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Abstract

We propose a Topic Compositional Neural
Language Model (TCNLM), a novel method
designed to simultaneously capture both the
global semantic meaning and the local word-
ordering structure in a document. The TC-
NLM learns the global semantic coherence
of a document via a neural topic model,
and the probability of each learned latent
topic is further used to build a Mixture-of-
Experts (MoE) language model, where each
expert (corresponding to one topic) is a re-
current neural network (RNN) that accounts
for learning the local structure of a word se-
quence. In order to train the MoE model effi-
ciently, a matrix factorization method is ap-
plied, by extending each weight matrix of the
RNN to be an ensemble of topic-dependent
weight matrices. The degree to which each
member of the ensemble is used is tied to the
document-dependent probability of the cor-
responding topics. Experimental results on
several corpora show that the proposed ap-
proach outperforms both a pure RNN-based
model and other topic-guided language mod-
els. Further, our model yields sensible topics,
and also has the capacity to generate mean-
ingful sentences conditioned on given topics.

1 Introduction

A language model is a fundamental component to nat-
ural language processing (NLP). It plays a key role
in many traditional NLP tasks, ranging from speech
recognition (Mikolov et al., 2010; Arisoy et al., 2012;
Sriram et al., 2017), machine translation (Schwenk
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et al., 2012; Vaswani et al., 2013) to image caption-
ing (Mao et al., 2014; Devlin et al., 2015). Training
a good language model often improves the underlying
metrics of these applications, e.g., word error rates for
speech recognition and BLEU scores (Papineni et al.,
2002) for machine translation. Hence, learning a pow-
erful language model has become a central task in
NLP. Typically, the primary goal of a language model
is to predict distributions over words, which has to
encode both the semantic knowledge and grammat-
ical structure in the documents. RNN-based neural
language models have yielded state-of-the-art perfor-
mance (Jozefowicz et al., 2016; Shazeer et al., 2017).
However, they are typically applied only at the sen-
tence level, without access to the broad document con-
text. Such models may consequently fail to capture
long-term dependencies of a document (Dieng et al.,
2016).

Fortunately, such broader context information is of
a semantic nature, and can be captured by a topic
model. Topic models have been studied for decades
and have become a powerful tool for extracting high-
level semantic structure of document collections, by
inferring latent topics. The classical Latent Dirichlet
Allocation (LDA) method (Blei et al., 2003) and its
variants, including recent work on neural topic mod-
els (Wan et al., 2012; Cao et al., 2015; Miao et al.,
2017), have been useful for a plethora of applications
in NLP.

Although language models that leverage topics have
shown promise, they also have several limitations. For
example, some of the existing methods use only pre-
trained topic models (Mikolov and Zweig, 2012), with-
out considering the word-sequence prediction task of
interest. Another key limitation of the existing meth-
ods lies in the integration of the learned topics into the
language model; e.g., either through concatenating the
topic vector as an additional feature of RNNs (Mikolov
and Zweig, 2012; Lau et al., 2017), or re-scoring the
predicted distribution over words using the topic vec-
tor (Dieng et al., 2016). The former requires a bal-
ance between the number of RNN hidden units and



Topic Compositional Neural Language Model

} Neural Topic Model | Topic Proportion \rNeuraI Language Model |
! d | Law 0.36 | !
| p(dlt) 1 1 Y Yo ym |
1P } | Art 0.03 ! %re dge — — — - |
| | ! judge <eos> |
| t ‘ O O O O }—}> Market 0.10 ! h2 hg !

| / I
} g(+) } Travel 0.07 i LST™ LST™ o |
! 9~ N(u,0?) m | Company 0.09 | é !
} q(t|d) T } Politics 0.15 } ; L 5 }
| 1oy logo? | Sport 0.01 | ‘ !
} ! Education 0.11 | <s0s> The — —<— — guilty
| MLP [ : | 1 To !
| } Medical 0.02 } }
} ! Army 0.06 | |
,,,,,,,,,,,,,,,,,,,,,,,,,, I b ___.

Figure 1: The overall architecture of the proposed model.

the number of topics, while the latter has to carefully
design the vocabulary of the topic model.

