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Abstract

There has been growing interest in learn-
ing social structure underlying interaction
data, especially when such data consist of
both temporal and textual information. In
this paper, we propose a novel nonparamet-
ric Bayesian model that incorporates senders
and receivers of messages into a hierarchi-
cal structure that governs the content and
reciprocity of communications. We bring
the nested Chinese restaurant process from
nonparametric Bayesian statistics to Hawkes
process models of point pattern data. By
modeling senders and receivers in such a hi-
erarchical framework, we are better able to
make inferences about the authorship and
audience of communications, as well as in-
dividual behavior such as favorite collabora-
tors and top-pick words. Empirical results
show that our proposed model has improved
predictions about event times and clusters.
In addition, the latent structure revealed by
our model provides a useful qualitative un-
derstanding of the data, facilitating interest-
ing exploratory analyses.

1 INTRODUCTION

Communication on social networks tends to exhibit
clustering both in time and content, and quantifying
this phenomenon has been a subject of long interest
in social sciences. Early work in the machine learning
community [5, 13, 28] used declared relationships be-
tween entities to infer hidden clusters, however such
data are usually hard to obtain, and the declared rela-
tionships themselves are far from reliable. Instead, in-
teraction data have been used to learn latent structure
in an unsupervised manner. Of particular relevance is
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the work of [7], that combined the Infinite Relational
Model (IRM) [5, 28] and Hawkes processes [10, 11] to
learn social structure from interaction data. The ben-
efit of using Hawkes processes are two-fold: first they
capture the self- and mutually-exciting temporal dy-
namics of communication activities, and second, their
probabilistic nature enables the introduction of rich
structure into the modeling.

While providing mechanistic models of interacting
point pattern data, the original Hawkes models do not
account for message content: for social media data,
this is clearly an important factor determining how
one event affects future activity. Recent work in this
direction includes [8, 9, 16]. Modeling message con-
tent accurately at the individual level involves identify-
ing and exploiting latent hierarchical structure present
among users, and we exploit ideas from nonparametric
Bayes to improve the relatively impoverished structure
present in earlier work.

Formally, we consider an underlying network where
nodes are interacting entities, with communication
events forming links in the network. The observed
data D consists of a sequence of n messages D =
(My,- -+, M,), sorted by their time stamps. Each mes-
sage M; is a quadruplet M; = {¢;, S;, R;, T;}, where t;
is a time-stamp, S; the set of senders, R; the set of
receivers, and 7; the content of the message. Note
that we allow multiple senders (e.g., in modeling cita-
tion networks) and multiple receivers (e.g., in modeling
email data). We are interested in the following tasks:

e At the node level, we would like to learn a hierar-
chical clustering C for all the entities in the net-
work, such that entities in the same cluster share
some common features of communication includ-
ing rates, content, collaborators, audiences, etc.

e At the link level, given previous activity D, we
would like to predict the message quadruplet
Mn+1|D = (tn+17 Sn+1, Rn+177;t+1)|p7 both at
the cluster level and at the individual level. Real-
istic modeling of 7,41 requires sophisticated lan-
guage models, which is not our focus. Instead, we



Nested CRP with Hawkes-Gaussian Processes

are interested in demonstrating how incorporat-
ing hierarchical structure at the node level signif-
icantly improves predictions of message time and
content. Accordingly, we limit ourselves to pre-
dicting keywords in user messages, rather than
detailed message content.

Main Contributions:

e We introduce senders (S;) and receivers (R;) into
a novel and unified framework combining the ad-
vantages of hierarchical nonparametric Bayesian
models and temporal point processes. This en-
ables us to leverage temporal (¢;) and textual (7;)
information present in the communications, allow-
ing improved predictions about event times and
clusters.

e Our method exploits senders’ and receivers’ prop-
erties to characterize message content, enabling
inference about authorship and audience of com-
munications, as well as their personal behavior
such as favorite collaborators and top-pick words.

2 PRELIMINARIES

We start with a brief description of Hawkes processes
(HPs), the Chinese restaurant processes (CRP), and
its nested version, the nested CRP (nCRP).

