-tuple of vectors in a separable Hilbert space H, with {Wa}a∈[n]

iid.

Let Ua = (Uai )i∈d be a corresponding d-tuple of random vectors, with Pr(Uai ∈ {0, 1}) = 1, such that the {Ua}a∈[n]

are iid, E[Uai ] := µi ∈ (0, 1], and Ua is independent of W a. Define νij := E[Uai U
a
j ]/(µiµj), νi =

∑d
j=1 νij.
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Suppose that Q = E
∑d
i=1 Y

1
i ⊗ Y 1

i exists and is trace class, and that for any λ > 0 there is N ′∞(λ) <∞ such
that 〈Y al , (Q+ λI)−1Y al 〉H ≤ N

′
∞(λ) almost surely. Let Qλ = Q+ λI, Va =

∑d
i=1

1
µi
Uai (Y ai ⊗ Y ai ).

Let

S := N ′∞(λ)Q
− 1

2

λ

2E

 d∑
i,j

νij(Yi ⊗ Yj)

+ 3E

[
d∑
i=1

νi(Yi ⊗ Yi)

]Q
− 1

2

λ ,

and suppose that TrS ≤ t, s∗ ≤ ‖S‖ ≤ s∗. (These bounds will depend on the distribution of Ua.)

Then with probability at least 1− δ we have that

λmax

(
Q
− 1

2

λ

(
Q− 1

n

n∑
a=1

Va

)
Q
− 1

2

λ

)
≤ 2β

3n
+

√
2s∗β

n
, β = log

(
2t

δs∗

)
.

Proof. We will apply the Bernstein inequality for random operators, Lemma 12, to Za := Q
− 1

2

λ (Q− Va)Q
− 1

2

λ . For
each a,

EVa =

d∑
i=1

EUai
µi

E[Y ai ⊗ Y ai ] = Q

so that EZa = 0, and since Va is positive and Qλ is self-adjoint,

sup
‖f‖H=1

〈f, Zaf〉H = sup
‖f‖H=1

〈f,Q−1
λ Qf〉H − 〈f,Q

− 1
2

λ VaQ
− 1

2

λ f〉H ≤ sup
‖f‖H=1

〈f,Q−1
λ Qf〉H ≤ 1.

To apply Lemma 12, we now need to show that the positive operator S upper bounds the second moment of Za.
Letting u ∈ H, and dropping the subscript a for brevity, we have that

〈u,E[Z2]u〉H =
〈
u,E[Q

− 1
2

λ V Q−1
λ V Q

− 1
2

λ ]u
〉
H
−
〈
u,Q

− 1
2

λ QQ−1
λ QQ

− 1
2

λ u
〉
H

≤
〈
u,Q

− 1
2

λ E[V Q−1
λ V ]Q

− 1
2

λ u
〉
H

=
〈
Q
− 1

2

λ u,E[V Q−1
λ V ]Q

− 1
2

λ u
〉
H

=

d∑
i,j

〈
Q
− 1

2

λ u,E
[
Ui
µi

(Yi ⊗ Yi)Q−1
λ (Yj ⊗ Yj)

Uj
µj

]
Q
− 1

2

λ u

〉
H

=

d∑
i,j

E[UiUj ]

µiµj
E
[
〈Q−

1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H〈Yi, Q−1
λ Yj〉H

]
.

Let νij = E[UiUj ]/(µiµj). Using 2〈x,Ay〉 = 〈x+ y,A(x+ y)〉 − 〈x,Ax〉 − 〈y,Ay〉, we get:

〈u,E[Z2]u〉H ≤
1

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H

]

−
d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H〈Yi, Q−1
λ Yi〉

]
.

