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Abstract

In many biomedical, science, and engineer-
ing problems, one must sequentially decide
which action to take next so as to maximize
rewards. One general class of algorithms for
optimizing interactions with the world, while
simultaneously learning how the world oper-
ates, is the multi-armed bandit setting and, in
particular, the contextual bandit case. In this
setting, for each executed action, one observes
rewards that are dependent on a given ‘con-
text’, available at each interaction with the
world. The Thompson sampling algorithm
has recently been shown to enjoy provable
optimality properties for this set of problems,
and to perform well in real-world settings. It
facilitates generative and interpretable mod-
eling of the problem at hand. Nevertheless,
the design and complexity of the model limit
its application, since one must both sample
from the distributions modeled and calculate
their expected rewards. We here show how
these limitations can be overcome using varia-
tional inference to approximate complex mod-
els, applying to the reinforcement learning
case advances developed for the inference case
in the machine learning community over the
past two decades. We consider contextual
multi-armed bandit applications where the
true reward distribution is unknown and com-
plex, which we approximate with a mixture
model whose parameters are inferred via vari-
ational inference.
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We show how the proposed variational Thomp-
son sampling approach is accurate in approxi-
mating the true distribution, and attains re-
duced regrets even with complex reward distri-
butions. The proposed algorithm is valuable
for practical scenarios where restrictive mod-
eling assumptions are undesirable.

1 Introduction

Reinforcement learning is an area of ma-
chine learning that studies optimizing inter-
actions with the world while simultaneously
learning how the world operates. The multi-
armed bandit problem ([Sutton and Barto(1998),
Ghavamzadeh et al.(2015)]) is a natural abstraction
for a wide variety of such real-world challenges that
require learning while simultaneously maximizing re-
wards. The goal is to decide on a series of actions under
uncertainty, where each action can depend on previous
rewards, actions, and contexts, aiming at balancing
exploration and exploitation. The name “bandit” finds
its origin in the playing strategy one must devise when
facing a row of slot machines (i.e., which arms to
play). The setting is more formally referred to as the
theory of sequential decision processes. Its foundations
in the field of statistics began with the work by
[Thompson(1933), Thompson(1935)] and continued
with the contributions by [Robbins(1952)]. Interest in
sequential decision making has recently intensified in
both academic and industrial communities. The publi-
cation of separate works by [Chapelle and Li(2011)]
and [Scott(2015)] have shown its impact in the online
content management industry. This renaissance
period of the multi-armed bandit problem has both
a practical aspect ([Li et al.(2010)]) and a theoretical
one as well ([Scott(2010), Agrawal and Goyal(2011),
Maillard et al.(2011)]).
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Interestingly, most of these works have orbited
around one of the oldest heuristics that address
the exploration-exploitation tradeoff, i.e., Thomp-
son sampling. It has been empirically proven
to perform satisfactorily and to enjoy provable
optimality properties, both for problems with
and without context ([Agrawal and Goyal(2012a),
Agrawal and Goyal(2012b), Korda et al.(2013),
Russo and Roy(2014), Russo and Roy(2016)]).

In this work, we are interested in extending and im-
proving Thompson sampling. In its standard form,
it is applicable to restricted models of the world, as
one needs to sample from the corresponding parameter
posteriors and compute their expected rewards (see
[Scott(2010)] for details). The issue is that, for many
problems of practical interest, one has partial (or no)
knowledge about the ground truth, and the available
models might be misspecified.

We aim at extending Thompson sampling to allow
for more complex and flexible reward distributions.
We target a richer class of bandits than in the most
recent literature, where the posterior is usually as-
sumed to be from the exponential family of distribu-
tions [Korda et al.(2013)].

We model the convoluted relationship between the
observed variables (rewards), and the unknown pa-
rameters governing the underlying process by mixture
models, a large hypothesis space which for many com-
ponents can accurately approximate any continuous
reward distribution. The main challenge is how to
learn such a mixture distribution within the contextual
multi-armed bandit setting.

