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6 Appendix

6.1 Proof of Lemma 1

Lemma 1 (Lipschitz parameter). Let 7(Aw, Bx) be
Lipschitz-continuous w.r.t. = with parameter B(w).
Then given ||z1 — z2|| < € and ||y1 — y2|| < €, we have

f(xvy) = 3R(£7y) - k:(x,y)

satisfies

|f(z,y) — f(a',y)] < 2yoget.

with probability at least 1 — 1/t%, where o2

Var|B(w)]/R is the variance of the Lipschitz parameter
averaged over R samples.

Proof. Consider an arbitrary pair of series (z1,23) € X
of the same length. From Lipschitz-continuity of 7(.),
we have

T7(Aw, Bxs) = 7(Aw, Bx1) + B(w)A

for some |A| < ||lzz — 21| Then let (Ay, Bi)
and (Ag, B2) be the minimizers of 7(Aw, Bxy) and
T(Aw, Bxs) respectively, we have

T(Asw, Boxs) < 7(Ajw, Biza) < 7(A1w, Bizi)+B(w)|Al.
and

T(Alw,BliL’l) § T(Agw, ngl) S T(Agw, BQ!L‘Q)ﬁ*ﬂ(W)‘A‘

numbers of classes, varying numbers of time series, and
a wide range of lengths of time series, as shown in
Table 1. For all experiments, we generate random doc-
ument from uniform distribution with mean centered
in Word2Vec embedding space since we observe the
best performance with this setting. We perform 10-fold
cross-validation to search for best parameters for o,
and DMax as well as parameter C' for LIBLINEAR
on training set for each dataset. We simply fix the
DMin =1, and vary DMax in the range of [10 20 30
40 50 60 70 80 90 100], ¢ in the range of [le-4 le-3
3e-3 le-2 3e-2 0.10 0.14 0.19 0.28 0.39 0.56 0.79 1.12
1.58 2.23 3.16 4.46 6.30 8.91 10 31.62 1e2 3e2 1e3 led],
and C in the range of [le-5 le-4 le-3 le-2 le-1 1 lel
le2 1e3 led leb] respectively in all experiments. All
computations were carried out on a DELL dual socket
system with Intel Xeon processors 272 at 2.93GHz for
a total of 16 cores and 250 GB of memory, running the
SUSE Linux operating system.

Table 5: Properties of the datasets: Beef,
ChlorineConcentration (CHCO), DistalPhalanxTW
(DPTW), ECG5000 (ECG5T), FordB, HandOutlines
(HO), InsectWingbeatSound (IWBS), ItalyPowerDe-
mand (IPD), LargeKitchenAppliances (LKA), MAL-
LAT, MiddlePhalanxOutlineCorrect (MPOC), NonIn-
vasiveFatalECG _Thorax2 (NIFECG), PhalangesOutli-
nesCorrect (POC), ProximalPhalanxOutlineAgeGroup
(PPOAG), Two_ Patterns (TWOP), and Wafer. We
define C:Classes, N:Train, M:Test, and L:length.

Name C N M L A
Therefore, ¢u,(22) = ¢u(21) + f(w)A and Beef 5 30 30 470 Spelzsro
" DPTW 6 400 139 80 Image
1 IPD 2 67 1,029 24 Sensor
sr(22,Y2) = R Z P, (€2) P (y2) PPOAG 3 400 205 80 Image
i=1 MPOC 2 600 291 80 Image
1B ) ~ POC 2 1,800 858 80 Image
< =) b, (21)¢u, (y2) + 7B < sp(a1,y1) + 2rfe. LKA 3 375 375 720  Device
R~ IWBS 11 220 1,980 256 Sensor
TWOP 4 1,000 4,000 128  Simulated
5 1 R : - ECG5T 5 500 4,500 140 ECG
where § = £ >0y B(wi).  With the similar argu CHCO 3 467 3,840 166 Simulated
ment we have [sg(22,y2) — sr(z1,91)| < 27f8e and Wafer 2 1,000 6,174 152  Sensor
|k(z2,y2) — k(z1,91)| < 27Be. Then since E[3] = MALLAT 8 55 2,345 1,024 Simulated
and Let Var[3] = 02. By Chebyshev inequality, we FordB 2 3636 810 500 Sensor
have NIFECG 42 1,800 1,965 750 ECG
HO 2 370 1,000 2,709 Image
1
Pllf(z1,91) — f(z2,92)| > 270, ] < 2