Similarly using 2〈A, x〉〈A, y〉 = 〈A, x+ y〉2 − 〈A, x〉2 − 〈A, y〉2, we get that the first line is

1

4

d∑
i,j

νij

(
E
[
〈Q−

1
2

λ u, Yi + Yj〉2H〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H

]
−E

[
〈Q−

1
2

λ u, Yi〉2H〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H

]
− E

[
〈Q−

1
2

λ u, Yj〉2H〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H

])
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and the second is

1

2

d∑
i,j

νij

(
−E

[
〈Q−

1
2

λ u, Yi + Yj〉2H〈Yi, Q−1
λ Yi〉

]
+E

[
〈Q−

1
2

λ u, Yi〉2H〈Yi, Q−1
λ Yi〉

]
+ E

[
〈Q−

1
2

λ u, Yj〉2H〈Yi, Q−1
λ Yi〉

])
.

Each of these expectations is nonnegative, so dropping the ones with negative coefficients gives:

〈u,E[Z2]u〉H ≤
1

4

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi + Yj〉2H〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H

]

+
1

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉2H〈Yi, Q−1
λ Yi〉

]
+

1

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yj〉2H〈Yi, Q−1
λ Yi〉

]
.

Recalling that 〈Yi, Q−1
λ Yi〉 ≤ N ′∞(λ), the second line is upper-bounded by N ′∞(λ) times

1

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉2H
]

+
1

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yj〉2H
]

=

d∑
i=1

νi E
[
〈Q−

1
2

λ u, Yi〉2H
]
,

where νi =
∑d
j=1 νij . We also have that

〈Yi + Yj , Q
−1
λ (Yi + Yj)〉H = ‖Q−

1
2

λ (Yi + Yj)‖2H ≤ 2(‖Q−
1
2

λ Yi‖2H + ‖Q−
1
2

λ Yj‖2H) ≤ 4N ′∞(λ),

so the first sum is at most N ′∞(λ) times

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi + Yj〉2H
]

=

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉2H + 〈Q−
1
2

λ u, Yj〉2H + 2〈Q−
1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H
]

= 2

d∑
i=1

νi E
[
〈Q−

1
2

λ u, Yi〉2H
]

+ 2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H
]
.

Thus

〈u,E[Z2]u〉H ≤ N ′∞(λ)

2

d∑
i,j

νij E
[
〈Q−

1
2

λ u, Yi〉H〈Q
− 1

2

λ u, Yj〉H
]

+ 3

d∑
i=1

νi E
[
〈Q−

1
2

λ u, Yi〉2H
]

=

〈
u,N ′∞(λ)Q

− 1
2

λ

2E

 d∑
i,j

νij(Yi ⊗ Yj)

+ 3E

[
d∑
i=1

νi(Yi ⊗ Yi)

]Q
− 1

2

λ u

〉
H

= 〈u, Su〉H ,

recalling that

S = N ′∞(λ)Q
− 1

2

λ

2E

 d∑
i,j

νij(Yi ⊗ Yj)

+ 3E

[
d∑
i=1

νi(Yi ⊗ Yi)

]Q
− 1

2

λ .

Thus we have the desired upper bound E[Z2] � S.

Recall that TrS ≤ t, s∗ ≤ ‖S‖ ≤ s∗. Then by Lemma 12, with probability at least 1− δ we have that

λmax

(
1

n
Za

)
≤ 2β′

3n
+

√
2‖S‖β′
n

≤ 2β

3n
+

√
2s∗β

n
,
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where
β′ := log

2 TrS

δ‖S‖
≤ log

2t

δs∗
=: β,

as desired.

We will now find t, s∗, s∗ for some particular sampling schemes. The following initial lemma will be useful for
this purpose:

Lemma 14. In the setup of Lemma 13, define M := E
[(∑d

i=1 Yi

)
⊗
(∑d

i=1 Yi

)]
. We have:

M � dQ, Tr
(
Q
− 1

2

λ MQ
− 1

2

λ

)
≤ d

λ
Tr(Q),

∥∥∥Q− 1
2

λ MQ
− 1

2

λ

∥∥∥ ≤ d.
Proof. We first show M � dQ:

〈u,Mu〉H =

〈
u,E

[(
d∑
i=1

Yi

)
⊗

(
d∑
i=1

Yi

)]
u

〉
H

= E

〈u, d∑
i=1

Yi

〉2

H


≤ E

[
d

d∑
i=1

〈u, Yi〉2H

]
= E

[
d

d∑
i=1

〈u, (Yi ⊗ Yi)u〉H

]
= 〈u, dQu〉H.