Hawkes Processes: One of the most powerful and
popular temporal point process models is the inhomo-
geneous Poisson process, parametrized by a rate func-
tion A(t), which is independent from its history events.
In real-world social network communications however,
messages directly and causally affect each other. Pois-
son processes cannot capture such self- or mutual-
excitation, and instead, there has been much interest
in using Hawkes processes (HPs) to model such data.
At a high-level, a self-exciting Hawkes process [10] has
a rate-function that is dependent on its own history
(i.e., A(t) is dependent on the event history for s < ¢).
Similarly, a pair of mutually-exciting Hawkes processes
have mutually-dependent rate functions that depend
on each others’ histories.

Formally, let N(-) and N'(-) be counting measures rep-
resenting a pair of mutually-exciting Hawkes processes.
The conditional rate function A(t) of N(:), given the
event time history Hy = {¢},--- ,t,} of N’, has the

form:
t
A=+ [

Here « is the base rate of N(-), and the ezcitation
function g(-) is a non-negative function such that
[ 9(s)ds < 1, ensuring the stationarity of N(-).

g(t —s)dN'(s) (1)

A standard choice for ¢ is the exponential function,
which implies that every event from N’ produces a
jump in the intensity A(t), which then decays expo-
nentially to the base rate. If the counting measure
N'(-) is N(-) itself, then the process is self-exciting.
The likelihood function of a Hawkes process, given
conditional rate function A(t) and event time history
Heor = (L, 1), is
n

LBIH) = exp {=A0,T)} [TA) (2)

i=1

where A(0,T) fo t)dt is the cumulative condi-

tional rate functlon

The Chinese Restaurant Process (CRP) and its
nested version (nCRP): The CRP is an infinitely
exchangeable probability distribution over partitions
that can be described using the following metaphor
involving customers entering a restaurant: The first
customer sits at table 1; the following customers pick
a new table with probability proportional to some con-
stant, and pick an existing table with probability pro-
portional to the number of people already assigned to
that table:

if m; a new table
p(mi|m—;) = (3)

if m; an existing table j

where 7_; is the assignment vector 7 without the it"
entry, and |B;| is the number of customers seated

at table j.  The joint probability is p(w|a) =
olBl 1;\(,1)&) HIB‘ I'(|B;]), where |B] is the total num-

ber of tables, and (|B;|—1)! is the factorial of |B;|—1,
the number of individuals in the j** table minus one.

The nested Chinese Restaurant Process (nCRP) is
similar to a CRP, but with a hierarchical tree structure
(see Figure la). For an nCRP with L levels, rather
than being assigned to a single table, a user is assigned
to a sequence of L tables. After a customer comes into
the first restaurant and picks a table, the customer is
directed to a level-2 restaurant, again picking tables
according to the paths of previous users. This process
repeats L — 1 times until the customer finds a seat at
a level-L restaurant. The consequence now is that a
customer selects not just one table, but a sequence of
tables; in our application, this will allow a message to
belong not just to a user or group, but a nested set of
groups. For more details on the nCRP, see [4, 6].

3 MODEL

Since every piece of information in our data is indexed
by time, modeling ¢; is of central importance. Re-
call that if we only have one individual, the form of a
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Hawkes process with an exponential-decay excitation
function g is given by:

t—s

~ dN(s) (4)

At) = ’y+/too Be~

The parameter 8 can be seen as a “jump size” of the
rate function whenever a new message is received (see
Figure 1), and 7 indicates the inverse rate of decaying.
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Figure 1: (a) A clustering tree sampled from nCRP, (b-
¢) Hawkes processes rate function plots with constant
and variable 3's.