Motivated by the aforementioned goals and limitations
of existing approaches, we propose the Topic Compo-
sitional Neural Language Model (TCNLM), a new ap-
proach to simultaneously learn a neural topic model
and a neural language model. As depicted in Figure 1,
TCNLM learns the latent topics within a variational
autoencoder (Kingma and Welling, 2013) framework,
and the designed latent code t quantifies the proba-
bility of topic usage within a document. Latent code
t is further used in a Mixture-of-Experts model (Hu
et al., 1997), where each latent topic has a correspond-
ing language model (expert). A combination of these
“experts,” weighted by the topic-usage probabilities,
results in our prediction for the sentences. A ma-
trix factorization approach is further utilized to reduce
computational cost as well as prevent overfitting. The
entire model is trained end-to-end by maximizing the
variational lower bound. Through a comprehensive
set of experiments, we demonstrate that the proposed
model is able to significantly reduce the perplexity of
a language model and effectively assemble the mean-
ing of topics to generate meaningful sentences. Both
quantitative and qualitative comparisons are provided
to verify the superiority of our model.

2 Preliminaries

We briefly review RNN-based language models and
traditional probabilistic topic models.

Language Model A language model aims to learn
a probability distribution over a sequence of words in
a pre-defined vocabulary. We denote V as the vocab-
ulary set and {y1,...,ya} to be a sequence of words,
with each y,, € V. A language model defines the like-
lihood of the sequence through a joint probability dis-
tribution

M
P, - yar) = p(w1) [T p(mlyrim—1)-

m=2

(1)

RNN-based language models define the conditional
probabiltiy of each word y,, given all the previous
words y1.m,—1 through the hidden state h,y,:

(2)
(3)

p(ym‘ylzm—l) = p(ym|hm)
hoy = f(ho—1,Tm) -

The function f(-) is typically implemented as a ba-
sic RNN cell, a Long Short-Term Memory (LSTM)
cell (Hochreiter and Schmidhuber, 1997), or a Gated
Recurrent Unit (GRU) cell (Cho et al., 2014). The
input and output words are related via the relation

Tm = Ym—1-

Topic Model A topic model is a probabilistic graph-
ical representation for uncovering the underlying se-
mantic structure of a document collection. Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), for ex-
ample, provides a robust and scalable approach for
document modeling, by introducing latent variables
for each token, indicating its topic assignment. Specif-
ically, let t denote the topic proportion for document
d, and z, represent the topic assignment for word w,,.
The Dirichlet distribution is employed as the prior of
t. The generative process of LDA may be summarized
as:

t ~ Dir(ap), 2, ~ Discrete(t) ,w, ~ Discrete(3, ),

where 3, represents the distribution over words for
topic z,, aq is the hyper-parameter of the Dirichlet
prior, n € [1, N4], and Ny is the number of words in
document d. The marginal likelihood for document d
can be expressed as

/tp(t|a0) 11D p(walB., )p(zalt)dt.

p(d|a0a /8)

3 Topic Compositional Neural
Language Model

We describe the proposed TCNLM, as illustrated in
Figure 1. Our model consists of two key components:
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(i) a neural topic model (NTM), and (4#) a neural
language model (NLM). The NTM aims to capture the
long-range semantic meanings across the document,
while the NLM is designed to learn the local semantic
and syntactic relationships between words.

3.1 Neural Topic Model

Let d € Zf denote the bag-of-words representation
of a document, with Z, denoting nonnegative inte-
gers. D is the vocabulary size, and each element of
d reflects a count of the number of times the corre-
sponding word occurs in the document. Distinct from
LDA (Blei et al., 2003), we pass a Gaussian random
vector through a softmax function to parameterize the
multinomial document topic distributions (Miao et al.,
2017). Specifically, the generative process of the NTM
is

0~ N(:u(% Ug)
zn, ~ Discrete(t)

t=y9(0)
wy, ~ Discrete(3,, ), (4)

where N (o, 03) is an isotropic Gaussian distribution,
with mean po and variance o2 in each dimension;
g(+) is a transformation function that maps sample
0 to the topic embedding ¢, defined here as g(0) =
softmax(WB + B), where W and b are trainable pa-
rameters.