Thus Tr(M) ≤ dTr(Q), and since ‖Q−1
λ ‖ ≤

1
λ we have

Tr
(
Q
− 1

2

λ MQ
− 1

2

λ

)
= Tr

(
Q−1
λ M

)
≤ 1

λ
Tr(M) ≤ d

λ
Tr(Q).

For any u with ‖u‖H = 1:

〈u,Q−
1
2

λ MQ
− 1

2

λ u〉H = 〈Q−
1
2

λ u,M(Q
− 1

2

λ u)〉H ≤ 〈Q
− 1

2

λ u, dQ(Q
− 1

2

λ u)〉H = d〈u,QQ−1
λ u〉H ≤ d,

and so the norm inequality follows.

Lemma 15. Take the setup of Lemma 13 where each Uai is independently distributed as Bernoulli(p), for p ∈ (0, 1].
The number of sampled components is random, distributed as Binomial(nd, p).

For any ρ ∈ (0, 1
2 ), λ ∈ (0, ρ‖Q‖], and δ ≥ 0, it holds with probability at least 1− δ that

λmax

(
Q
− 1

2

λ

(
Q− 1

n

n∑
a=1

Va

)
Q
− 1

2

λ

)
≤ 2β

3n
+

√
10 (d+ 1/p− 1)N ′∞(λ)β

n

where
β := log

10 (d+ 1/p− 1) TrQ

λδ
(

5/p−5+3d
1+ρ − 2d

) .
Proof. Here we have for i 6= j

µi = p, νii =
E[U2

i ]

µ2
i

=
1

µi
=

1

p
, νij =

E[UiUj ]

µiµj
=

EUi
µi

EUj
µj

= 1.

Define r := 1
p − 1; then νi = r + d. Using Lemma 14, we get that

E

[
d∑
i=1

νi(Yi ⊗ Yi)

]
= (r + d)Q

and

E

 d∑
i,j

νij(Yi ⊗ Yj)

 = E

 d∑
i,j

Yi ⊗ Yj

+
(

1
p − 1

)
E

[
d∑
i=1

Yi ⊗ Yi

]
= M + rQ,
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so that

S = N ′∞(λ)Q
− 1

2

λ (2(M + rQ) + 3(r + d)Q)Q
− 1

2

λ

= N ′∞(λ)Q
− 1

2

λ (2M + (5r + 3d)Q)Q
− 1

2

λ .

Thus

TrS = N ′∞(λ)
(
2 Tr(Q−1

λ M) + (5r + 3d) Tr(Q−1
λ Q)

)
≤ 5(r + d)

λ
N ′∞(λ) Tr(Q).

Likewise, since
∥∥∥Q− 1

2

λ MQ
− 1

2

λ

∥∥∥ ≤ d,
‖S‖ ≤ N ′∞(λ)

(
2
∥∥∥Q− 1

2

λ MQ
− 1

2

λ

∥∥∥+ (3d+ 5r)‖QQ−1
λ ‖
)
≤ 5(d+ r)N ′∞(λ).

Since we have λ ≤ ρ‖Q‖, ‖QQ−1
λ ‖ = ‖Q‖

‖Q‖+λ ≥
1

1+ρ and so

‖S‖ = N ′∞(λ)
∥∥∥(5r + 3d)QQ−1

λ − 2Q
− 1

2

λ MQ
− 1

2

λ

∥∥∥
≥ N ′∞(λ)

(
(5r + 3d)‖QQ−1

λ ‖ − 2
∥∥∥Q− 1

2

λ MQ
− 1

2

λ

∥∥∥)
≥ N ′∞(λ)

(
5r + 3d

1 + ρ
− 2d

)
.

This bound is positive when 5r+3d
1+ρ > 2d, i.e. ρ < 1

2

(
5r
d + 1

)
; it suffices that ρ < 1

2 .

Applying Lemma 13 proves the result.

