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A An Illustration of EBO

We give an illustration of the proposed EBO algorithm on a
2D function shown in Fig. 1. This function is a sample from
a 2D TileGP, where the decomposition parameter is z =
[0, 1], the cut parameter is (inverse bandwidth) k = [10, 10],
and the noise parameter is σ = 0.01.
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Figure 1: The 2D additive function we optimized in Fig. 2.
The global maximum is marked with “+”.

The global maximum of this function is at (0.27, 0.41). In
this example, EBO is configured to have at least 20 data
points on each partition, at most 50 Mondrian partitions, and
100 layers of tiles to approximate the Laplace kernel. We
run EBO for 10 iterations with 20 queries each batch. The
results are shown in Fig. 2. In the first iteration, EBO has
no information about the function; hence it spreads the 10
queries (blue dots) “evenly” in the input domain to collect
information. In the 2nd iteration, based on the evaluations
on the selected points (yellow dots), EBO chooses to query
batch points (blue dots) that have high acquisition values,
which appear to be around the global optimum and some
other high valued regions. As the number of evaluations
exceeds 20, the minimum number of data points on each
partition, EBO partitions the input space with a Mondrian
process in the following iterations. Notice that each iteration
draws a different partition (shown as the black lines) from
the Mondrian process so that the results will not “over-fit”
to one partition setting and the computation can remain

efficient. In each partition, EBO runs the Gibbs sampling
inference algorithm to fit a local TileGP and uses batched
BO select a few candidates. Then EBO uses a filter to decide
the final batch of candidate queries (blue dots) among all
the recommended ones from each partition as described in
Sec. C.

B Partitioning the input space via a
Mondrian process

Alg. 1 shows the full ‘Mondrian partitioning” algorithm, i.e.,
the input space partitioning strategy mentioned in Section
3.1.

Algorithm 1 Mondrian Partitioning
1: function MONDRIANPARTITIONING (V,Np, S)
2: while |V | < Np do
3: pj ← length(vj) ·max(0, |Dj | − S), ∀vj ∈ V
4: if pj = 0,∀j then
5: break
6: end if
7: Sample vj ∼ pj∑

j pj
, vj ∈ V

8: Sample a dimension d ∼ h
j
d
−l

j
d∑

d h
j
d
−l

j
d

, d ∈ [D]

9: Sample cut location uj
d ∼ U [ljd, h

j
d]

10: vj(left) ← [lj1, h
j
1]×· · ·× [ljd, u

j
d]×· · ·××[l

j
D, hj

D]

11: vj(right) ← [lj1, h
j
1]×· · ·×[u

j
d, h

j
d]×· · ·××[l

j
D, hj

D]
12: V ← V ∪ {vj(left), vj(right)} \ vj
13: end while
14: return V
15: end function

In particular, we denote the maximum number of Mondrian
partitions by Np (usually the worker pool size in the exper-
iments) and the minimum number of data points in each
partition to be S. The set of partitions computed by the
Mondrian tree (a.k.a. the leaves of the tree), V , is initial-
ized to be the function domain V = {[0, R]D}, the root of
the tree. For each vj ∈ V described by a hyperrectangle
[lj1, h

j
1] × · · · × [ljD, h

j
D], the length of vj is computed to

be length(vj) =
∑D
d=1(h

j
d − l

j
d). The observations asso-

ciated with vj is Dj . Here, for all (x, y) ∈ Dj , we have
x ∈ [lj1−ε, h

j
1+ε]×· · ·× [ljD−ε, h

j
D+ε], where ε controls
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Figure 2: An example of 10 iterations of EBO on a 2D toy example plotted in Fig. 1. The selections in each iteration are
blue and the existing observations orange. EBO quickly locates the region of the global optimum while still allocating
budget to explore regions that appear promising (e.g. around the local optimum (1.0, 0.4)).

the how many neighboring data points to consider for the
partition vj . In our experiments, ε is set to be 0. Alg. 1
is different from Algorithm 1 and 2 of Lakshminarayanan
et al. (2016) in the stop criterion. Lakshminarayanan et al.
(2016) uses an exponential clock to count down the time of
splitting the leaves of the tree, while we split the leaves until
the number of Mondrian partitions reaches Np or there is
no partition that have more than S data points. We designed
our stop criterion this way to balance the efficiency of EBO
and the quality of selected points. Usually EBO is faster
with larger number of partitions Np (i.e., more parallel com-
puting resources) and the quality of the selections are better
with larger size of observations on each partition (S).