To that end, we leverage the advances developed for
statistical inference in the last decades, and propose a
variational approximation to the underlying true dis-
tribution of the environment with which one interacts.
Variational inference is a principled framework, with
roots in statistical physics and widely applied in the
machine learning community [Bishop(2006)].

Approximation of Bayesian models by variational in-
ference has already attracted interest within the rein-
forcement learning community, both to learn a proba-
bility distribution on the weights of a neural network
([Blundell et al.(2015)]), and for its application to Q-
learning ([Lipton et al.(2016)]). Thompson sampling
has also been applied in the context of deep Q-networks
(e.g., [Lipton et al.(2016)] and [Osband et al.(2016)]).
Nevertheless, our focus here is (a) not on Q-learning
but on bandit problems, and (b), the variational in-
ference is for a hierarchical Bayesian mixture model
approximation to the true reward distribution. We
show that variational inference allows for Thompson
sampling to be applicable for complex reward models.

Our contribution is unique to the contextual multi-
armed bandit setting in that (a) we approximate un-
known bandit reward functions with Gaussian mixture
models, and (b) we provide variational mean-field pa-
rameter updates for the distribution that minimizes
its divergence (in the Kullback-Leibler sense) to the
mixture model reward approximation.

The proposed method autonomously learns, in the con-
textual bandit setting, the variational parameters of the
mixture model that best approximates the true underly-
ing reward distribution. It attains reduced cumulative
regrets when operating under complex reward models,
and is valuable when restrictive modeling assumptions
are undesirable. To the best of our knowledge, no
other work uses variational inference to address the
contextual multi-armed bandit setting.

We formally introduce the contextual multi-armed ban-
dit problem in Section 2, before providing a descrip-
tion of our proposed variational Thompson sampling
method in Section 3. We evaluate its performance
in Section 4, and we conclude with final remarks in
Section 5.

2 Problem formulation

The contextual multi-armed bandit problem is formu-
lated as follows. Let a ∈ {1, · · · , A} be any possible
action to take (arms in the bandit), and fa(y|x, θ) the
stochastic reward distribution of each arm, dependent
on its intrinsic properties (i.e., parameters θ) and con-
text x ∈ Rd.

For every time instant t, the observed reward yt is
independently drawn from the reward distribution cor-
responding to the played arm, parameterized by θ and
the applicable context; i.e., yt ∼ fa(y|xt, θ). We de-
note a set of given contexts, played arms, and observed
rewards up to time instant t as x1:t ≡ (x1, · · · , xt),
a1:t ≡ (a1, · · · , at) and y1:t ≡ (y1, · · · , yt), respectively.
In the contextual multi-armed bandit setting, one must
decide which arm to play next (i.e., pick at+1), based
on the context xt+1, and previously observed rewards
y1:t, played arms a1:t, and contexts x1:t. The goal is to
maximize the expected (cumulative) reward. We denote
each arm’s expected reward as µa(x, θ) = Ea{y|x, θ}.
When the properties of the arms (i.e., their parame-
ters) are known, one can readily determine the optimal
selection policy as soon as the context is given, i.e.,

a∗(x, θ) = argmax
a

µa(x, θ) . (1)

The challenge in the contextual multi-armed bandit
problem is raised when there is a lack of knowledge
about the model.
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The issue amounts to the need to learn about the
key properties of the environment (i.e., the reward
distribution), as one interacts with the world (i.e., takes
actions sequentially).

