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1 Proof of Theorem 4

Proof. First we define some events to analyze the sub-
optimal selections of arms:

• Event A(t): “choosing a suboptimal arm at time
t”;

• Event B(t): “choosing a suboptimal group at time
t”;

• Event C(t): “choosing group m∗ that contains the
best arm at time t”.

The probabilities of these events satisfy:

P(A(t)) = P(A(t)B(t)) + P(A(t)C(t))

≤ P(B(t)) + P(A(t)|C(t)).

In the following, we will separately study the two
events B(t) and A(t)|C(t).

I. Analyze the regret caused by choosing a sub-
optimal group

The selection among groups follows a UCB principle.
Similar to the argument in [6], at least one of the fol-
lowing three inequalities must be true:

µm∗(θ̂m∗(t)) + ψ−1
m∗

(
αm∗ log(t)

Nm∗(t− 1)

)
≤ µm∗(θm∗),

µm(θ̂m(t)) > ψ−1
m

(
αm log(t)

Nm(t− 1)

)
+ µm(θm),

Nm(t− 1) <
αm log(t)

ψm(∆m/2)
= um(t).

Next we show that the gap between the estimated and
the true group performance can be bounded by a func-
tion of the gap between the estimated and the true ex-
pected reward of the most played arm k̂m in the group.
The following inequalities are based on Assumption 1
and Proposition 2, 3.

|µm(θ̂m)− µm(θm)| ≤ |µm,k(θ̂m)− µm,k(θm)|

≤ D2,m|θ̂m − θm|γ2,m

≤ D2,m|D̄1,m|X̂m,k̂m
−Xm,k̂m

|γ̄1,m |γ2,m

≤ D2,mD̄
γ2,m

1,m |X̂m,k̂m
−Xm,k̂m

|γ̄1,mγ2,m

= φm(|X̂m,k̂m
−Xm,k̂m

|) (6)

Let Nm(T ) be the total number of times group m 6=
m∗ is chosen before time T . We have:

E[Nm(T )] =

T∑
t=1

P(m(t) = m)

≤ um(T ) +

T∑
t=um(T )+1

(P((19) true) + P((20) true))

(7)

and,

P((19) true) ≤
t∑

s=1

P
(
|µm

(
θ̂m(s)

)
− µm(θm)| > ψ−1

m

(
αm log(t)

s

))

≤
t∑

s=1

P
(
φ−1
m

(
ψ−1
m (

αm log(t)

s
)
)
≤

|X̂m,k(s′)− µm,k(θm)|
)

≤
t∑

s=1

exp

(
−2
(
φ−1
m

(
ψ−1
m

(αm log(t)

s

)))2 s

Km

)
(8)

≤
t∑

s=1

exp

(
−2αm

log(t)

s

s

Km

)

≤
t∑

s=1

1

tα
≤ 1

tα−1
,

where inequality (8) is obtained by the Chernoff-
Hoeffding inequality. The same upper bound holds for
P((20) true). Therefore inequality (7) can be further
written as:

E[Nm(T )] ≤ um(T ) +
2

α− 2
,
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with α = 2αm/Km > 2. Thus, the regret caused by
choosing the wrong group RB(T ) satisfies:

RB(T ) ≤
∑
m6=m∗

(
αm log(T )

ψm(∆m/2)
+

2

α− 2

)
.

II. Analyze the regret by choosing a suboptimal
arm in the optimal group

Assume that we have chosen the optimal group Nm∗(t)
times before time t and m(t) = m∗. We now consider
the probability of choosing a suboptimal arm in the
optimal group:

P(k(t) 6= k∗) ≤ P(δ ≤ |θ̂m∗(t)− θm∗ |)
= P(δ ≤ |µ−1

m∗,k̂m∗
(X̂m∗,k̂m∗

(t))− µ−1

m∗,k̂m∗
(Xm∗,k̂m∗

)|)
(9)

≤ P(δ ≤ D̄1,m∗ |X̂m∗,k̂m∗
(t)−Xm∗,k̂m∗

|γ̄1)

= P
((

δ

D̄1,m∗

)γ1,m∗

≤ |X̂m∗,k̂m∗
(t)−Xm∗,k̂m∗

|
)