To incorporate text information, we first allow the
jump sizes to depend on the message content via a
function 5 : ® — R. The function 8 takes some fea-
ture of the message 7; as input (e.g. the entropy of the
message), and determines the size of the Hawkes exci-
tation. We model 8 with a Gaussian Process (GP) [22]:

t—s

= dN(s) ()

A(t) = + / B(F(T2))e
BUF(T:)) ~ exp(GP(0, x) (6)

where 7; is the text communicated at t;, f(-) some
transformation that converts text content into numer-
ical measurement, x the squared exponential kernel of
the GP, and the exponential transformation is used to
make sure that §(-) is non-negative. While there are
many ways to implement the transformation f(7;), we
propose the following: 1) calculate TF-IDF scores for
each word in the message 7;, so that the sentence is
represented by a vector; 2) from their vector represen-
tations, calculate distances between pairs of sentences
in the message; 3) use the TextRank [18] algorithm
to pick the top sentences and summarize a top-word

distribution; 4) compute the KL-divergence between
this top-word distribution and the personalized word
distribution of the individual. Effectively, this allows
us to quantify how ‘relevant’ each message is to the
receiver.

3.1 Modeling Senders and Receivers (S;, R;)

Now suppose we have multiple individuals, and a flat
(one level) clustering C. We define the rate function
between two individuals v and v as

1

NpTq

t
Ao (t) = ——pg + / Buve 7an dNyy(s)  (7)
— 00

where u and v belong to clusters p and ¢ respectively,
and ny, ng the number of individuals in clusters p and
q. The subscript ordering of N,, (instead of N,,) in-
dicates these Hawkes processes are mutually exciting.
Unlike work in [7], which models rates at the cluster
level, we model rate functions at the individual level.
The benefits of this are three-fold: first, individuals
in the same cluster share common behavior through
cluster level parameters 7,4; second, unlike cluster-
level models (which uniformly pick individuals from
a cluster), we explicitly model activity at the individ-
ual level; and finally, we need not separately define
cluster level rate functions. Instead, the latter can be
computed as sums of individual rate functions:

Apq (t) = Z Auo () (8)

p=m(u),q=m(v)

where m(u) is the cluster assignment of individual w.
To select senders and receivers from clusters, define the
unconditional cumulative rate of a sender u, and the
conditional cumulative rate of a receiver v of a message
from a set of senders S as

j\u(t) = Z )\uv(t)v 5‘-v|S(t) = Z )‘uv(t)- (9)

uesS

Then the probabilities of v and v respectively being
selected as one of the receivers and senders are pro-
portional to their cumulative rate ratios:

Zues ~ Ber (%) (10)

)‘U|S(t) )
where Z,es and Z,cp|s are indicator variables that

u and v are selected. The receivers are conditionally
picked after the selection of senders.

Zyer|s ~ Ber < (11)

3.2 The Overall Model

Recall that at the node level, we would like to learn,
not a flat, but a hierarchical tree-like clustering for all
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the individuals in a network. We model this as a sam-
ple from a nested Chinese restaurant process. Condi-
tioned on this tree, it is straightforward to compute all
the rates in a bottom-up fashion, by summing up the
rates, level by level, all the way from the leaf nodes
(individuals), using equation 8. Based on these rates,
senders and receivers can be selected recursively in a
top-down fashion, using equations 10 and 11.

The generative process of our model works as follows:
0) sample a clustering tree from the nCRP prior; 1)
based on historical data D = (My,---,M,), com-
pute the rate at the root by summing up over all
relevant lower level rates (at the beginning, we only
have the base rates 7,,); 2) simulate a new event
time t¢,4+1 based on the root rate; 3) select senders
Sn+1 and receivers R, 11 of each level of the cluster-
ing tree for this new message (the real senders and
receivers will be the ones at the leaf level); 4) gen-
erate the message text 7,41 from a multinomial dis-
tribution based on senders S,; and receivers R,
at the leaf level; 5) finally, update the rate func-
tions of all the receivers. Thus we have generated
M1 = (tng1, Snt1s Rog1, Tng1)|D. Repeat steps 1)
through 5) with D = (My,--- , M,,, M,,11). This can
be summarized as:

7wl ~ nCRP(a) (12)
1 ! s
M) = g+ [ BT AN ()
(13)

Auv(t) (14)

/\pq(t) = Z

p=r(u),q=n(v)

thew ~ HawkesProcess(Aroot())

S\u- (tnew)
ZueSpe., ~ Ber ( N >
Mnew _ Zu )\u-Etnew)

)\.v|s(tnew)
Z’u ~ B <~ Y _/+
ERnew|Snew er (Zv /\.U‘S(tnew)

Tnew ~ Multinomial (s, r,..)