The marginal likelihood for document d is:

p(do,0.8) = | plthuo. ) T[S ol B, Jo(en
= [ p(thio. ) [T ot . )
— [ pttheo. byplaip. et (5)

The second equation in (5) holds because we can read-
ily marginalized out the sampled topic words z,, by

Zp wn|B,,)p

8 =1{B4,Bs, ..., B} is the transition matrix from the
topic distribution to the word distribution, which are
trainable parameters of the decoder; T is the number
of topics and B3; € R is the topic distribution over
words (all elements of 3, are nonnegative, and they
sum to one).

p(waB,t) (znlt) =Bt.  (6)

The re-parameterization trick (Kingma and Welling,
2013) can be applied to build an unbiased and low-
variance gradient estimator for the variational distri-
bution. The parameter updates can still be derived
directly from the variational lower bound, as discussed
in Section 3.3.

Diversity Regularizer Redundance in inferred
topics is a common issue exisiting in general topic
models. In order to address this issue, it is straightfor-
ward to regularize the row-wise distance between each
paired topics to diversify the topics. Following Xie
et al. (2015); Miao et al. (2017), we apply a topic di-
versity regularization while carrying out the inference.

Specifically, the distance between a pair of topics
are measured by their cosine distance a(83;,8;) =

1881 .
arccos (m) The mean angle of all pairs of

T topics is ¢ = % > Zj a(B;,B;), and the variance

isv =725, 3,8, B;) — ¢)?. Finally, the topic
diversity regularization is defined as R = ¢ — v.

3.2 Neural Language Model

We propose a Mixture-of-Experts (MoE) language
model, which consists a set of “expert networks”, i.e.,
FEy, Eo, ..., Ep. Each expert is itself an RNN with its
own parameters corresponding to a latent topic.

Without loss of generality, we begin by discussing an
RNN with a simple transition function, which is then
generalized to the LSTM. Specifically, we define two
weight tensors W € R™ X" XT and Y € R?»*nnxT,
where ny, is the number of hidden units and n, is the
dimension of word embedding. Each expert Ej corre-
sponds to a set of parameters W[k| and U[k], which
denotes the k-th 2D “slice” of W and U, respectively.
All T experts work cooperatively to generate an out-
put y,,. Sepcifically,

T

p(Ym) = Z t), - softmax(Vh*®) (7)
k=1

hY = cW(k]@, + UK]Ry_1), (8)

where tj is the usage of topic k (component k of t),
and o(-) is a sigmoid function; V is the weight matrix
connecting the RNN’s hidden state, used for comput-
ing a distribution over words. Bias terms are omitted
for simplicity.

However, such an MoE module is computationally pro-
hibitive and storage excessive. The training process is
inefficient and even infeasible in practice. To remedy
this, instead of ensembling the output of the T' experts
as in (7), we extend the weight matrix of the RNN to
be an ensemble of topic-dependent weight matrices.
Specifically, the T experts work together as follows:

p(Ym) = softmax(Vh,,) (9)
h, =c(W(t)x,, + U(t)h,,_1), (10)
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T T
W(t) =Y te- W], U®)=> t.-Ulk]. (11)

k=1 k=1

In order to reduce the number of model parameters,
motivated by Gan et al. (2016); Song et al. (2016),
instead of implementing a tensor as in (11), we de-
compose W(t) into a multiplication of three terms
W, € RXni W, € RY*T and W, € RMXne,
where 1y is the number of factors. Specifically,

W(t) =W, - diag(Wt) - W,
=W, (Wit®W.), (12)

where © represents the Hadamard operator. W, and
‘W, are shared parameters across all topics, to capture
the common linguistic patterns. W, are the factors
which are weighted by the learned topic embedding
t. The same factorization is also applied for U(¢).
The topic distribution ¢ affects RNN parameters as-
sociated with the document when predicting the suc-
ceeding words, which implicitly defines an ensemble
of T language models. In this factorized model, the
RNN weight matrices that correspond to each topic
share “structure”.