C Budget allocation and batched BO

In the EBO algorithm, we first use a batch of workers to
learn the local GPs and recommend potential good candidate
points from the local information. Then we aggregate the
information of all the workers, and use a filter to select the
points to evaluate from the set of points recommended by
all the workers based on the aggregated information on the
function.

There are two important details we did not have space to dis-
cuss in the main paper: (1) how many points to recommend
from each local worker (budget allocation); and (2) how to
select a batch of points from the Mondrian partition on each
worker. Usually in the beginning of the iterations, we do not
have a lot of Mondrian partitions (since we stop splitting a
partition once it reaches a minimum number of data points).
Hence, it is very likely that the number of partitions J is

smaller than the size of the batch. Hence we need to allocate
the budget of recommendations from each worker properly
and use batched BO for each Mondrian partition.

Budget allocation In our current version of EBO, we did
the budget allocation using a heuristic, where we would
like to generate at least 2B recommendations from all the
workers, and each worker gets the budget proportional to a
score, the sum of the Mondrian partition volume (volume of
the domain of the partition) and the best function value of
the partition.

Batched BO For batched BO, we also use a heuristic
where the points achieving the top n acquisition function
values are always included and the other ones come from
random points selected in that partition. For the optimiza-
tion of the acquisition function over each block of dimen-
sions, we sample 1000 points in the low dimensional space
associated with the additive component and minimize the
acquisition function via L-BFGS-B starting from the point
that gives the best acquisition value. We add the optimized
argmin to the 1000 points and sort them according to their
acquisition values, and then select the top n random ones,
and combine with the sorted selections from other additive
components. Other batched BO methods can also be used
and can potentially improve upon our results.

D Relations to Mondrian Kernels and
Random Binning

TileGP can use Mondrian grids or (our version of) tile cod-
ing to achieve efficient parameter inference for the decom-
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position z and the number of cuts k (inverse of kernel band-
width). Mondrian grids and tile coding are closely related to
Mondrian kernels and random binning, but there are some
subtle differences. We illustrate the differences between one

Tile coding Mondrian Grid Random Binning Mondrain Feature

Figure 3: Illustrations of (our version of) tile coding, Mon-
drian Grid, random binning and Mondrian feature.

layer of the features constructed by tile coding, Mondrian
grid, Mondrian feature and random binning in Fig. 3. For
each layer of (our version of) tile coding, we sample a posi-
tive integer k (number of cuts) from a Poisson distribution
parameterized by λR, and then set the offset to be a constant
uniformly randomly sampled from [0, Rk ]. For each layer of
the Mondrian grid, the number of cuts k is sampled tile in
coding, but instead of using an offset and uniform cuts, we
put the cuts at locations independently uniformly randomly
from [0, R]. Random binning does not sample k cuts but
samples the distance δ between neighboring cuts by drawing
δ ∼ GAMMA(2, λR). Then, it samples the offset from [0, δ]
and finally places the cuts. All of the above-mentioned three
types of random features can work individually for each
dimension and then combine the cuts from all dimensions.
The Mondrian feature (Mondrian forest features to be ex-
act), contrast, partitions the space jointly for all dimensions.
More details of Mondrian features can be found in Laksh-
minarayanan et al. (2016); Balog et al. (2016). For all of
these four types of random features and for each layer of the
total L layers, the kernel is κL(x,x′) = 1

L

∑L
l=1 χl(x,x

′)
where

χl(x,x
′) =

{
1 x and x′ are in the same cell on the layer l
0 otherwise

(D.1)

For the case where the kernel has M additive components,
we simply use the tiling for each decomposition and nor-
malize by LM instead of L. More precisely, we have
κL(x,x

′) = 1
LM

∑M
m=1

∑M
l=1 χl(x

Am ,x′Am).

