A Proof of Theorem 2

Proof. By standard conditions for optimality, 3 is a critical point if and only if there exits a subgra-
dient 2 € 9|81 := {2 € RP[Z; = sgn(B;) for B; # 0, [£;] < 1 otherwise} such that 95 L(5) = 0.
Because 95 3|3|" R|3| = Diag(R|3])z, the condition 95 L(3) = 0 yields

—%XT(y — XB) + A2 + \aDiag <R|B|) 2 =0. (A1)

Substituting y = X 3* + € in (A.1), we have
—%XT(X(B* — B) +€) + Az + AaDiag (R|B\) z=0. (A2)
Let the true active set S = {1,--- , s} and inactive set S¢ = {s + 1,--- , p} without loss of gener-

ality, then (A.2) is turned into
1 N N 1 A 1 R . N .
%XgXS (55 - ﬂs) + ngXScﬂsc - EXgﬁ + AZs + AaDiag (Rss|ﬂs|) 25 =0,
(A.3)
Voo (o o Loro ~ 1o+ . 5
~XJeXs (55 - 55) + = XJ.Xsefse — —X&ie+ Mg + AaDiag (RSCS\ le) g0 = 0.
(A4)

Hence, there exists a critical point with correct sign recovery if and only if there exists B and Z such
that (A.3), (A.4), 2 € 9|81 and sgn(3) = sgn(8*). The latter two conditions can be written as

Zs = sgn(fs), (A5)
|Zge| < 1, (A.6)
sgn(fs) = sgn(B5), (A7)
Bge = 0. (A.8)
The condition (A.5) and (A.8) yield
XTXs (B - 63) — - XTet Asan(53) + AaDiag (Rsslfsl ) sen(55) =0, (A9)

1 N ) , SN
~X3.Xs (55 - ,35) — —XJ.e+ Asse + AaDiag (RSCSWSD 26e=0.  (A.10)
Since
Diag(Rss|Bs|) sgn(B5) =Diag(sgn(85)) Rss|fs|
=Diag(sgn(8%)) RssDiag(sgn(85))Bs,

(A.9) can be rewritten as
U(Bs—ﬁg)-l-V:O,

where

U = - X Xs + AaDiag(sen(35)) RssDias(sen(33)).

V= Asgn(55) + AaDiag(sgn(35)) RssDin(sen(53))55 — + X e
If we assume U is invertible, we obtain

Bs =By - UV (A11)
Substituting this in (A.10), we have

1 1
EXSTCXS (-U"V) - EX;E + Age + AaDiag (Rses| 85 — U~'V|) 25e =0,



that is,
(1 + aDiag (Rses|8% — U 'V|)) Azge = %X;XSU*V + %che. (A.12)
Combining (A.6), (A.7), (A.11) and (A.12), we have the following conditions:
sgn(8s — U~'V) = sgn(B3),

1 1
EX;XSU—lv + EX; <A (1+aRses|Bs —UV]).

B Proof of Theorem 3

First, we prepare the following lemma.
Lemma B.1. Suppose that Assumption 1 and

are satisfied. For V§ > 0, let v, := 'yn(é) be
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Proof. The assertion can be shown in the standard way. First notice that
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Since = Y1 | X2 < 1,& = Xije; satisfies E[e'¢] < ¢’ /2yt € R. Hence, applying Hoeffding’s
1nequa11ty, we obtaln the assertion. O

Then, we have that
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Then, we derive Theorem 3.
Proof. By Ly, (3) < Ly, (8*) and y = X 3* + ¢, it holds that
1 A * 2 A 1 2 *
2, X (B = B7) = ellz + Ano(B) < o -ellz + Ant(57)
1 5 5 1 A
= oI B = BE + At (B) < €T X (B = 57) + Aav(B7), (B.1)
where ¢(8) = A, (|81 + %8| " R|B|). By Lemma B.1, it holds that
P ( ‘1)(%
n

Hereafter, we assume that the event {H %LX TEHOO < 7} is happening.

> %) <.