Lemma 16. Take the setup of Lemma 13 where each Ua is chosen uniformly from the set of binary vectors with
‖Ua‖1 = ` ∈ [1, d], i.e. we choose ` components of each vector at random without replacement. Assume that
d > 1; otherwise, we simply have ` = d = 1, which is covered by Lemma 15 with p = 1.

For any ρ ∈ (0, 1
2 ), λ ∈ (0, ρ‖Q‖), and δ ≥ 0, it holds with probability at least 1− δ that

λmax

(
Q
− 1

2

λ

(
Q− 1

n

n∑
a=1

Va

)
Q
− 1

2

λ

)
≤ 2β

3n
+

√
10dN ′∞(λ)β

n

where
β := log

10 Tr(Q)

λδ
((

3 + 2 d−`
`(d−1)

)
1

1+ρ − 2d(`−1)
`(d−1)

) .
Proof. In this case, for i 6= j we have

µi =
`

d
, νii =

E[U2
i ]

µ2
i

=
1

µi
=
d

`
, νij =

Pr(Ui = Uj = 1)

µiµj
=

(
d−2
`−2

)(
d
`

) d2

`2
=
d(`− 1)

`(d− 1)
.

Thus
νi =

d

`
+ (d− 1)

d(`− 1)

`(d− 1)
=
d

`
(1 + (`− 1)) = d,

and E
[∑d

i=1 νi(Yi ⊗ Yi)
]

= dQ, while

E

 d∑
i,j

νij(Yi ⊗ Yj)

 =
d(`− 1)

`(d− 1)
E

 d∑
i,j

Yi ⊗ Yj

+

(
d

`
− d(`− 1)

`(d− 1)

)
E

[
d∑
i=1

Yi ⊗ Yi

]

=
d(`− 1)

`(d− 1)
M +

d(d− `)
`(d− 1)

Q
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using M from Lemma 14, and so

S = N ′∞(λ)Q
− 1

2

λ

(
2
d(`− 1)

`(d− 1)
M + d

(
3 + 2

d− `
`(d− 1)

)
Q

)
Q
− 1

2

λ .

Thus

TrS = N ′∞(λ)

(
2
d(`− 1)

`(d− 1)
Tr(Q

− 1
2

λ MQ
− 1

2

λ ) + d

(
3 + 2

d− `
`(d− 1)

)
Tr(QQ−1

λ )

)
≤ 1

λ
N ′∞(λ)

(
2
d(`− 1)

`(d− 1)
d+ d

(
3 + 2

d− `
`(d− 1)

))
Tr(Q)

=
1

λ
N ′∞(λ)d

(
2
d(`− 1) + d− `

`(d− 1)
+ 3

)
Tr(Q)

=
5d

λ
N ′∞(λ) Tr(Q).

We similarly have

‖S‖ ≤ N ′∞(λ)

(
2
d(`− 1)

`(d− 1)

∥∥∥Q− 1
2

λ MQ
− 1

2

λ

∥∥∥+ d

(
3 + 2

d− `
`(d− 1)

)∥∥QQ−1
λ

∥∥)
≤ N ′∞(λ)

(
2
d(`− 1)

`(d− 1)
d+ d

(
3 + 2

d− `
`(d− 1)

))
= 5dN ′∞(λ).

Note also that 1 ≤ ` ≤ d implies 2d(`−1)
`(d−1) ≤ 3 + 2 d−`

`(d−1) for integral ` and d. Since M ≤ dQ, and like in Lemma 15
we have that ‖QQ−1

λ ‖ ≥
1

1+ρ , we obtain that

‖S‖ = N ′∞(λ)

∥∥∥∥−2
d(`− 1)

`(d− 1)
Q
− 1

2

λ MQ
− 1

2

λ + d

(
3 + 2

d− `
`(d− 1)

)
QQ−1

λ

∥∥∥∥
≥ N ′∞(λ)

(
−2

d(`− 1)

`(d− 1)

∥∥∥Q− 1
2

λ MQ
− 1

2

λ

∥∥∥+ d

(
3 + 2

d− `
`(d− 1)

)∥∥QQ−1
λ

∥∥)
≥ N ′∞(λ)

(
−2

d(`− 1)

`(d− 1)
d+ d

(
3 + 2

d− `
`(d− 1)

)
1

1 + ρ

)
= dN ′∞(λ)

((
3 + 2

d− `
`(d− 1)

)
1

1 + ρ
− 2

d(`− 1)

`(d− 1)

)
.