We next prove the lemma mentioned in Section 3.5.
Lemma 3.1. Let the random variable kdi ∼ POISSON(λdR)
be the number of cuts in the Mondrian grids of TileGP for
dimension d ∈ [D] and layer i ∈ [L]. The kernel of TileGP
κL satisfies lim

L→∞
κL(x,x

′) = 1
M

∑M
m=1 e

λdR|xAm−x′Am |,

where {Am}Mm=1 is the additive decomposition.

Proof. When constructing the Mondrian grid for each layer
and each dimension, one can think of the process of getting
another cut as a Poisson point process on the interval [0, R],

where the time between two consecutive cuts is modeled as
an exponential random variable. Similar to Proposition 1
in Balog et al. (2016), we have lim

L→∞
κ
(m)
L (xAm ,x′Am) =

E[no cut between xd and x′d,∀d ∈ Am] =

e−λdR|xAm−x′Am |. By the additivity of the kernel, we have
lim
L→∞

κL(x,x
′) = 1

M

∑M
m=1 e

λdR|xAm−x′Am |.

E Experiments

Verifying the acquisition function As introduced in Sec-
tion 3.3, we used a different acquisition function optimiza-
tion technique from (Kandasamy et al., 2015; Wang and
Jegelka, 2017). In (Kandasamy et al., 2015; Wang and
Jegelka, 2017), the authors used the fact that each additive
component is by itself a GP. Hence, they did posterior infer-
ence on each additive component and Bayesian optimization
independently from other additive components. In this work,
we use the full GP with the additive kernel to derive its ac-
quisition function and optimize it with a block coordinate
optimization procedure, where the blocks are selected ac-
cording to the decomposition of the input dimensions. One
reason we did this instead of following (Kandasamy et al.,
2015; Wang and Jegelka, 2017) is that we observed the
over-estimation of variance for each additive component if
inferred independently from others. We conjecture that this
over-estimation could result in an invalid regret bound for
Add-GP-UCB (Kandasamy et al., 2015). Nevertheless, we
found that using the block coordinate optimization for the
acquisition function on the full GP is actually very help-
ful. In Figure. 4, we compare the acquisition function we
described in Section 3.3 (denoted as BlockOpt) with Add-
GP-UCB (Kandasamy et al., 2015), Add-MES-R and Add-
MES-G (Wang and Jegelka, 2017) on the same experiment
described in the first experiment of Section 6.5 of (Wang
and Jegelka, 2017), averaging over 20 functions. Notice
that we used the maximum value of the function as part of
our acquisition function in our approach (BlockOpt). Add-
GP-UCB, ADD-MES-R and ADD-MES-G cannot use this
max-value information even if they have access to it, be-
cause then they don’t have a strategy to deal with “credit
assignment”, which assigns the maximum value to each
additive component. We found that BlockOpt is able to find
a solution as well as or even better than the best of the three
competing approaches.

Scalability of EBO For EBO, the maximum number of
Mondrian partitions is set to be 1000 and the minimum
number of data points in each Mondrian partition is 100.
The function that we used to test was generated from a fully
partitioned 20 dimensional GP with an additive Laplace
kernel (|Am| = 1,∀m).

Effectiveness of EBO In this experiment, we sampled 4
functions from a 50-dimensional GP with additive kernel.
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Figure 4: Comparing different acquisition functions for
BO with an additive GP. Our strategy, BlockOpt, achieves
comparable or better results than other methods.