Now we generalize the above analysis by using LSTM
units. Specifically, we summarize the new topic com-
positional LSTM cell as:

i = 0(Wiaim_1+ Uiahim_1)

Fin=0(WgaZpm 1+ Usahgm 1)
0m = 0(Woa@om-1+ Usalom—1)
ém = 0(Weakem-1+ Ucalem-1)

Cn =1tm ©Cp + .fm *Cm—1

h,, = o, © tanh(c,,) . (13)

For x =14, f, 0, c, we define
Tim—1 = Wit O W, oTp_1 (14)
Bom-1 = Ut ©U,chy . (15)

Compared with a standard LSTM cell, our LSTM unit
has a total number of parameters in size of 4n; - (n, +
2T+3np,) and the additional computational cost comes
from (14) and (15). Further, empirical comparison
has been conducted in Section 5.6 to verify that our
proposed model is superior than using the naive MoE
implementation as in (7).

3.3 Model Inference

The proposed model (see Figure 1) follows the varia-
tional autoencoder (Kingma and Welling, 2013) frame-
work, which takes the bag-of-words as input and em-
beds a document into the topic vector. This vector is

then used to reconstruct the bag-of-words input, and
also to learn an ensemble of RNNs for predicting a
sequence of words in the document.

The joint marginal likelihood can be written as:

Py, dlpo, o3, B) = / p(tm0, 02)p(d|B, )

M
H P(Ym|y1:m—1,t)dt. (16)
m=1

Since the direct optimization of (16) is intractable, we
employ variational inference (Jordan et al., 1999). We
denote ¢(t|d) to be the variational distribution for ¢.
Hence, we construct the variational objective function,
also called the evidence lower bound (ELBO), as

L = Eqja) (logp(d|t)) — KL (q(t|d)||p(t|po, 7))

neural topic model

M
+ Eqt1a) (Z log p(Ym|y1:m—1, t)) (17)

m=1

neural language model
2
S logp(yl:M7 d|M0a O'Ovﬁ) .

More details can be found in the Supplementary Mate-
rial. In experiments, we optimize the ELBO together
with the diversity regularisation:

J=L+\R. (18)
4 Related Work

Topic Model Topic models have been studied for
a variety of applications in document modeling. Be-
yond LDA (Blei et al., 2003), significant extensions
have been proposed, including capturing topic cor-
relations (Blei and Lafferty, 2007), modeling tempo-
ral dependencies (Blei and Lafferty, 2006), discover-
ing an unbounded number of topics (Teh et al., 2005),
learning deep architectures (Henao et al., 2015; Zhou
et al., 2015), among many others. Recently, neural
topic models have attracted much attention, build-
ing upon the successful usage of restricted Boltzmann
machines (Hinton and Salakhutdinov, 2009), auto-
regressive models (Larochelle and Lauly, 2012), sig-
moid belief networks (Gan et al., 2015), and variational
autoencoders (Miao et al., 2016).

Variational inference has been successfully applied in
a variety of applications (Pu et al., 2016; Wang et al.,
2017; Chen et al., 2017). The recent work of Miao
et al. (2017) employs variational inference to train
topic models, and is closely related to our work. Their
model follows the original LDA formulation and ex-
tends it by parameterizing the multinomial distribu-
tion with neural networks. In contrast, our model
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Dataset Vocabulary Training Development Testing

LM TM | # Docs # Sents # Tokens | # Docs # Sents # Tokens | # Docs # Sents # Tokens
APNEWS | 32,400 7,790 50K 0.7TM 15M 2K 274K 0.6M 2K 26.3K 0.6 M
IMDB 34,256 8,713 K 0.9M 20M 125K 0.2M 0.3M 12.5K 0.2M 0.3M
BNC 41,370 9,741 15K 0.8M 18M 1K 44K 1M 1K 52K 1M

Table 1: Summary statistics for the datasets used in the experiments.

enforces the neural network not only modeling doc-
uments as bag-of-words, but also transfering the in-
ferred topic knowledge to a language model for word-
sequence generation.

Language Model Neural language models have re-
cently achieved remarkable advances (Mikolov et al.,
2010). The RNN-based language model (RNNLM)
is superior for its ability to model longer-term tem-
poral dependencies without imposing a strong condi-
tional independence assumption; it has recently been
shown to outperform carefully-tuned traditional n-
gram-based language models (Jozefowicz et al., 2016).