(15)

where nCRP is the nested Chinese Restaurant Process,

and By, (f(T:)) ~ exp(GP(0, Kuw))-

The texts are generated from multinomial distribu-
tions whose parameters depend on the senders and
receivers: We add and normalize the individual word
distributions of the senders and receivers and use the
aggregated one for the multinomial distribution.

3.3 Inference

Inference algorithms for Hawkes processes fall mainly
into three categories [12]: 1) methods related to Max-
imum Likelihood Estimation (MLE) [21], which are
usually quite restrictive and incompatible with rich

latent structure; 2) variational approximations [26],
which often suffer from poor convergence issues and
are best applicable when the inference problem ex-
hibits a convenient simplifying approximation; and 3)
Monte Carlo sampling methods.

For our model, the inference problem is nonparamet-
ric and non-convex, and there is no conjugacy between
the priors and the likelihood functions. We therefore
adopt and extend the inference framework from [7] and
[24], which performs posterior inference using MCMC
sampling. The state space of the model is defined
over {Tu, Yuvs Tuvy Buvs Ou }, and the conditional distri-
butions used in the MCMC algorithm can be obtained
based on section 3.2. The sketch of the algorithm can
be described as follows: 1) Initialize the state vari-
ables by sampling from their priors. 2) Until conver-
gence, iteratively and sequentially sample each state
variable conditioned on the current state of all other
variables — sample 7, using the standard Gibbs sam-
pling algorithm [6]; sample {0, Vuv, Tuv} using slice
sampling [20]; sample (3, using elliptical slice sam-
pling [19].

For a dataset of N individuals, M messages, and
K top words, the number of model parameters is
O(N?), and the computational cost at each iteration is
O(MN?K?). One of the bottlenecks of the algorithm
comes from the inference of the GP related parameters
Buv, Which costs O(K3), where K is the number of top
words. To ameliorate this situation, we restrict K to
be a reasonably small number in our experiments, e.g.,
K = 20. We also want to point out that, at each it-
eration, not all of the O(IN?) parameters are updated
or used to update other parameters. For example, af-
ter an update of m,, only the affected individuals and
clusters should be considered — which is usually a small
subset of the population in practice.

4 RELATED WORK

The closest existing work to our model are [4, 8, 24],
though none of these explore hierarchical clusterings
of senders and receivers with Hawkes processes. The
model of [4] combines ideas from the hierarchical
Dirichlet process (HDP) [25] and the nested Chinese
Restaurant Process (nCRP) [3] to allow each object to
be represented as a mixture of paths over a tree, and
to decouple the task of modeling hierarchical structure
from that of modeling observations. The work of [§]
connects Dirichlet processes and Hawkes processes to
allow the number of clusters to grow while at the same
time learning the changing latent dynamics governing
the continuous arrival patterns. The combination of
these two pieces of work inspired our work, which has
a hierarchical structure embedded with temporal point
processes.
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Recently, [14, 15, 16, 17, 23, 26, 27| proposed dif-
ferent models to address similar problems. However,
while we define each observed message M; as a quadru-
plet M; = {t;,S;, R;, T;}, these previous work, in our
opinion, all missed some important aspects of the in-
formation. The loss of these may result in ineffec-
tiveness of modeling personal level details. For exam-
ple, [17] modeled M = {t, S, R}, [16, 23, 26] modeled
M = {t,S,T}, and [15] modeled M = {t,S} and the
cluster C. Our work explicitly treats senders {S;} and
receivers { R;} as important components of the model,
which greatly extends the existing methods in the lit-
erature and enables inference about authorship and
audience of communications, as well as their personal
behavior such as their favorite collaborators and top-
pick words.

Moreover, we focus on different modeling perspectives,
specifically, (1) modeling mutually-exciting transac-
tions between users (e.g., email communications)
rather than individual self-exciting actions of users
(e.g., purchases/clicks), and (2) modeling personalized
textual content between pairs of users (with a con-
tinuous metric), rather than modeling individual top-
ics/tasks (with a discrete metric). While topics/tasks
can be viewed as discrete labels of the “content” of
activities (and it is meaningful to use this concept in
cases such as web activities), in the context of com-
munications/transactions, the content being commu-
nicated is highly personalized, a continuous metric af-
fords more flexibility to make better use of personal-
ized content.