Each component of the additive kernel is a Laplace kernel,
whose lengthscale parameter is set to be 0.1, variance scale
to be 1 and active dimensions are around 1 to 4. Namely,
the kernel we used is κ(x, x′) =

∑M
i=1 κ

(m)(xAm , x′Am)

where κ(m)(xAm , x′Am) = e
|xAm−x′Am |

0.1 ,∀m. The domain
of the function is [0, 1]50. We implemented the BO-SVI and
BO-Add-SVI using the same acquisition function and batch
selection strategy as EBO but with SVI-GP (Hensman et al.,
2013) and SVI-GP with additive kernels instead of TileGPs.
We used the SVI-GP implemented in GPy (since 2012) and
defined the additive Laplace kernel according to the priors of
the tested functions. For both BO-SVI and BO-Add-SVI, we
used 100 batchsize, 200 inducing points and the parameters
were optimized for 100 iterations. For EBO, we set the
minimum size of data points on each Mondrian partition to
be 100. We set the maximum number of Mondrian partitions
to be 1000 for both EBO and PBO. The evaluations of the
test functions are negligible, so the timing results in Figure
5 reflect the actual runtime of each method.

Optimizing control parameters for robot pushing We
implemented the simulation of pushing two objects with
two robot hands in the Box2D physics engine Catto (2011).
The 14 parameters specifies the location and rotation of
the robot hands, pushing speed, moving direction and
pushing time. The lower limit of these parameters is
[−5,−5,−10,−10, 2, 0,−5,−5,−10,−10, 2, 0,−5,−5]
and the upper limit is
[5, 5, 10, 10, 30, 2π, 5, 5, 10, 10, 30, 2π, 5, 5]. Let the
initial positions of the objects be si0, si1 and the ending
positions be se0, se1. We use sg0 and sg1 to denote the goal
locations for the two objects. The reward is defined to be
r = ‖sg0−si0‖+‖sg1−si1‖−‖sg0−se0‖−‖sg1−se1‖,
namely, the progress made towards pushing the objects to
the goal.

We compare EBO, BO-SVI, BO-Add-SVI and CEM Szita
and Lörincz (2006) with the same 104 random observa-
tions and repeat each experiment 10 times. All the methods

choose a batch of 100 parameters to evaluate at each itera-
tion. CEM uses the top 30% of the 104 initial observations
to fit its initial Gaussian distribution. At the end of each
iteration in CEM, 30% of the new observations with top
values were used to fit the new distribution. For all the BO
based methods, we use the maximum value of the reward
function in the acquisition function. The standard deviation
of the observation noise in the GP models is set to be 0.1.
We set EBO to have Modrian partitions with fewer than 150
data points and constrain EBO to have no more than 200
Mondrian partitions. In EBO, we set the hyper parameters
α = 1.0, β = [5.0, 5.0], and the Mondrian observation off-
set ε = 0.05. In BO-SVI, we used 100 batchsize in SVI, 200
inducing points and 500 iterations to optimize the data like-
lihood with 0.1 step rate and 0.9 momentum. BO-Add-SVI
used the same parameters as BO-SVI, except that BO-Add-
SVI uses 3 outer loops to randomly select the decomposition
parameter z and in each loop, it uses an inner loop of 50
iterations to maximize the data likelihood over the kernel
parameters. The batch BO strategy used in BO-SVI and
BO-Add-SVI is identical to the one used in each Mondrian
partition of EBO.

We run all the methods for 200 iterations, where each itera-
tion has a batch size of 100. In total, each method obtains
2× 104 data points in addition to the 104 initializations.