Amongst the many alternatives to address this
class of problems, the randomized probability
matching is particularly appealing. In its sim-
plest form, known as Thompson sampling, it
has been shown to perform empirically well
([Chapelle and Li(2011), Scott(2015)]) and has
sound theoretical bounds, for both contextual and
context-free problems ([Agrawal and Goyal(2012a),
Agrawal and Goyal(2012b)]). It plays each arm in
proportion to its probability of being optimal, i.e.,

at+1 ∼ Pr
[
a = a∗t+1|a1:t, x1:t+1, y1:t, θ

]
. (2)

If the parameters of the model are known, the above
expression becomes deterministic, as one always picks
the arm with the maximum expected reward

Pr
[
a = a∗t+1|a1:t, x1:t+1, y1:t, θ

]
= Pr

[
a = a∗t+1|xt+1, θ

]

= Ia(xt+1, θ) ,

(3)

where we define the indicator function Ia(·) as

Ia(x, θ) =

{
1, µa(x, θ) = max{µ1(x, θ), · · · , µA(x, θ)} ,
0, otherwise .

(4)

In practice, since the parameters of the model are
unknown, one needs to explore ways of computing the
probability of each arm being optimal.

If the parameters are modeled as a set of random
variables, then the uncertainty over the parameters can
be accounted for.

Specifically, we marginalize over the posterior proba-
bility distribution of the parameters after observing
rewards and actions up to time instant t, i.e.,

Pr
[
a = a∗t+1

∣∣a1:t, x1:t+1, y1:t
]

=

∫
f(a|a1:t, x1:t+1, y1:t, θ)f(θ|a1:t, x1:t, y1:t)dθ

=

∫
Ia(xt+1, θ)f(θ|a1:t, x1:t, y1:t)dθ .

(5)

In a Bayesian setting, if the reward distribution
is known, one would assign a prior over the pa-
rameters to compute the corresponding posterior
f(θ|a1:t, x1:t, y1:t). The analytical solution to such pos-
terior is available for a well known set of distributions
([Bernardo and Smith(2009)]).

Nevertheless, when reward distributions beyond simple
well known cases (e.g., Bernoulli, Gaussian, etc.) are
considered, one must resort to approximations of the
posterior.

In this work, we leverage variational inference to ap-
proximate such posteriors, which was founded within
the discipline of statistical physics and has flourished
over the past several decades in the machine learning
community.

3 Proposed method

The learning process in the multi-armed bandit, as ex-
plained in the formulation of Section 2, requires updat-
ing the posterior of the reward model parameters at ev-
ery time instant. For computation of f(θ|a1:t, x1:t, y1:t)
in Eqn. 5, knowledge of the reward distribution is
instrumental.

Typically, bandit algorithms are applied to simple
distributions for which sampling and calculating ex-
pectations are feasible (e.g., the exponential family
[Korda et al.(2013)]).

In this work, we study finite mixture models as re-
ward functions of the multi-armed bandit. Mixture
models allow for the statistical modeling of a wide va-
riety of stochastic phenomena; e.g., Gaussian mixture
models can approximate arbitrarily well any continu-
ous distribution and thus, provide a useful parametric
framework to model unknown distributional shapes
([McLachlan and Peel(2004)]).

This flexibility comes at a cost, as learning the param-
eters of the mixture distribution becomes a challenge.

In this work, we use and empirically validate variational
inference to approximate underlying Gaussian mixture
models in the contextual bandit case.

For the rest of the paper, we consider a mixture of K
Gaussian distributions per arm a ∈ {1, · · · , A}, where
each of the Gaussians is linearly dependent on the
shared context. Formally,

fa(y|x, πa,k, wa,k, σ2
a,k) =

K∑

k=1

πa,k N (y|x>wa,k, σ2
a,k) ,

(6)
with per-arm mixture weights πa,k ∈
[0, 1],

∑K
k=1 πa,k = 1 and Gaussian sufficient

statistics, wa,k ∈ Rd and σ2
a,k ∈ R+.