5 EXPERIMENTS

We compare our model with four existing models (dis-
cussed in Sections 1 and 4): nCRP+HP, CRP+HGP,
IRM+HP, and HP. Recall that IRM stands for the
infinite relational model, HP for the Hawkes process
and HGP for the Hawkes process with a Gaussian
process controling jumps. We first present experi-
mental results based on synthetic data, which focus
on quantitative analysis of model performance as well
as qualitative discussions of model effectiveness. We
then explore some of the findings from real data using
our model. The observed data D used in this section
has the same format, consisting of a sequence of mes-
sages D = (My,--- , M,), sorted by their time stamps.
Each message M; is a quadruplet M; = {¢;, S;, R;, T: },
where t; is the time-stamp, S; the set of senders, R;
the set of receivers, and 7; the text content of the mes-
sage. D is divided into three segments: the first 80%
the training set, the next 10% the validation set, and
the last 10% the test set. To compute the average log
probability, we run each experiment ten times with
different prior settings and report the credible interval
based on their means and standard deviations.

5.1 Synthetic Data

Following the generative process described in Section
3.2, we simulate 1000 message communications among
7 individuals (shown in Figure 2). The clustering tree
has two levels, {#1,#2,#3} are in cluster 1 (red),
{#4,#5} in cluster 2 (green), and {#6,#7} in clus-
ter 3 (blue). The initial rate v at the root is set to
1, and this is distributed among its offspring propor-
tional to their cluster sizes following Equation 1. The
inverse decay rates 7, are set to 0.1 for all pairs of u, v.
The “jump size” function is taken to be an exponential
B(z) = exp(x). The vocabulary of the synthetic cor-
pus we used consisted of the top 10,000 words from
the Neural Information Processing Systems (NIPS)
dataset (consisting of 5811 papers published during
the years 1987 to 2015). We generate 1000 messages,
each containing 20 words. The personalized distribu-
tions over the 10,000 words of the seven users are ran-
domly generated through a Dirichlet distribution, the
concentration parameters of which are drawn from a
Dirichlet prior with uniform concentration parameters.

Root

Red Green Blue
Cluster Cluster Cluster

Figure 2: nCRP + HGP plot. The clustering tree has
two levels (root is at level 0): the first level consists
of three clusters (red, green, and blue), and at the
second level each of the cluster has several individuals
(red cluster has 3 individuals, green has 2, and blue
has 3). Individuals receive messages (represented by
color dots) at different times, which bump the rate
functions of individuals (represented by color bars) by
a certain amount (decided by the GPs). The heights of
the bars at the cluster level and at the root illustrate
the aggregate effect from lower level rates.

Predictive log-likelihood. We compare our method
with the alternatives, showing results in Table 1. We
see that our model achieved the best performance in
terms of predictive log-likelihood. This is not surpris-
ing, given that the data is generated from the model.

Predictive Log-likelihood
nCRP + HGP 312.89 (L 12.37)
nCRP + HP 221.97 (£ 10.16)
CRP + HGP 207.63 (£ 13.28)
IRM + HP 197.23 (£ 16.12)
513 101.01 (£ 16.12)
Table 1: nCRP+HGP against other models. Log-

likelihoods with standard deviations (10 runs).
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The three main components of our model are: 1) GP
to model varying “jump sizes”; 2) nCRP for hierarchi-
cal clustering; and 3) senders and receivers to model
personalized textual information. We investigate the
effectiveness of these model characteristics.