≤ 2 exp

(
−2

(
δ

D̄1,m∗

)2γ1,m∗

Nm∗,k̂m∗

)
(10)

≤ 2 exp

(
−2

(
δ

D̄1,m∗

)2γ1,m∗ Nm∗(t)

Km∗

)
. (11)

Equality (9) is obtained by the definition of θ̂m(t) and
inequality (10) is obtained by the Chernoff-Hoeffding
bound. Inequality (11) is obtained by the fact that

Nm∗,k̂m∗ ≥
Nm∗ (t)
Km∗

because k̂m∗ is the arm that has
been selected most in the group.

We denote RC(T ) as the regret caused by choosing a
suboptimal arm in the optimal group up to time T . It
satisfies:

RC(T ) ≤
T∑
t=1

2 exp

(
−2

(
δ

D̄1,m∗

)2γ1,m∗ t

Km∗

)

<
2

exp

(
2

Km∗

(
δ

D̄1,m∗

)2γ1,m∗
)
− 1

,

which is a bounded regret.

Finally, the total regret can be derived as:

R(θ, T ) = RB(T ) +RC(T )

≤
∑
m 6=m∗

(
αm log(T )

ψm(∆m/2)
+

2

α− 2

)
+

2

exp

(
2

Km∗

(
δ

D̄1,m∗

)2γ1,m∗
)
− 1

= O(log(T )),

which completes the proof.

2 Proof of Theorem 6

First we analyze the worse-case regret caused by choos-
ing the suboptimal groups and it has been derived
that E[Nm(T )] ≤ αm log T

ψ(∆m/2) = Cm
log T

∆ξm
m

. With ξ =

maxm∈M ξm, we now rewrite the regret without de-
pendence on the sub-optimality gap as:

RiB(T ) =
∑

m:∆m>0

∆mE[Nm(T )]

=
∑

m:∆m<∆

∆mE[Nm(T )] +
∑

m:∆m≥∆

∆mE[Nm(T )]

<T∆ + CM
log T

∆ξ

=C1(M log T )ξT 1−ξ,

where in the last step ∆ is chosen to be (CM log T/T )ξ

to optimize the upper bound.

Next, we analyze the regret caused by the suboptimal
arms within the optimal group. From inequality (10),
we have:

E[|X̂m∗,k̂m∗
(t)−Xm∗,k̂m∗

|] =∫ 1

0

P(|X̂m∗,k̂m∗
(t)−Xm∗,k̂m∗

| > x)dx

=

∫ ∞
0

2 exp(−2x2Nm∗,k̂m∗ )dx

≤

√
πKm∗

2Nm∗(t)
.

From Assumption 1, Proposition 2 and inequality (6),
the following can be derived:

|µm∗(θ̂tm∗)− µm∗(θtm∗)|
≤D2,m∗D̄

γ2,m∗

1,m∗ |X̂m∗,k̂m∗
(t)− µm∗,k̂m∗ (θtm∗)|γ̄1,m∗γ2,m∗

=φ(|X̂m∗,k̂m∗
(t)− µm∗,k̂m∗ (θtm∗)|) (12)

<φ

(√
πKm∗

2Nm∗(t)

)
. (13)

Adding up to time budget T , we get:

RiC(T ) ≤
T∑
t=1

φ

(√
πKm∗

2t

)

≤
D2,m∗D̄

γ2,m∗

1,m∗ (πKm∗)
ξm∗

1− ξm∗
T ξm∗ .

Combining the bounds for RiB(T ) and RiC(T ) com-
pletes the proof.
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3 Proof of Lemma 10

We first consider the probability of choosing arm 2 in
a single time step t under a full information setting.