An RNNLM can be further improved by utilizing the
broad document context (Mikolov and Zweig, 2012).
Such models typically extract latent topics via a topic
model, and then send the topic vector to a language
model for sentence generation. Important work in
this direction include Mikolov and Zweig (2012); Dieng
et al. (2016); Lau et al. (2017); Ahn et al. (2016). The
key differences of these methods is in either the topic
model itself or the method of integrating the topic vec-
tor into the language model. In terms of the topic
model, Mikolov and Zweig (2012) uses a pre-trained
LDA model; Dieng et al. (2016) uses a variational au-
toencoder; Lau et al. (2017) introduces an attention-
based convolutional neural network to extract seman-
tic topics; and Ahn et al. (2016) utilizes the topic as-
sociated to the fact pairs derived from a knowledge
graph (Vinyals and Le, 2015).

Concerning the method of incorporating the topic vec-
tor into the language model, Mikolov and Zweig (2012)
and Lau et al. (2017) extend the RNN cell with addi-
tional topic features. Dieng et al. (2016) and Ahn et al.
(2016) use a hybrid model combining the predicted
word distribution given by both a topic model and
a standard RNNLM. Distinct from these approaches,
our model learns the topic model and the language
model jointly under the VAE framework, allowing an
efficient end-to-end training process. Further, the
topic information is used as guidance for a Mixture-
of-Experts (MoE) model design. Under our factoriza-
tion method, the model can yield boosted performance
efficiently (as corroborated in the experiments).

Recently, Shazeer et al. (2017) proposes a MoE model
for large-scale language modeling. Different from ours,

they introduce a MoE layer, in which each expert
stands for a small feed-forward neural network on the
previous output of the LSTM layer. Therefore, it
yields a significant quantity of additional parameters
and computational cost, which is infeasible to train
on a single GPU machine. Moreover, they provide
no semantic meanings for each expert, and all experts
are treated equally; the proposed model can generate
meaningful sentences conditioned on given topics.

Our TCNLM is similar to Gan et al. (2016). However,
Gan et al. (2016) uses a two-step pipline, first learning
a multi-label classifier on a group of pre-defined image
tags, and then generating image captions conditioned
on them. In comparison, our model jointly learns a
topic model and a language model, and focuses on the
language modeling task.

5 Experiments

Datasets We present experimental results on three
publicly available corpora: APNEWS, IMDB and
BNC. APNEWS! is a collection of Associated Press
news articles from 2009 to 2016. IMDB is a set of
movie reviews collected by Maas et al. (2011), and
BNC (BNC Consortium, 2007) is the written por-
tion of the British National Corpus, which contains
excerpts from journals, books, letters, essays, mem-
oranda, news and other types of text. These three
datasets can be downloaded from GitHub?.

We follow the preprocessing steps in Lau et al. (2017).
Specifically, words and sentences are tokenized using
Stanford CoreNLP (Manning et al., 2014). We lower-
case all word tokens, and filter out word tokens that
occur less than 10 times. For topic modeling, we ad-
ditionally remove stopwords® in the documents and
exclude the top 0.1% most frequent words and also
words that appear in less than 100 documents. All
these datasets are divided into training, development
and testing sets. A summary statistic of these datasets
is provided in Table 1.

"https://www.ap.org/en-gb/

https://github.com/jhlau/topically-driven-language-
model

3We use the following stopwords list: https://github.
com/mimno/Mallet /blob/master /stoplists/en.txt
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TLSTM ) LDALSTM Topic-RNN TCNLM
Dataset | = o | basic-LSTM | S 7, 00750 | LELM | 5 Pl0 150 | 50 100 150
APNEwS | smal 6413 57.05 5552 54.83 | 5418 | 56.77 5454 5412 | 52.75 52.63 52.59
Jarge 58.80 5272 50.75 50.17 | 50.63 | 53.19 50.24 50.01 | 48.07 47.81 47.74
nop | smal 7214 6958 69.61 69.62 | 67.78 | 68.74 67.83 66.45 | 63.98 62.64 62.59
Jarge 66.47 6348 63.04 6278 | 67.86 | 63.02 6159 60.14 | 57.06 5638 56.12
NG small 102.89 9642 0650 06.38 | 87.47 | 04.66 9357 93.55 | 87.08 86.44 86.21
Jarge 94.23 8842 8777 87.28 | 80.68 | 85.90 84.62 84.12 | 80.20 80.14 80.12

Table 2: Test perplexities of different language models on APNEWS, IMDB and BNC.