Usefulness and identifiability of the GPs. In Ta-
ble 1, we already see that nCRP+HGP had higher log-
likelihoods compared to nCRP+HP, suggesting that
including the GPs helps our models overall predictive
performance. Here, we take a closer look at the actual
fit of each GP compared to the ground truth (the ex-
ponential). Shown below are the GP plots of the first
three of the seven individuals (along with the truth),
showing the ability of the GPs to recover the underly-
ing “jump size” function S(x).

g5 ™ =
;3 ol |—true ,’}12 ‘3 1ol |[—true 523
5 wt|— GP estimate 6'2 é wi|—GP estimate sizs
Z e Z e
k<] k]
s s
S S
x x
(o} (v}
= =
= . =
X, message content measure X,4' Message content measure
wi|—true 84 .
| —aP estimate 4, Figure 3: GP plots of

P12, P23 and Bi3.  The
underlying “jump size”
function is taken to be
an exponential f(z) =

exp(x).

313(><): excitation function

Effect of nCRP for modeling hierarchical clus-
tering structure. We compare our model with two
manually designed trees: (i) the true underlying tree;
(i) an incorrect tree that puts all 7 individuals in one
single cluster. Our model which samples trees from
nCRP prior recovers the tree structure. From Ta-
ble 2 we see that it obtained very similar predictive
log-likelihood as that based on a correct manual tree,
compared to the much worse performance using an in-
correct manual tree. The correct manual tree achieves
smaller standard deviation over 10 experiment runs,
which is what we expected since the fixed tree reduces
randomness of the model. It is also clear that ignoring
the tree results in poor predictive log-likelihood.

Predictive Log-likelihood
312.89 (£ 12.37)
321.92 (£ 7.86)
126.27 (+ 21.63)
179.61 (+ 9.17)

(nCRP) sampled tree
(correct) manual tree
(incorrect) manual tree
no tree

Table 2: Sampled trees against manual trees.
likelihoods with standard deviations (10 runs).

Log-

Benefits of including senders and receivers.
One of the advantages of introducing senders and re-
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Figure 4: Posterior keyword distributions of synthetic
dataset. The first numbers are the estimated word
distributions at each node on the nCRP tree; and the
second numbers are the true word distributions, to-
gether with their L; distances (against top 20 words
and 20,000 full vocabulary).

ceivers is the ability to generalize the thinning proce-
dure in Hawkes processes. In previous work (e.g., [7]),
uniform thinning is a popular choice, i.e. a new mes-
sage is assigned to an individual with equal probability.
Our model on the other hand can assign a message to
its senders and receivers based on 1) its event history,
via the HPs; 2) text information, via the GPs; and 3)
collaborator and audience, via the nCRPs.

To demonstrate these benefits, the final experiment on
synthetic data focuses on learning the posterior key-
word distributions of individuals, which may be used
to suggest personalized favorite words, and in turn de-
cide the authorship and audiences of the new messages.

The leaf nodes in Figure 4 shows the posterior keyword
distributions of the seven individuals. The cluster level
keyword distribution is aggregated from its members’
distributions (top words of the union of top words),
and the root keyword distribution is aggregated from
the cluster ones. Thus, the top words in each his-
togram may not be the same. We also notice that at
the root, the words are almost uniformly distributed,
which suggests that the most important words across
all individuals are almost of the same importance. We
may use these top words to identify clusters.

5.2 Real Data
We apply our method to three different real datasets:

NIPS Dataset [1]. This contains the counts of
11,463 words appearing in the 5,811 papers published
in the conference Neural Information Processing Sys-
tems (NIPS) during the years 1987 to 2015. Authors
and citations are obtained through the paper IDs. We
treated authors as message “senders”, and cited au-
thors as “receivers”.
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Facebook Dataset. This data contains Facebook
message communications among 20,603 individuals.
We pick the top 10 individuals based on their number
of friends, and add in their 1st and 2nd connection
friends (376 in total).

Santa Barbara Corpus Dataset [2]. The Santa
Barbara Corpus [2] dataset (SB) contains text record-
ings for various conversations. The data we use (#33)
is a lively family discussion recorded at a vacation
home in Falmouth, Massachusetts. There are eight
participants, all relatives or close friends. Discussion
centers around a disagreement that Jennifer (#2) is
having with her mother Lisbeth (#5).

Predictive log-likelihood. We evaluate our model
performance in terms of predictive log-likelihood, and
present our findings about keywords and clusters.
For all of these three datasets, the predictive log-
likelihoods of our model constantly outperform exist-
ing alternative methods.