For our analysis, we incorporate an auxiliary mixture
indicator variable za. These are 1-of-K encoded vec-
tors, where za,k = 1, if mixture k is active; za,k = 0,
otherwise.
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One can now rewrite Eqn. 6 as

fa(y|x, za, wa,k, σ2
a,k) =

K∏

k=1

N (y|x>wa,k, σ2
a,k)za,k ,

(7)
where za ∼ Cat(πa). We consider conjugate priors for
the unknown parameters of the mixture distribution

f(πa|γa,0) = Dir(πa|γa,0) ,

f(wa,k, σ
2
a,k|ua,k,0, Va,k,0, αa,k,0, βa,k,0)

= NIG(wa,k, σ
2
a,k|ua,k,0, Va,k,0, αa,k,0, βa,k,0)

= N (wa,k|ua,k,0, σ2
a,kVa,k,0)Γ−1(σ2

a,k|αa,k,0, βa,k,0).

(8)

Given a set of contexts x1:t, played arms a1:t, mixture
assignments za,1:t, and observed rewards y1:t, the joint
distribution of the model follows

f(y1:t, za,1:t, wa,k, σ
2
a,k|a1:t, x1:t)

= f(y1:t|a1:t, x1:t, za,1:t, wa,k, σ2
a,k) · f(za,1:t|πa)

· f(πa|γa,0) · f(wa,k, σ
2
a,k|ua,k,0, Va,k,0, αa,k,0, βa,k,0) ,

(9)

with

f(y1:t|a1:t, x1:t, za,1:t, wa,k, σ2
a,k)

=
∏

t

∏

k

N (yt|x>t wa,k, σ2
a,k)za,k,t ,

f(z1:t|a1:t, πa) =
∏

t

∏

k

π
za,k,t

a,k ,

(10)

and parameter priors as in Eqn. 8.

3.1 Variational parameter inference

For the model as described above, the true joint poste-
rior distribution is intractable. Under the variational
framework, we consider instead a restricted family of
distributions, and find the one that is a locally optimal
approximation to the full posterior.

We do so by minimizing the Kullback-Leibler divergence
between the true distribution f(·), and our approxi-
mating distribution q(·).
We here consider a set of parameterized distributions
with the following mean-field factorization over the
variables of interest

q(Z, π,w, σ2) = q(Z)

A∏

a=1

q(πa)

K∏

k=1

q(wa,k, σ
2
a,k) ,

(11)
where we introduce notation Z = {za,k,t}, ∀a, k, t, for
all latent variables; and similarly π = {πa,k}, ∀a, k;
w = {wa,k}, ∀a, k; and σ2 = {σ2

a,k}, ∀a, k; for param-
eters.

We place no restriction on the functional form of each
distributional factor, and we seek to optimize the
Kullback-Leibler divergence between this and the true
distribution.

We illustrate the graphical model of the true and the
variational bandit distributions in Fig. 1.

The optimal solution for each variational factor in the
distribution in Eqn. 11 is obtained by computing the
expectation of the log-joint true distribution with re-
spect to the rest of the variational factor distributions
as explained in [Bishop(2006)].

In our setting, we compute

ln q(Z) = E {ln [f(y1:t, Z, w, σ|a1:t, x1:t)]}π,w,σ + c ,

ln q(πa) = E {ln [f(y1:t, Z, w, σ|a1:t, x1:t)]}Z,w,σ + c ,

ln q(wa,k, σ
2
a,k) = E {ln [f(y1:t, Z, w, σ|a1:t, x1:t)]}Z,π + c .

(12)

The resulting solution to the variational parameters
that minimize the divergence iterates over the following
two steps:

1. Given the current variational parameters, compute
the responsibilities

log(ra,k,t) = −1

2

[
ln
(
β̃a,k

)
− ψ (α̃a,k)

]

− 1

2

[
x>t Ṽa,kxt + (yt − x>t ũa,k)2

α̃a,k

β̃a,k

]

+

[
ψ(γ̃a,k)− ψ

(
K∑

k=1

γ̃a,k

)]
+ c ,

(13)

with
∑K
k=1 ra,k,t = 1.

These responsibilities correspond to the expected
value of assignments, i.e., ra,k,t = E {za,k,t}Z .