Setup For the NTM part, we consider a 2-layer
feed-forward neural network to model ¢(t|d), with 256
hidden units in each layer; ReLU (Nair and Hinton,
2010) is used as the activation function. The hyper-
parameter A for the diversity regularizer is fixed to 0.1
across all the experiments. All the sentences in a para-
graph, excluding the one being predicted, are used to
obtain the bag-of-words document representation d.
The maximum number of words in a paragraph is set
to 300.

In terms of the NLM part, we consider 2 settings: ()
a small 1-layer LSTM model with 600 hidden units,
and (4) a large 2-layer LSTM model with 900 hidden
units in each layer. The sequence length is fixed to 30.
In order to alleviate overfitting, dropout with a rate of
0.4 is used in each LSTM layer. In addition, adaptive
softmax (Grave et al., 2016) is used to speed up the
training process.

During training, the NTM and NLM parameters are
jointly learned using Adam (Kingma and Ba, 2014).
All the hyper-parameters are tuned based on the per-
formance on the development set. We empirically find
that the optimal settings are fairly robust across the
3 datasets. All the experiments were conducted using
Tensorflow and trained on NVIDIA GTX TITAN X
with 3072 cores and 12GB global memory.

5.1 Language Model Evaluation

Perplexity is used as the metric to evaluate the perfor-
mance of the language model. In order to demonstrate
the advantage of the proposed model, we compare TC-
NLM with the following baselines:

e basic-LSTM: A baseline LSTM-based language
model, using the same architecture and hyper-
parameters as TCNLM wherever applicable.

e LDA4+LSTM: A topic-enrolled LSTM-based
language model. We first pretrain an LDA
model (Blei et al., 2003) to learn 50/100/150 top-
ics for APNEWS, IMDB and BNC. Given a doc-
ument, the LDA topic distribution is incorporated
by concatenating with the output of the hidden
states to predict the next word.

e LCLM (Wang and Cho, 2016): A context-based
language model, which incorporates context infor-
mation from preceding sentences. The preceding
sentences are treated as bag-of-words, and an at-
tention mechanism is used when predicting the
next word. All hyper-parameters are set to be
the same as in our TCNLM. The number of pre-
ceding sentences is tuned on the development set
(4 in general).

e Topic-RNN (Dieng et al., 2016): A joint learn-
ing framework that learns a topic model and a
language model simutaneously. The topic infor-
mation is incorporated through a linear transfor-
mation to rescore the prediction of the next word.

Results are presented in Table 2. We highlight some
observations. (i) All the topic-enrolled methods out-
perform the basic-LSTM model, indicating the effec-
tiveness of incorporating global semantic topic infor-
mation. (#) Our TCNLM performs the best across
all datasets, and the trend keeps improving with the
increase of topic numbers. (i77) The improved per-
formance of TCNLM over LCLM implies that encod-
ing the document context into meaningful topics pro-
vides a better way to improve the language model com-
pared with using the extra context words directly. (iv)
The margin between LDA+LSTM/Topic-RNN and
our TCNLM indicates that our model supplies a more
efficient way to utilize the topic information through
the joint variational learning framework to implicitly
train an ensemble model.

5.2 Topic Model Evaluation

We evaluate the topic model by inspecting the co-
herence of inferred topics (Chang et al., 2009; New-
man et al., 2010; Mimno et al., 2011). Following Lau
et al. (2014), we compute topic coherence using nor-
malized PMI (NPMI). Given the top n words of a
topic, the coherence is calculated based on the sum
of pairwise NPMI scores between topic words, where
the word probabilities used in the NPMI calculation
are based on co-occurrence statistics mined from En-
glish Wikipedia with a sliding window. In practice,
we average topic coherence over the top 5/10/15/20
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Dataset army animal medical market lottory terrorism law art transportation education
afghanistan animals patients zacks casino syria lawsuit album airlines students
veterans dogs drug cents mega iran damages music fraud math
APNEWS soldiers 200 fda earnings lottery militants  plaintiffs film scheme schools
brigade bear disease keywords gambling al-qaida filed songs conspiracy education
infantry wildlife virus share jackpot korea suit comedy flights teachers
horror action family children detective sci-fi negative ethic epsiode
zombie martial rampling kids eyre alien awful gay season
IMDB slasher kung relationship SNoopy rochester godzilla unfunny school episodes
massacre li binoche santa documentary book tarzan sex girls series
chainsaw chan marie cartoon muslims austen planet poor women columbo
gore fu mother parents holmes aliens worst sex batman
environment education politics business facilities sports art award expression crime
pollution courses elections corp bedrooms goal album john eye police
BNC emissions training ecgnpmic turnc‘)ver hotel score bafnd award look.ed ml}rder
nuclear students minister unix garden cup guitar research hair killed
waste medau political net situated ball music darlington lips jury
environmental  education  democratic profits rooms season film speaker stared trail