NIPS Dataset

nCRP+HGP | 9708.23, 1207.83, 1127.21
nCRP+HP | 9026.78, 1028.36, 997.82
CRP+HGP | 89034.67, 1186.22, 1128.76
IRM+HP | 4896.17, 567.18, 682.70

HP 3490.78, 518.70, 683.18
Facebook Dataset

nCRP+HGP | 1208.37, 199.12, 218.93
nCRP+HP 992.70, 181.11, 178.86
CRP+HGP | 1118.61, 175.81, 182.49

IRM+-HP 928.14, 128.76, 129.83

HP 312.78, 59.08, 61.93
Santa Barbara Dataset

nCRPTHGP | 491.37, 118.12, 109.82
nCRP+HP | 391.87, 96.24, 99.68
CRP+HGP | 438.71, 101.83, 97.20
IRM+HP | 412.08, 81.87, 52.73
HP 303.82, 59.83, 70.23

Table 3: Model comparison on the real datasets. The
numbers reported in each cell are the log-likelihoods
for training, validation, and test set, respectively.

Next, we show the effectiveness and consistency of our
model, i.e., what our model can do with different types
of datasets and whether or not it gives us consistent
performance under different scenarios.

Ezxploratory analysis. 1) Identifying clusters and
learning interesting community features. Figure 5
shows the posterior word distribution at the root node
for the Facebook dataset. The size of each word
is proportional to its “importance”, based on the TF-
IDF scores. We see that: firstly, the sizes are quite uni-
form, agreeing with our findings from synthetic data
analysis; and secondly, the words with highest “im-
portance” are “happy” and “birthday”, confirming the
‘viral” nature of mutually-exciting Hawkes processes.

We also summarize the sizes of the first two clusters,
as well as top 3 words of each cluster. Cluster 1 has
128 individuals, with top 3 keywords {workout, class,
homework}; Cluster 2 has 95 individuals, with top 3
keywords {time, work, break}. Based on the keywords,
we suggest that cluster 1 is more about study and
school life, cluster 2 is more about work, and related
activity.
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Figure 5: Facebook data WordCloud.

2) Predicting preferences of senders/receivers within
each cluster. Shown below are the predicted collab-
orators and keywords of three selected top authors
(in terms of number of papers and citations) from
the NIPS dataset. This clearly aligns with what
we know about the authors’ research interests. These
predicted preferences of individuals play an important
role in deciding the authorship and patterns of future
communications.

e Y. Bengio (+ G. Hinton, Y. LeCun): deep learn-
ing, neural network, data, machine learning, fea-
tures, gradient.

o Z. Ghahramani (+ M. Jordan, D. Blei): neural
network, kernel, variational, probabilistic, Gaus-
sian processes, regression.

e Y. LeCun (+G. Hinton, Y. Bengio): generative,
embedding space, auto-encoder, supervised.

3) Interpret individual behavior via quantifiable evi-
dence. Figure 6 shows the rate function plots of two
clusters from the Santa Barbara dataset: Jennifer
and her mother Lisbeth, and the rest of the people.
We see that there is a trend that whenever topic 1
(between Jennifer and her mother Lisbeth) is active,
topic 2 tends to become silent. This phenomenon is
clearly observed during (normalized) time frame 70 to
90. The actual transcript of this conversation shows
that this was one of the occasions when Jennifer and
Lisbeth were arguing with each other. It is even clearer
when we look closer at the rate functions at the indi-
vidual level. Figure 6 shows Jennifer and Lisbeth’s in-



Nested CRP with Hawkes-Gaussian Processes

dividual rate functions, which are almost complement
to each other.

Cluster A (<- Cluster B)

Cluster B (<- Cluster A)

Cluter A (<- cluster A)

V\/\/,_WV/VW—\/V_W w Lisbeth (<- Jennifer)
oo
o e
- Jennifer (<- Lisbeth) w MN\MA\/\/\
A —— .