2. Given the current responsibilities, we define Ra,k ∈
Rt×t as a sparse diagonal matrix with diagonal
elements [Ra,k]t,t′ = ra,k,t · 1[at = a], and update
the variational parameters

γ̃a,k = γa,0 + tr{Ra,k} ,
Ṽ −1a,k = x1:tRa,kx

>
1:t + V −1a,k,0 ,

ũa,k = Ṽa,k

(
x1:tRa,ky1:t + V −1a,k,0ua,k,0

)
,

α̃a,k = αa,k,0 +
1

2
tr{Ra,k} ,

β̃a,k = βa,k,0 +
1

2

(
y>1:tRa,ky1:t

)

+
1

2

(
u>a,k,0V

−1
a,k,0ua,k,0 − ũ>a,kṼ −1a,k ũa,k

)
.

(14)
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Figure 1: Graphical models of the bandit distribution.

Note that, for simplicity, we have considered the same
number of mixtures per arm K. Nevertheless, the
above expressions are readily generalizable to differing
per-arm number of mixtures Ka, for a ∈ {1, · · · , A}.
The iterative procedure presented above is repeated un-
til a convergence criterion is met. Usually, one iterates
until the optimization improvement is small (relative to
some prespecified ε) or a maximum number of iterations
is executed.

3.2 Variational Thompson sampling

We now describe our proposed variational Thompson
sampling (VTS) technique for the multi-armed contex-
tual bandit problem, which leverages the variational
distribution in subsection 3.1 and implements a poste-
rior sampling based policy [Russo and Roy(2014)].

In the multi-armed bandit setting, at any given time
and based on the information available, one needs to
decide which arm to play next. A randomized proba-
bility matching technique picks each arm based on its
probability of being optimal.

In its simplest form, known as Thompson sampling
[Thompson(1935)], instead of computing the integral
in Eqn. 5, one draws a random parameter sample from
the posterior, and then picks the action that maximizes
the expected reward. That is,

a∗t+1 = argmax
a

µa(xt+1, θt+1),

with θt+1 ∼ f(θ|a1:t, x1:t, y1:t).
(15)

In a pure Bayesian setting, one deals with simple models

that allow for analytical computation (and sampling)
of the posterior. Here, as we allow for more realistic
and complex modeling of the world that may not result
in closed-form posterior updates, we propose to sample
the parameters from the variational approximating
distributions computed in subsection 3.1.

We describe the proposed variational Thompson sam-
pling technique in Algorithm 1, for a general Gaussian
mixture model with context.

An instrumental step in the proposed algorithm is to
compute the expected reward for each arm, i.e., µa,t+1.
Since we are dealing with mixture models, the following
approaches can be considered:

1. Expectation with mixture assignment sampling

µa,t+1 = x>t ũa,za,k,t
, za,k,t ∼ Cat

(
γ̃a,k∑K
k=1 γ̃a,k

)
.

(16)

2. Expectation with mixture proportion sampling

µa,t+1 =

K∑

k=1

πa,k,tx
>
t ũa,k, πa,k,t ∼ Dir (γ̃a,k) .

(17)

3. Expectation with mixture proportions

µa,t+1 =

K∑

k=1

πa,k,tx
>
t ũa,k, πa,k,t =

γ̃a,k∑K
k=1 γ̃a,k

.

(18)
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Algorithm 1 Variational Thompson sampling
Require: Model description A, Ka

Require: Parameters γa,0, ua,k,0, Va,k,0, αa,k,0, βa,k,0
D = ∅
Initialize γ̃a,k = γa,0, α̃a,k = αa,k,0, β̃a,k = βa,k,0,
ũa,k = ua,k,0, Ṽa,k = Va,k,0
for t = 1, · · · , T do

Receive context xt+1

for a = 1, · · · , A do
for k = 1, · · · ,Ka do

Draw parameters

θa,k,t+1 ∼ q
(
γ̃a,k, α̃a,k, β̃a,k, ũa,k, Ṽa,k

)

end for
Compute µa,t+1 = µa(xt+1, θa,t+1)

end for
Play arm at+1 = argmaxa µa,t+1

Observe reward yt+1

D = D ∪ {xt+1, at+1, yt+1}
while NOT Variational convergence criteria do

Compute ra,k,t
Update γ̃a,k, α̃a,k, β̃a,k, ũa,k, Ṽa,k

end while
end for

4 Evaluation

In this section, we evaluate the performance of the
proposed variational Thompson sampling technique for
the contextual multi-armed bandit problem.