Then, if v, < A, /3, by (B.1),

SIX(B = BB+ Mw(B) < e X lollB” = Bl + Aup(5°)
< ullB = Bl + Mt (5) £ Aall8” = Bl Mb(8). (B2)
Since R ) R A A
18 = 8%l = 1Bs — Bl + 185 — Bl = I1Bs — Bzl + 1Bse I,
and
851" Rss|B5| — Bs| T Rss|Bs| < D RyxlB; B — BiBsl
(4,k)eSxS
<2 RulBI(Bi—Bul+ D> Rul(B; —B)(Bi — Bl
(4,k)eSXS (j,k)ESX S

= 2|85|" Rss|B% — Bs| + 185 — Bs|" Rss|BE — Bs|
< 2||Rss|B%|lls 185 — Bslli + D18 — Bsll3,

we obtain that

1 A A A QA A« o P
5, IX(B = BIE + A (||Bs||1 + B¢l + 5185 " RsslBs| + 5 _ > RjklﬁjﬁH)
G R)ESXS
1 A * A * A T *
< 3AnlllBs = Bslls + [1Bse 1) + An (Ilﬁs”l + 5185l Rss|ﬁ5|>

1 N 2 4 A A
=5 I1X(8 ~ BN + M (3||f356|1 + % > Rjk|ﬁjﬁk>

(4,k)¢S xS

1 A * * A * * 2 aD * 2
< 3l = 851+ A (13511 = sl + ol Rssl 3310105 — Bl + 1185 - s

(4,k)¢S xS

1 ~ . 2~ « A
=>—|XB-B)3+ M [ Z1Bscli+5 D RjklBibl
2n 3 2
4 - * * * A aD * A
< hw (318 = B3 + @ Rssl85l1x1195 ~ Al + 52185 - Bsl?) ®3)
On the other hand, (B.2) also gives
~ ~ 1 3 % A * « * *
1Bsll1 + [|Bsell1 < g(”ﬂs = Bslli + [1Bsell1) + 18511 + §|5S|TRSS\BS\
24 * 2 A * Qo *
= g”ﬁs —Bsllh + §||5SC||1 <285l + §|5S|TRSS|5S|
A * * 3 * *
= ||Bs — Bsllh < 31185l + ZQ‘BS‘TRSSWSl
A * 3 * *
= lds = 85 < (3+ JallRasifs e ) 15511

Therefore, (B.3) gives

24 Q I
SlBseli+5 D> Rl

(4:k)¢S xS

4 * 3 * & * A *
< (3 +elRsslll + SaD1551 (1+ SIRssiB5 1) ) s — 51 B



The second term of the left side is evaluated as
Mo RplBiBil = Y RulBiBil+2 Y Rul(8; — B% + 855k
(j,k)gSxS jESe keSe jES,kESC
=|Bse| " Rsese|Bse| + 2|Bs|" Rses|Bs — B% + B%l-

Hence, (B.4) gives

T Rses|Bs — 8% + B

2 QA A N
§||5SC||1 + §|556\TRSCSC|536| + alBse
4 % 3 * (07 * A *
< (3 + al| Rss |85l + 5aDI851 (1+ 4||Rssﬂs||oo)> 185 — B3l

A 3 A o 3 A A * *
= ||Bsellr + Za|ﬂSC‘TRSCSC|BSC| + §a|5SC|TRSCS|ﬁS — B5 + Bsl

15 9 .
< (2+ aDIgsl + 5 @D ) 1s - S5l (®5)

Ifa< we have

1
4D|Bz:

~ 3 ~ ~ 3 A 5 * * A *
|Bse 1 + ZQWSC‘TRSCSC Bse| + §Q|BSC|TRSCS|55 — B5 + Bs| < 3||Bs — B5ll1-

Therefore, we can see that

Ap e B(S,C.C"),
where A = B —p*C=3and C' = % By applying the definition of ¢grE to (B.3), it holds that

@GRE | 5 112 4
B— 3 < _

5 * 3 * A *
+ SaDlsslh + SaDlBsh)?) s - 551,

Because || 3g — BslI3 < s||Bs — B% |13, we have

(3 +5aDl|Bs[h + 3(aDl|B5]1)?) v'sAn

B—p2 <
| I OGRE
8 * 3 £11.32)2 12 2
R £ 4+ 5aD + 2 (aD sA;  16sA
¢GRE ¢GRE
This concludes the assertion. O

C Corollary of Theorem 3

For comparison with IILasso and Lasso, we use the following a little bit stricter bound.