Optimizing rover trajectories We illustrate the problem
in Fig. 5 with an example trajectory found by EBO. We set
the trajectory cost to be −20.0 for any collision, λ to be
−10.0 and the constant b = 5.0. This reward function is
non smooth, discontinuous, and concave over the first two
and last two dimensions of the input. These 4 dimensions
represent the start and goal position of the trajectory. We
maximize the reward function f over the points on the tra-
jectory. All the methods choose a batch of 500 trajectories
to evaluate. Each method is initialized with 104 trajecto-
ries randomly uniformly selected from [0, 1]60 and their
reward function values. We again compare EBO with BO-
SVI, BO-Add-SVI and CEM (Szita and Lörincz, 2006). All
the methods choose a batch of 500 trajectories to evaluate.
Each method is initialized with 104 trajectories randomly
uniformly selected from [0, 1]60 and their reward function
values. The initializations are the same for each method,
and we repeat the experiments 5 times. CEM uses the top
30% of the 104 initial observations to fit its initial Gaussian
distribution. At the end of each iteration in CEM, 30% of
the new observations with top values were used to fit the
new distribution. For all the BO based methods, we use the
maximum value of the reward function, 5.0, in the acqui-
sition function. The standard deviation of the observation
noise in the GP models is set to be 0.01. We set EBO to
attempt to have Modrian partitions with fewer than 100
data points, with a hard constraint of no more than 1000
Mondrian partitions. In EBO, we set the hyper parameters
α = 1.0, β = [2.0, 5.0], and the Mondrian observation off-
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Figure 5: An example trajectory found by EBO.

set ε = 0.01. In BO-SVI, we used 100 batchsize in SVI, 200
inducing points and 500 iterations to optimize the data like-
lihood with 0.1 step rate and 0.9 momentum. BO-Add-SVI
used the same parameters as BO-SVI, except that BO-Add-
SVI uses 3 outer loops to randomly select the decomposition
parameter z and in each loop, it uses an inner loop of 50
iterations to maximize the data likelihood over the kernel
parameters. The batch BO strategy used in BO-SVI and
BO-Add-SVI is identical to the one used in each Mondrian
partition of EBO.

F Discussion

F.1 Failure modes of EBO

EBO is a general framework for running large scale batched
BO in high-dimensional spaces. Admittedly, we made some
compromises in our design and implementation to scale up
BO to a degree that conventional BO approaches cannot
deal with. In the following, we list some limitations and
aspects that we can improve in EBO in our future work.

• EBO partitions the space into smaller regions
{[lj , hj ]}Jj=1 and only uses the observations within
[lj − ε, hj + ε] to do inference and Bayesian optimiza-
tion. It is hard to determine the value of ε. If ε is large,
we may have high computational cost for the operations
within each region. But if ε is very small, we found that
some selected BO points are on the boundaries of the
regions, partially because of the large uncertainty on
the boundaries. We used ε = 0 in our experiments, but
the results can be improved with a more appropriate ε.

• Because of the additive structure, we need to optimize
the acquisition function for each additive component.
As a result, EBO has increased computational cost
when there are more than 50 additive components, and

it becomes harder for EBO to optimize functions more
than a few hundred dimensions. One solution is to
combine the additive structure with a low dimensional
projection approach (Wang et al., 2016). We can also
simply run block coordinate descent on the acquisition
function, but it is harder to ensure that the acquisition
function is fully optimized.

F.2 Importance of avoiding variance starvation

Neural networks have been applied in many applications and
received success for tasks including regression and classifi-
cation. While researchers are still working on the theoretical
understanding, one hyoothesis is that neural networks “over-
fit” Zhang et al. (2017). Due to the similarity between the
test and training set in the reported experiments in, for exam-
ple, the computer vision community, overfitting may seem
to be less of a problem. However, in active learning (e.g.
Bayesian optimization), we do not have a “test set”. We
require the model to generalize well across the search space,
and using the classic neural network may be detrimental to
the data selection process, because of variance starvation
(see Section 2). Gaussian processes, on the contrary, are
good at estimating confidence bounds and avoid overfitting.
However, the scaling of Gaussian processes is hard in gen-
eral. We would like to reinforce the awareness about the
importance of estimating confidence of the model predic-
tions on new queries, i.e., avoiding variance starvation.

F.3 Future directions

Possible future directions include analyzing theoretically
what should be the best input space partition strategy, batch
worker budget distribution strategy, better ways of predict-
ing variance in a principled way (not necessarily GP), better
ways of doing small scale BO and how to adapt it to large
scale BO. Moreover, add-GP is only one way of reducing
the function space, and there could be others suitable ones
too.
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