We focus on two illustrative scenarios: the first, referred
to as Scenario A, with per-arm reward distributions

Scenario A





f0(y|xt, θ) = 0.5 · N
(
y|(0 0)>xt, 1

)

+0.5 · N
(
y|(1 1)>xt, 1

)
,

f1(y|xt, θ) = 0.5 · N
(
y|(2 2)>xt, 1

)

+0.5 · N
(
y|(3 3)>xt, 1

)
,

(19)
and the second, Scenario B, with

Scenario B





f0(y|xt, θ) = 0.5 · N
(
y|(1 1)>xt, 1

)

+0.5 · N
(
y|(2 2)>xt, 1

)
,

f1(y|xt, θ) = 0.3 · N
(
y|(0 0)>xt, 1

)

+0.7 · N
(
y|(3 3)>xt, 1

)
.

(20)
The reward distributions of the contextual bandits in
both scenarios are Gaussian mixtures with two context
dependent components. These reward distributions are
complex in that they are multimodal and, in Scenario
B, unbalanced. Furthermore, they depend on a two
dimensional uncorrelated uniform context, i.e., xi,t ∼
U(0, 1), i ∈ {1, 2}, t ∈ N.

The key difference between the scenarios is the amount
of mixture overlap and the similarity between arms.
Recall the complexity of the reward distributions in
Scenario B, with a significant overlap between arm
rewards and the unbalanced nature of arm 1.

We evaluate variational Thompson sampling in terms
of its cumulative regret, defined as

Rt =

t∑

τ=0

E {(y∗τ − yτ )} =

t∑

τ=0

µ∗τ − ȳτ , (21)

where for each time instant t, µ∗t denotes the true ex-
pected reward of the optimal arm, and ȳt the empirical
mean of the observed rewards.

Since we have not noticed significant cumulative regret
differences between the three approaches to computing
the expected reward µa,t+1 described in subsection 3.2,
we avoid unnecessary clutter and do not plot them in
the figures below. All reported values are averaged
over 5000 realizations of the same set of parameters
and context (with the standard deviation shown as the
shaded region in the figures).

Fig. 2 shows the cumulative regret of the proposed
variational Thompson sampling approach in both sce-
narios, when different assumptions for the variational
approximating distribution are made (i.e., assumed
number of components K).

Note that “VTS with K = 1” is equivalent to a vanilla
Thompson sampling approach with a linear contextual
Gaussian model assumption. Since ra,k=1,t = 1 for all
a and t, the variational update equations match the cor-
responding Bayesian posterior updates for Thompson
sampling. We are thus effectively comparing the perfor-
mance of the proposed method to the Thompson sam-
pling benchmark, as in [Agrawal and Goyal(2012a)].

The main conclusion from the results shown in Fig. 2
is that inferring a variational approximation to the true
complex reward distribution attains satisfactory regret
performance.

For Scenario A, the regret performance of the pro-
posed VTS with mixture of Gaussians is equivalent
to “VTS with K = 1” (i.e., vanilla Thompson sam-
pling). On the contrary, for Scenario B, our flexible
approach attains considerably lower regret. As in any
posterior sampling bandit algorithm, the variance of
the cumulative regret is large for all methods.

Nevertheless, we observe a reduction in both mean
regret and its variability for the proposed “VTS with
K = 2 and K = 3” cases, in comparison to the con-
textual linear Gaussian Thompson sampling case (i.e.,
“VTS with K = 1”), for the challenging Scenario B
illustrated in Fig. 2b.
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Figure 2: Cumulative regret comparison.