A Y MY S Y S S 1
3 7 FTR— "

B

Figure 6: Rate function plots of the SB data at the
cluster level: {A: Jennifer and Lisbeth} and {B: Oth-
ers}; and individual level. At the individual level,
there are eight rate functions associated with each per-
son (only shown Jennifer in the plot), including the
one with him/herself. Cluster rates are aggregations
of individual rates, as defined in equation 8.

Learning parameters with an incorrect tree. To
evaluate the importance of jointly learning the tree
structure from the data, we shuffle the tree and re-
learn the parameters and compare the log-likelihoods
as follows: 1) Learn a tree 7 from the model; 2) shuffle
nodes to obtain a new tree 7'; and then 3) use 7’ and
re-learn the parameters. Repeat the process ten times
and report mean and standard deviation.

NIPS Dataset

model 9708.23, 1297.83, 1127.21

without a tree 8934.67, 1186.22, 1128.76

bottom level (leaves) 3790.414+130.19, 489.23+79.81 414.98+27.37

bottom 2 levels 1279.83+189.76, 316.78+88.61, 316.78+28.72

bottom 3 levels 997.81+212.86, 283.68+107.75, 278.91+30.67

Facebook Dataset

model 1208.37, 199.12, 218.93

without a tree 1118.61, 175.81, 182.49

bottom level (leaves) 216.16+29.78, 37.65+7.63, 67.541+9.82

bottom 2 levels 186.72431.78, 21.984+9.27, 51.28+10.67

bottom 3 levels 121.67+36.15, 21.45+10.62, 45.27+12.19

Santa Barbara Dataset

model 191.37, 118.12, 109.82

without a tree 438.71, 101.83, 97.20

bottom level (leaves) 278.23+12.96, 79.81+9.71, 87.15+7.12

bottom 2 levels 212.67+9.18, 71.93+12.38, 72.85+10.37

bottom 3 levels 217.56+18.92, 68.73+17.92, 67.17+16.84

Table 4: Log-likelihood comparison after shuffling the
tree from the model, under different depth. The num-
bers reported in each cell are the log-likelihoods for
training, validation, and test datasets, with their stan-
dard deviations, respectively.

In Table 4, our model outperform the ones without
a tree and shuffled-trees, and in particular, the more
we destroy the structure of the tree, the worse the
model performance. This confirms that our model’s
superior performance is not because of the additional
parameters from the tree: it is the tree structure itself
that is important.

Model comparisons. For each real dataset,
we divide the dataset into 10 equal-length pieces
Dy, Ds,- -, Dqg, and then perform an increasing-size
training strategy: use D; to train the model and test
on Dig; use Dy and D5 for training and test on D1g;
and so on, until finally, train model using D1, - , Dg
and test on Dqg. The results in Figure 7 suggest that
our model consistently outperforms other models in
the comparison, especially in its ability to learn better
at early stages with relatively small amounts of data.
For larger amounts of data, the model without the tree
structure performs comparably, which explains some of
the results in Table 4.

NIPS Dataset

==nCRP_HGP|
“[|==nCRP_HP

CRP_HGP /

Facebook Dataset
—nCRP_HGH
||==nCRP_HP
CRP_HGP

Log-likelihood on test dataset
Log-likelihood on test dataset

Percentagje (%) of déla used for lréininé‘
Santa Barbara Dataset

Percéntagé (%) of data used f‘or tré\ning

—nCRP_HGP
wl|==nCRP_HP
CRP_HGP

Figure 7: Log-likelihood
comparison on  test
datasets with increasing-

Percentage (%) of data used for training size training data.

Log-likelihood on test dataset

6 CONCLUSION

In this paper, we have established a novel and uni-
fied framework combining the advantages of Bayesian
nonparametrics and temporal point processes to model
not only the temporal (¢;) and textual (7;) informa-
tion of the messages communicated in a network, but
also the senders (S;) and receivers (R;) who are in-
volved in the communications. Empirical results sug-
gest that our novel model formulation can improve
predictions about event times, clusters, etc. In ad-
dition, our method offers inference about authorship
and the audience of communications, as well as their
personal behavior such as their favorite collaborators
and top-pick words, which greatly extends the existing
methods in the literature.
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