6.2 Experimental settings and parameters
for RWS

As shown in Table 1, we choose 16 datasets that come
from various applications, including ECG, sensor, im-
age, spectro, simulated and device, and have various

6.3 More Results on Effects of ¢, R and D on
Random Features

To fully investigate the behavior of the WME method,
we study the effect of the kernel parameter o, the R
number of random documents and the D length of
random documents on training and testing accuracy
for all 16 datasets. Clearly, the training and testing
accuracy can converge rapidly to the exact kernels when
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varying R from 4 to 512, which confirms our analysis in
Theory 1. When varying D from 10 to 100, we can see
that in the majority of cases DMax = [10 40] generally
yields a near-peak performance except FordB.

6.4 Parameters and Settings on Comparisons
of Feature Representations

For TSEigen Hayashi et al. [2005], we implemented this
method in Matlab where we apply SVD to compute R
number of largest dominant components on the similar
matrix computed using DTW. For TSMC Lei et al.
[2017], we used their open source in code in Github:
https://github.com/cecilialeiqi/SPIRAL. Since
the default rank size of TSMC is 32, we keep all meth-
ods consistent with this setting to make a fair compar-
ison. For all methods, we choose the parameter C' by
10-fold cross validation on training data in LIBLINEAR
on all 16 datasets.

6.5 Parameters and Settings on Comparisons
for Large-Scale Classification

For INN-DTW and INN-DTW°P! we implemented
them using Matlab internal fitcknn with DTW using
the same C Mex file 2 as our method RWS. Although
our implementations may not be highly optimized, we
believe the runtime comparisons among these meth-
ods are reasonably fair. For DTWF Kate [2016], we
used their open source code 3. To make a fair com-
parison with other methods, we set the window size as
min(L/10,40). The feature representation generated
by DTWF combines SAX, DTW, and DTW _R where
we use recommended parameter ranges n = [8 16 24
32 40 48 56 64 72 80 96 112 128 144 160], w = [4
8], and a = [34 5 6 7 8 9] for cross validation. For
TGAK Cuturi [2011], we took their open source code 4
for the experiments. We choose recommended window
size T = 0.25 due to a good trade off between testing
accuracy and computational time. We also perform
cross validation to search for good kernel parameter o
in the range of [0.01, 0.033, 0.066, 0.1, 0.33, 0.66, 1,
3.3, 6.6, 10] and the LIBLINEAR parameter C in the
range of [le-5 le-4 1e-3 le-2 le-1 1 lel 1e2 1e3 led 1eb
1e6.

“https://www.mathworks.com/matlabcentral/
fileexchange/43156-dynamic-time-warping\T1\
textendashdtw-

Shttps://people.uwm.edu/katerj/timeseries/

“http://marcocuturi.net/GA.html

6.6 Parameters and Settings on Comparisons
for Large-Scale Clustering

For KMeans-DTW Petitjean et al. [2011], we used the
public available python code ®, which also implements
LB Keogh lower bound with DTW. However, the effi-
ciency of python code may be significantly worse than
C mex file of DTW we used, which could be the rea-
son we observed larger margin speedup compared to
INN-DTW. Nevertheless, note that the computational
complexity of RWS over Kmeans-DTW reduces from
quadratic complexity to linear complexity. For CLDS
Li and Prakash [2011], we used the open source code
published by authors 6. We choose the parameter C by
cross validation while using recommended parameters
for generating the representations on all datasets. For
K-Shape Paparrizos and Gravano [2015], we used the
public available python code 7. Similarly, we choose
the parameter C by cross validation while using recom-
mended parameters for generating the representations
on all datasets.

*https://github.com/alexminnaar/

time-series-classification-and-clustering
Shttp://www.cs.cmu.edu/~./leili/software.html
"https://github.com/Mic92/kshape
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Figure 5: Train (Blue) and test (Red) accuracy when varying o with fixed D and R. We denote D = DMazx/2.
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Figure 6: Train (Blue) and test (Red) accuracy when varying R with fixed o and D. We denote D = DMazx/2.
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Figure 7: Train (Blue) and test (Red) accuracy when varying D with fixed o and R. We denote D = DMaz/2.