Table 3: 10 topics learned from our TCNLM on APNEWS, IMDB and BNC.

. Coherence
# Topic Model APNEWS IMDB BNC
LDA 0.125 0.084  0.106
NTM 0.075 0.064  0.081
50 Topic-RNN(s) 0.134 0.103  0.102
Topic-RNN(1) 0.127 0.096  0.100
TCNLM(s) 0.159 0.106 0.114
TCNLM(1) 0.152 0.100  0.101
DA 0.136 0.092  0.119
NTM 0.085 0.071  0.070
100 Topic-RNN(s) 0.158 0.096  0.108
Topic-RNN(1) 0.143 0.093  0.105
TCNLM(s) 0.160 0.101  0.111
TCNLM(1) 0.152 0.098  0.104
DA 0.134 0.094 0.119
NTM 0.078 0.075  0.072
150 Topic-RNN(s) 0.146 0.089  0.102
Topic-RNN(1) 0.137 0.092  0.097
TCNLM(s) 0.153 0.096  0.107
TCNLM(1) 0.155 0.093  0.102

Table 4: Topic coherence scores of different models
on APNEWS, IMDB and BNC. (s) and (1) indicate
small and large model, respectively.

topic words. To aggregate topic coherence score for
a trained model, we then further average the coher-
ence scores over topics. For comparison, we use the
following baseline topic models:

e LDA: LDA (Blei et al., 2003) is used as a base-
line topic model. We use LDA to learn the topic
distributions for LDA+LSTM.

e NTM: We evaluate the neural topic model pro-
posed in Cao et al. (2015). The document-topic
and topic-words multinomials are expressed using
neural networks. N-grams embeddings are incor-
porated as inputs of the model.

e Topic-RNN (Dieng et al., 2016): The same

model as used in the language model evaluation.

Results are summarized in Table 4. Our TCNLM

achieves promising results. Specifically, (i) we achieve
the best coherence performance over APNEWS and
IMDB, and are relatively competitive with LDA on
BNC. (i) We also observe that a larger model may
result in a slightly worse coherence performance. One
possible explanation is that a larger language model
may have more impact on the topic model, and the in-
herited stronger sequential information may be harm-
ful to the coherence measurement. (74) Additionally,
the advantage of our TCNLM over Topic-RNN indi-
cates that our TCNLM supplies a more powerful topic
guidance.

In order to better understand the topic model, we pro-
vide the top 5 words for 10 randomly chosen topics
on each dataset (the boldface word is the topic name
summarized by us), as shown in Table 3. These results
correspond to the small network with 100 neurons. We
also present some inferred topic distributions for sev-
eral documents from our TCNLM in Figure 2. The
topic usage for a specific document is sparse, demon-
strating the effectiveness of our NTM. More inferred
topic distribution examples are provided in the Sup-
plementary Material.

5.3 Sentence Generation

Another advantage of our TCNLM is its capacity to
generate meaningful sentences conditioned on given
topics. Given topic i, we construct an LSTM genera-
tor by using only the i-th factor of Wj, and Up. Then
we start from a zero hidden state, and greedily sample
words until an end token occurs. Table 5 shows the
generated sentences from our TCNLM learned with
50 topics using the small network. Most of the sen-
tences are strongly correlated with the given topics.
More interestingly, we can also generate reasonable
sentences conditioned on a mixed combination of top-
ics, even if the topic pairs are divergent, e.g., “an-
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Data Topic Generated Sentences
army ® a female sergeant, serving in the fort worth, has served as she served in the military in iraq .
animal e most of the bear will have stumbled to the lake .
medical o physicians seeking help in utah and the nih has had any solutions to using the policy and uses offline to be fitted with a testing or body .
market o the company said it expects revenue of $ <unk> million to $ <unk> million in the third quarter .
APNEWS ;
lottory e where the winning numbers drawn up for a mega ball was sold .