We then have that
t

s∗
=

5 Tr(Q)/λ(
3 + 2 d−`

`(d−1)

)
1

1+ρ − 2d(`−1)
`(d−1)

,

which is well-defined and positive as long as either ` = 1 or
(

3 + 2 d−`
`(d−1)

)
1

1+ρ > 2d(`−1)
`(d−1) , i.e. ρ <

1
2

`+4−5 `d
`−1 ; since

`
d ≤ 1, it suffices that ρ < 1

2 . The claim follows from Lemma 13.

An interesting special case of Lemma 16 is ` = 1, where t/s∗ reduces to 1+ρ
λ Tr(Q).

Lemma 17. Take the setup of Lemma 13 where each Uai is identically 1: we always sample all components of
the considered points.

For any ρ ∈ (0, 1
2 ), λ ∈ (0, ρ‖Q‖), and δ ≥ 0, it holds with probability at least 1− δ that

λmax

(
Q
− 1

2

λ

(
Q− 1

n

n∑
a=1

Va

)
Q
− 1

2

λ

)
≤ 2β

3n
+

√
10dN ′∞(λ)β

n
, β := log

10 TrQ

λδ
(

3
1+ρ − 2

) .
Proof. Special case of either Lemma 15 with p = 1 or Lemma 16 with ` = d.
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D.3 Results on Hilbert space operators

Lemmas 18 and 19 were proven and used by Rudi et al. (2015).

Lemma 18 (Proposition 3 of Rudi et al. (2015)). Let H1, H2, H3 be three separable Hilbert spaces, with
Z : H1 → H2 a bounded linear operator and P a projection operator on H1 with rangeP = rangeZ∗. Then for
any bounded linear operator F : H3 → H1 and any λ > 0,

‖(I − P )F‖ ≤
√
λ‖(Z∗Z + λI)−

1
2F‖.

Lemma 19 (Proposition 7 of Rudi et al. (2015)). Let H be a separable Hilbert space, with A,B bounded self-adjoint
positive linear operators on H and Aλ = A+ λI, Bλ = B + λI. Then for any λ > 0,

‖A−
1
2

λ B
1
2 ‖ ≤ ‖A−

1
2

λ B
1
2

λ ‖ ≤ (1− γ(λ))−
1
2

when
γ(λ) := λmax

(
B
− 1

2

λ (B −A)B
− 1

2

λ

)
< 1.

D.4 Distances between distributions in P

Lemma 20 (Distribution distances from parameter distances). Let f0, f ∈ F correspond to distributions
p0 = pf0 , p = pf ∈ P. Under Assumption (H), we have that for all r ∈ [1,∞]:

‖p− p0‖Lr(Ω) ≤ 2κe2κ‖f−f0‖He2κmin(‖f‖H,‖f0‖H)‖f − f0‖H ‖q0‖Lr(Ω)

‖p− p0‖L1(Ω) ≤ 2κe2κ‖f−f0‖H‖f − f0‖H
KL(f‖f0) ≤ cκ2‖f − f0‖2Heκ‖f−f0‖H(1 + κ‖f − f0‖H)

KL(f0‖f) ≤ cκ2‖f − f0‖2Heκ‖f−f0‖H(1 + κ‖f − f0‖H)

h(f, f0) ≤ κe 1
2‖f−f0‖H‖f − f0‖H

where c is a universal constant and h denotes the Hellinger distance h(p, q) = ‖√p−√q‖L2(Ω).

Proof. First note that

‖f − f0‖∞ = sup
x∈Ω
|f(x)− f0(x)| = sup

x∈Ω
|〈f − f0, k(x, ·)〉H| ≤ κ‖f − f0‖H.

Then, since each f ∈ H is bounded and measurable, P∞ of Lemma A.1 of Sriperumbudur et al. (2017) is simply
P, and the result applies directly.
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