P(θ̂t ∈ Θ∗2) = P(θ̂t > θ∗)

=
1

2
(P(µ−1

1 (X̂1(t)) > θ∗)) + P(µ−1
2 (X̂2(t)) > θ∗))

=
1

2
(P(X̂1(t) < µ1(θ∗)) + P(X̂2(t) > µ2(θ∗)). (14)

We define two joint distributions as ν1 = N (µ1(θ), 1)⊗
N (µ1(θ∗), 1) and ν2 = N (µ2(θ), 1)⊗N (µ2(θ∗), 1). In-
equality (14) therefore can be re-written as:

P(θ̂t ∈ Θ∗2) =
1

2
(Pν1(It = 2) + Pν2(It = 1))

≥ 1

4
exp(−K(ν⊗t1 , ν⊗t2 ))

=
1

4
exp (−tK(µ1(θ), µ2(θ))) . (15)

Adding up to time budget T , we have:

E(N2(T )) ≥ 1

4

T∑
t=1

exp (−tK(µ1(θ), µ2(θ)))

≥ 1

4K(µ1(θ), µ2(θ))
(1− e−(T−1)K(µ1(θ),µ2(θ))2

),

and

lim
T→∞

E(N2(T )) ≥ 1

4K(µ1(θ), µ2(θ))
,

which concludes the proof.

4 Proof of Theorem 7

To get a lower bound of the total regret, we can sep-
arately bound the aforementioned two types of sub-
optimal arms. First, regret due to selecting a sub-
optimal arm in the optimal group can be bounded
as Ω(T 1−ξ). From the proof of Lemma 10, inequal-
ity (15) can be derived in the two-armed setting.
We specify the reward functions as µ1(θ) = θγ and

µ2(θ) = 1 − θγ , where γ ≥ 1. When θ = θ∗ = 2−
1
γ

the two functions lead to the same performance. De-
fine θ = θ∗ + ∆, and further define the two pro-
cesses as: ν1 = N ((θ∗ + ∆)γ , 1) ⊗ N (1/2, 1) and
ν2 = N (1− (θ∗ + ∆)γ , 1)⊗N (1/2, 1). We first bound
the one step loss as:

(θ∗ + ∆)γ − (1− (θ∗ + ∆)γ)

=2(θ∗ + ∆)γ − 1

=2θγ∗ (1 +
∆

γ
)γ − 1

=2γ2
1−γ
γ ∆ + o(∆)

≥b∆.

Therefore the cumulative regret is:

RB(T ) ≥ b∆

4

T∑
t=1

exp

(
− t(2(θ∗ + ∆)γ − 1)2

2

)

≥ b∆

4

T∑
t=1

exp(−t2(θ∗ + ∆)2γ) (16)

≥ b1− e−16

8

∆

(∆ + 2−
1
γ )2γ

,

where inequality (16) is obtained using (x − y)γ ≤
xγ − yγ with γ ≥ 1. If we set ∆ = 2−

1
γ T−

1
2γ , which

can be relatively small when T is large, we have γ1 = γ
and γ2 = 1, and the following lower bound:

RB(T ) = Ω(T 1− 1
2γ ) = Ω(T 1−ξ). (17)

For suboptimal arms in suboptimal groups, the lower
bound follows the result in [5], which indicates that:

RC(T ) = Ω(
√
MT ). (18)

Combining the two bounds (17) and (18) completes
the proof.

5 Proof of Theorem 14

The proof follows the general analysis in Section 4.2 of
the main paper, incorporating the window size τw.

I. Analyze the regret caused by choosing a sub-
optimal group We have:

µm∗(θ̂m∗(t)) + cm∗(t, τw) ≤ µm∗(θtm∗), (19)

µm(θ̂m(t)) ≥ cm(t, τw) + µm(θtm), (20)

Nm(t− 1) < B(τw,∆m),

B(τw,∆m) = K log(t ∧ τw)(
2D2,mD̄

γ2,m

1,m

∆m
)

2
γ̄1,mγ2,m .