Corollary C.1. Suppose the same assumption of Theorem 3 except for o < m and As-
S

sumption GRE(S, 3, %) Instead, suppose that Assumption GRE(S,C, %) (Definition 1) where

C =2+ BaD||B5|l1 + 5 (aD||B5|11)? is satisfied. Then, it holds that
* * 2
(5 +5aD|B5]l1 + §(aDl|B5[1)*)" sAZ

2
¢GRE

16 =515 <

with probability 1 — 4.
Proof. This is derived basically in the same way as Theorem 3. From (B.5), we can see directly that
AB € B(S,C,C"),

where AB = 3%, C' = 2+ aD||B5]|1 + % (aD||8%]1)? and C’ = 2. This and (B.6) concludes
the assertion. O



From this corollary, we can compare Lasso and IILasso with Rgg = O.

e If o = 0, we have

6452
18— 815 < -,
2 9% RrE

with B(S, C, C") where C' = 2 and C" = 0. This is a standard Lasso result.

e If D =0, we have
645)\2

9¢GRE

with B(S,C,C") where C = 2 and C' = % Since ¢grg is the minimum eigenvalue
restricted by B(S, C, C"), ¢crg of IILasso is larger than that of Lasso.

16— 87115 <

D Proof of Theorem 4

Proof. Let

B:= argmin |y— XB|3.
BERP:Bge=0

That is, § is the least squares estimator with the true non-zero coefficients. Let B be a local optimal
solution. For 0 < h < 1, letting B(h) =p+h(p— 5), then it holds that

. h2
Ly, (B(h)) — Ly, (B) =

2 X (5 - B)IE -

B (XB ) X(E )
MBI — 11BlI) + 222

(18" RIB(R)| — 15| RIB).  (D.1)

>/ /\
S

First we evaluate the term 2 (X3 — y)TX(6 — ) = L(X3 — y) " Xs(Bs — Bs) + (X5 —
y) T Xse(Bse — Bse) as follows:
(1) Since f is the least squares estimator and %X gX s is invertible by the assumption, we have

BS = (X,;’FXS)_lXST:% BSC =0.

Therefore,
1 . 1 _
~Xg (XB —y) = ~XJ (Xs(Xg Xs)7'Xg — )y,

Here, I — Xg(X ; X S)TX g 1s the projection matrix to the orthogonal complement of the image of
(Xd Xs)". Hence, (X3 —y)" Xs(Bs — Bs) = 0.

(2) Noticing that
1 . 1 _
SX3(XB - y) = X3 - Xs(XT X)Xy
1
- —ZX;(I — Xs(X{ X)X ) (X85 + )

1 _
= —EXSTC(I — X5(Xd X5)71Xd e,

where we used (I — Xs(XJ Xg) 71 XJd)Xge = 0in the last line. Because (I — Xg(Xd Xg) " XJ)

is a projection matrix, we have ||(I — Xs(Xd Xs)7*XJd)X;[|3 < || X;[|3. This and Lemma B.1
gives

1 .
Hnch(Xﬁ - y)H < Vns

with probability 1 — ¢. Hence, let V := supp(ﬁ)\S, then we have

1 =’Yn||BvH1-

(Bse = B X048 - )| < vl — B



where we used the assumption V' C 5S¢ and Bv =0.
Combining these inequalities and the assumption A,, > ~,,, we have that
1 - S ~
~(XB—y)" X(B=B)| <MallBrllr- (D.2)
As for the regularization term, we evaluate each term of A, ([[B(R)li — || Bll) +
%-(|8(M)I T RIB(R)| — |87 RIA|) in the following.
(i) Evaluation of ||3(h)||1 — ||3]|1. Because of the definition of 3(), it holds that
1B = 18Il = 18+ ~(B = B)lIx — 1Bl
= [|Bs + h(Bs — Bs)ll — IBsllx + 1Bv + h(Bv — Bv)llx — 1Bvlx
= [18s + h(Bs = Bs)ll = 1Bslls + (L = W)IBv [l = I1Bv 11
< hl|Bs — Bslh = hl|Bv |- (D.3)