army-+terrorism

o the taliban ’s presence has earned a degree from the 1950-53 korean war in pakistan ’s historic life since 1964 , with two example of <unk>
soldiers from wounded iraqi army shootings and bahrain in the eastern army .

animal-+lottory e she told the newspaper that she was concerned that the buyer was in a neighborhood last year and had a gray wolf .

horror e the killer is a guy who is n’t even a zombie .

action e the action is a bit too much , but the action is n’t very good .

family e the film is .also the story of a young woman whose <unk> and <unk> and very yet ultimately sympathetic , <unk> relationship , <unk> ,

and palestine being equal , and the old man , a <unk> .
IMDB children o i consider this movie to be a children ’s film for kids .
war 3 > is a documentary about the w: nd the <unk> of the war .
| ~ horrortnegative e if this movie deed a horrible movie i think i will be better off the film

sei-fi+children and then finds his wife and boys .

o paul thinks him has to make up when the <unk> eugene discovers defeat in order to take too much time without resorting to mortal bugs ,

BNC

e all rooms have excellent amenities .

environment-+politics
art+crime

. 7 denied the government ’s grant to ” the national level of w

, 1990 , on ja .
e as well as 36, he is returning freelance into the red army of drama where he has finally been struck for their premiere .

environment e environmentalists immediate base calls to defend the world .
education ® the school has recently been founded by a <unk> of the next generation for two years .
politics e a new economy in which privatization was announced on july 4 .

e net earnings per share rose <unk> % to $ <unk> in the quarter , and $ <unk> m , on turnover that rose <unk> % to $ <unk> m.

Table 5: Generated sentences from given topics. More examples are provided in the Supplementary Material.

Apnews IMDB BNC
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
° J.—_L_I.JJ_.-_ PP TP T AN o LJ. TP T TR PSPy | ..1].'. k. P PP N NI | Y NN P 1
(o] 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100

Figure 2: Inferred topic distributions on one sample document in each dataset. Content of the three documents

is provided in the Supplementary Mateiral.

imal” and “lottory” for APNEWS. More examples
are provided in the Supplementary Material. It shows
that our TCNLM is able to generate topic-related sen-
tences, providing an interpretable way to understand
the topic model and the language model simulaneously.
These qualitative analysis further demonstrate that
our model effectively assembles the meaning of topics
to generate sentences.

5.4 Empirical Comparison with Naive MoE

We explore the usage of a naive MoE language model
asin (7). In order to fit the model on a single GPU ma-
chine, we train a NTM with 30 topics and each NLM of
the MoE is a 1-layer LSTM with 100 hidden units. Re-
sults are summarized in Table 6. Both the naive MoE
and our TCNLM provide better performance than the
basic LSTM. Interestingly, though requiring less com-
putational cost and storage usage, our TCNLM out-
performs the naive MoE by a non-trivial margin. We
attribute this boosted performance to the “structure”
design of our matrix factorization method. The inher-
ent topic-guided factor control significantly prevents
overfitting, and yields efficient training, demonstrating
the advantage of our model for transferring semantic
knowledge learned from the topic model to the lan-
guage model.

Dataset basic-LSTM | naive MoE | TCNLM
APNEWS 101.62 85.87 82.67
IMDB 105.29 96.16 94.64
BNC 146.50 130.01 125.09

Table 6: Test perplexity comparison between the naive
MoE implementation and our TCNLM on APNEWS,
IMDB and BNC.

6 Conclusion

We have presented Topic Compositional Neural Lan-
guage Model (TCNLM), a new method to learn a topic
model and a language model simultaneously. The
topic model part captures the global semantic meaning
in a document, while the language model part learns
the local semantic and syntactic relationships between
words. The inferred topic information is incorporated
into the language model through a Mixture-of-Experts
model design. Experiments conducted on three cor-
pora validate the superiority of the proposed approach.
Further, our model infers sensible topics, and has the
capacity to generate meaningful sentences conditioned
on given topics. One possible future direction is to ex-
tend the TCNLM to a conditional model and apply it
for the machine translation task.
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