Now, to show that performances of all groups can be
accurately estimated with high probability, we con-
sider inequality (13). Note that |X̂m,k(t)−µm,k(θtm)| is
separated as the instantaneous fluctuation of the ran-
dom variable Xm,k(s) around µm,k(θsm) and the bias
caused by drifting of parameter µm,k(θsm)− µm,k(θtm)
at time s, which can be written as:

|X̂m,k(t)− µm,k(θtm)|

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t∑
s=t−τw+1
m(s)=m
k(s)=k

(Xm,k(s)− µm,k(θsm))

Nm,k(t, τw)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+
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t∑
s=t−τw+1
m(s)=m
k(s)=k

|µm,k(θsm)− µm,k(θtm)|

Nm,k(t, τw)
(21)

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t∑
s=t−τw+1
m(s)=m
k(s)=k

(Xm,k(s)− µm,k(θsm))

Nm,k(t, τw)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

t∑
s=t−τw+1
m(s)=m
k(s)=k

2D2,m|θsm − θtm|γ2,m

Nm,k(t, τw)
. (22)

The bias component in the second inequality (22) is
based on Proposition 2. With Assumption 12 and the
fact that |t − s| ≤ τw, the bias is bounded as a func-
tion of τw. If we adjust the length of the window, the
bias can be controlled to be smaller than half of the
projected padding function, leaving the other half to
be used in bounding the fluctuations. This is formally
written as:

Pτw(µm(θ̂m(t)) > µm(θtm) + cm(t, τw))

≤ Pτw
(
|X̂m,k(t)− µm,k(θtm)| > φ−1

m (cm(t, τw))
)

≤ Pτw

(∣∣∣∣∣∣∣∣∣∣∣

t∑
s=t−τw+1
k(s)=k

(Xm,k(s)− µm,k(θsm))

Nm,k(t, τw)

∣∣∣∣∣∣∣∣∣∣∣
>

1

2
φ−1
m (cm(t, τw))

)

≤ exp

(
−2

αm log(t ∧ τw)

Nm(t, τw)

Nm(t, τw)

Km

)
≤
(

1

t ∧ τw

) 2K
Km

.

II. Analyze the regret by choosing a suboptimal
arm in the optimal group

Consider the minmax bound for the fluctuations, we
have [1]:

Eτw



∣∣∣∣∣∣∣∣∣∣∣

t∑
s=t−τw+1
k(s)=k

(Xm,k(s)− µm,k(θsm))

Nm,k(t, τw)

∣∣∣∣∣∣∣∣∣∣∣



=

∫ ∞
0

P



∣∣∣∣∣∣∣∣∣∣∣

t∑
s=t−τw+1
k(s)=k

(Xm,k(s)− µm,k(θsm))

Nm,k(t, τw)

∣∣∣∣∣∣∣∣∣∣∣
> x

 dx

≤
∫ ∞

0

2 exp(−x2Nm,k(t, τw))dx

=

√
π

Nm,k(t, τw)
.

Therefore, the regret from choosing a suboptimal arm
within the optimal group is bounded as:

E[rt(θ
t
m∗)] ≤ φ(|X̂m∗,k̂m∗

(t)− µm∗,k̂m∗ (θtm∗)|)

≤ φm∗(
√
πKm∗

τw
+ 2D2,m∗

(τw
τ

)γ2

).

Combining the above with the confusing period, and
denote X = maxD2,mD̄

γ2,m

1,m , γ2 = max γ2,m, γ̄1 =

max γ̄1, αm = min 2K
Km

= 2,∆ = min ∆m, we have:

R(T ) ≤ ∆G(∆, T )M +MdT/τweB(τw)+

2

M∑
m=1

T∑
t=1

(
1

t ∧ τw

)α
+ Tφm∗(

√
πKm∗

τw
+ 2D2

(τw
τ

)γ2

)

≤M +MdT/τwe(
2X

∆
)

1
ξ log(τw) +MT (1− τ−1

w )+

2MTτ−2
w + TX(πKm∗)

ξτ−ξw + TX(2D2)γ̄1γ2

(τw
τ

)γ̄1γ
2
2

.

Set τw = max τ
2γ2,m

2γ2,m+1 , which satisfies the constraint
on the bias, the regret per unit time of SW-UCB-g
satisfies:

lim
T→∞

R(T )

T
≤ C1τ

− γ̄1γ
2
2

2γ2+1 + C2τ
− 2γ2

2γ2+1 log(τ)+

2Mτ−
4γ2

2
2γ2+1 + 2M(1− α

− 2γ2
2γ2+1

m ) + f(M).
(23)

The proof is complete by taking the scaling order of
(23).