In other words, a misspecified (and simplified) model
performs worse than the proposed (more complex) al-
ternatives. Precisely, the cumulative regret reduction
of “VTS with K = 2” (which corresponds to the true
underlying mixture distributions in Eqn. 20) with re-
spect to “VTS with K = 1” at t = 500 is of 35%. The
issue of model misspecification is evident for Scenario
B, as the linear Gaussian contextual model fails to cap-
ture the subtleties of the unbalanced mixtures of Eqn.
20.

In summary, with a simplistic model assumption as in
“VTS with K = 1”, one can not capture the properties
of the underlying complex reward distributions and
thus, can not make well-informed decisions. On the
contrary, by considering more complex models (i.e.,
Gaussian mixture models), and by using variational
inference for learning its parameters, the proposed
technique attains reduced regret.

Furthermore, we highlight that even an overly complex
model assumption does provide competitive perfor-
mance. For both Scenario A and Scenario B, the
regret of the variational approximation with K = 3 is
similar to that of the true model assumption K = 2,
(“VTS with K = 3” and “VTS with K = 2” in Fig.
2, respectively). For the challenging Scenario B, the
cumulative regret reduction of “VTS with K = 3” with
respect to the “VTS with K = 1” benchmark at t = 500
is of 40%.

The explanation relies on the flexibility provided by the
variational machinery, as the learning process adjusts
the parameters to minimize the divergence between
the true and the variational distributions. Nonetheless,
one must be aware that this flexibility comes with
an additional computational cost, as more parameters
need to be learned.

We further elaborate on the analysis of our proposed
variational Thompson sampling method by studying
its learning accuracy.

In bandit algorithms, the goal is to gather enough
evidence to identify the best arm (in terms of expected
reward), and this can only be achieved if the arm
properties (i.e., the reward distributions) are learned
accurately; their expectation being the most important
sufficient statistic.

We illustrate in Fig. 3 the mean squared error of the
variational per-arm expected reward estimation

MSEa =
1

T

T∑

t=0

(µa,t − µ̂a,t)2 , (22)

where µ̂a,t denotes the estimated expected reward for
arm a at time t.

We show that the learning is faster and more accurate
when the approximating mixture model has flexibility
to adapt. That is, both “VTS with K = 2” and “VTS
with K = 3” accurately estimate the expected reward
of the best arm.

We once again recall the complexity of the model in
Scenario B in comparison to that of Scenario A, and
more importantly, its implications for a bandit algo-
rithm. In Figs. 3a-3b, the simplest model that assumes
a single Gaussian distribution (“VTS with K = 1”) is
able to quickly and accurately estimate the expected re-
ward. In contrast, its estimation accuracy is the worst
(as shown in Figs. 3c-3d) when facing a more complex
model with overlapping and unbalanced arm rewards.
Note how, for all results in Fig. 3, the most complex
model (i.e., “VTS with K = 3”) fits the expected reward
best.

These observations reinforce our claims on the flexibility
and applicability of the presented technique.
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Figure 3: Expected reward estimation accuracy.

By allowing for complex modeling of the world and
using variational inference to learn it, the proposed
variational Thompson sampling technique can provide
improved performance (in the sense of regret) for the
contextual multi-armed bandit problem.

5 Conclusion

We have presented variational Thompson sampling, a
new algorithm for the contextual multi-armed bandit
setting, where we combine variational inference ma-
chinery with a state of the art reinforcement learning
technique. The proposed algorithm allows for inter-
pretable bandit modeling with complex reward func-
tions, learned from online data. We extend the applica-
bility of Thompson sampling by accommodating more
realistic and complex models of the world. Empirical
results show a significant cumulative regret reduction
when using the proposed algorithm in simulated models.
A natural future application is to scenarios when rele-
vant context (attributes of items, customers or patients)
are unobservable, and thus the latent variables are truly
‘incomplete’ as in the motivating case for expectation
maximization modeling ([Dempster et al.(1977)]).
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