(ii) Evaluation of |3(R)|T R|8(h)| — |3| T R|f|. Note that
1B(h);| Rkl B(h)k| — |5 | Rl Bl
= |(1 = h)B; + hBj|Rjk| (1 — h)Br + hBk| — |B;| Rjk B
< (1= h)?|B;| Rl Bel + h(1 — B) (18 R Bkl + |81 Rix|B)
+ h2|B;| Rk |Bel — 18| Rjn| B
= —2hB;| Rji|Br| + h(| 85| Ryk| Bel + |85 Rjxl Bil) + O(h?)
= B[(18;] = 1B Rk 1Bk + 181 Rix 18k — |Be)] + O(h?). (D.4)
If j, k € S, then the right hand side of Eq. (D.4) is bounded by
h(18; — BjIRjk|Br — Bel +18; — Bj| Rjx|Br — Brl)
+ h(18; — B;| Rkl Bel + 18,1 Rk |Br — Brl) + O(h?).
If j € Vand k € S, then the right hand side of Eq. (D.4) is bounded by
hlB;| Rk 1Bk — Bkl) + O(h?) < hlB;|Rjk|Br — Bl + O(h?).
If j € V and k € V, then the right hand side of Eq. (D.4) is bounded by
0+ O(h?) = O(h?).
Based on these evaluations, we have
|B(h)| " RIB(h)| — |B| T RIB|
<2h (|Bs — Bs|"Rss|Bs — Bs| + |Bs — Bs|" Rss|Bs| + |Bv|" Rvs|Bs — le) + O(h?)
<2h (18— BITRIB - Bl + 185 — Bs|" RsslBs|) + O(h?)
<2hD(|| = BII3 + 1Bl12/1Bs — Bsll2) + O(h?).
Here, we will show later in Eq. (D.6) that |5 — 3*||2 < v/5\n/®, and thus it follows that
18]l < 18%[l2 + V5An /-
Therefore, we obtain that
BT RIB(R)| — 5] RIB|
< 20D (113 = I3 + (18" l2 + VA /9)1Bs = Bsl2) + O(h2), (D.5)



Applying the inequalities (D.2), (D.3) and (D.5) to (D.1) yields that

L, (B(R)) = L, (8)
<b{ = SIX(3 = BIE + MallBs = Bsl = O = 30)l1Bv

+ AnaD{I1B = BIE + (18" |2+ V5Au/9)| s = Bsllal} + O(h?)
<h{ = 0118 = Al + MallBs — Bslh

+ XaaD[IB = Bl + (18" ll2 + v5An /)15 — Bslla] } + O(h?)

Sh{ (=¢ + XuaD) |5 - B3

+ A (I8s = Bslls + aD(I8 12 + v/5An/9) 1 Bs — Bsllz) } +0(h?),
where we used the assumption \,, > -, in the second inequality.

Since we have assumed o < min { , the right hand side is further bounded by

s ,L}
2D||B*[l2" 2D,
h {—‘ﬁnﬁ' B+ 273 - Bs||2} +OW?).

Because of this, if || 3 — B l|l2 > 4‘(%’\”, then the first term becomes negative, and we conclude that,
for sufficiently small n > 0, it holds that

Ly, (B(h)) < Ly, (B),

for all 0 < h < 7. In other word, B is not a local optimal solution. Therefore, we must have

. 4\/sA\,,
13— Blls < 28
0]
Finally, notice that || — 313 < (|4 — Bll2 + |8* — f]l2)” and
13— B2 = (X8 Xe) ' XTy — B5I2 = 1(XT Xs) " XT (X5 + ) — 552

- Lyl - -
= [|(Xs Xo) " X ell3 < 672[ - Xs ell3 < 672575 < 67283, (D.6)

which concludes the assertion. O

E Optimization for Logistic Regression

We derive coordinate descent algorithm of IILasso for the binary objective variable. The objective
function is

L(B) = —+ 3 (X' —og(1 +exp(x*8)) + A (1811 + S18ITRIAY)

where X is the i-th row of X = [1, Xq,-++, Xpl and B = [By, B1,- -+ , Bp]. Forming a quadratic
approximation with the current estimate 3, we have

n

L(B) = —5- > wilei = X8+ C3) + A (I8l + 5181 R8I

where

yi — p(X")
pX7)(1 - p(X7))’
w; = p(X*)(1 - p(X")),

iy 1
XY = 1 +exp(—X'3)

z=X'B+




Algorithm E.1 CDA for Logistic IILasso
for \ = )\max; o a)\min do
initialize 3
while until convergence do B
update the quadratic approximation using the current parameters /3
while until convergence do
forj=1,---,p do
Bj IS lleZ +XaR;; S (% S wi (zi — Xi—iB-j) Xij, AL+ aR;_;|8-4]))
end for
end while
end while
end for

To derive the update equation, when 3; # 0, differentiating the quadratic objective function with
respect to 3; yields

s, L( :——sz zi — X'B)Xi; + A (sgn(B;) + aR; |B]sgn(B;))

1 n 1 n
== =) wi(z—X;_jB-j) Xij + (n > wiX + /\Rjj> B + A1+ aRj—;|B-;|) sgn(5;).

=1

This yields

1 1<
Bi< 1 S R /\aRjJ»S (n D wi(zi— X B-5) Xijs A(1 +aR]-,j|5j|)> :
n 1= 1<% J

i=1

These procedures amount to a sequence of nested loops. The whole algorithm is described in Algo-
rithm E. 1.



