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Abstract

Incremental Gradient (IG) methods are clas-
sical strategies in solving finite sum mini-
mization problems. Deterministic IG meth-
ods are particularly favorable in handling
massive scale problem due to its memory-
friendly data access pattern. In this paper,
we propose a new deterministic variant of the
IG method SVRG that blends a periodically
updated full gradient with a component func-
tion gradient selected in a cyclic order. Our
method uses only O(1) extra gradient stor-
age without compromising the linear conver-
gence. Empirical results demonstrate that
the proposed method is advantageous over
existing incremental gradient algorithms, es-
pecially on problems that does not fit into
physical memory.

1 Introduction

We consider the following finite sum minimization
problem:

weR?

| X
min F(w) = ~ Zfi(w)7 (1)
i=1

where each component function f;(w) is differentiable
and potentially non-convex, and the objective function
F(w) is strongly convex. This formulation arises from
many convex machine learning problems [Hastie et al.,
2009], and also constitutes an important part of recent
accelerated non-convex solvers |[Carmon et al., 2016,
Allen-Zhu, 2017] where f; can be non-convex.

A classical method for solving Problem is Gradi-
ent Descent (GD), which requires expensive full gra-
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dient computation per iteration. By exploiting the
finite sum structure, Incremental Gradient (IG) meth-
ods select and process the component function one at
a time to reduce the iteration cost, and hence are par-
ticularly favorable when N is huge. A key ingredient
in designing IG methods is the component selection
strategy. From such perspective, IG methods can be
divided into two subclasses: the stochastic ones and
the deterministic ones.

Stochastic Incremental Gradient (StocIG) methods
date back to [Robbins and Monro, 1951 and have re-
gained interest recently due to the surging demand
for tackling large scale optimization problems. Typi-
cal StoclG methods, e.g. Stochastic Gradient Descent
(SGD) and its Variance Reduced (VR) variants SVRG
[Johnson and Zhang, 2013] and SAGA [Defazio et al.,
2014), utilize the with-replacement sampling scheme in
selecting component functions. While leading to unbi-
ased gradient estimator and simple convergence anal-
ysis, such scheme requires random access to the data
points. As an alternative, without-replacement sam-
pling scheme has also been studied in the literature
[Shamir, 2016} |Giirbtizbalaban et al., 2015, [Ying et al.,
2017), which requires to reshuffle the whole dataset
periodically. However, when the dataset is too large
to fit into memory, both random access and random
reshuffle entail heavy I/O cost, thereby rendering the
StoclG methods impractical for the big data scenario.
Typical deterministic IG algorithms like Determinis-
tic Incremental Gradient (DIG) [Bertsekas, 2011] and
Incremental Aggregate Gradient (IAG) [Blatt et al.,
2007] process data in a cyclic scheme, which promotes
the spatial locality property significantly and there-
fore reduces the page fault rate when handling huge
dataset using limited memory. However, existing de-
terministic IG methods can be further improved. In
DIG, to guarantee the convergence to the exact solu-
tion of Problem , diminishing step size is required
and only sublinear convergence rate is obtained. In
TAG, gradients of all NV component functions need to
be stored in order to ensure linear convergence which
results in extra expensive writing operation per itera-
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Table 1: Summary of SGD, SVRG, SAGA, DIG, TAG, and SIG

Algorithm SGD | SVRG | SAGA | DIG | IAG SIG
Data Request of Update Rule
(Read/Wite) R R R+W R R+W R
Component Selection Scheme
(Stochastic/Deterministic) S S S b b b
Extra Storage o) | O1) | ON) | O1) | ON) | O1)
Linear Convergence Rate No Yes Yes No Yes Yes

tion.

Inspired by the aforementioned works, we propose a
new deterministic variant of SVRG with contributions
listed as follows.

e By blending a periodically updated full gradient
with a component function gradient selected in
a cyclic order, we develop an algorithm named
Snapshot-based Incremental Gradient (SIG) that
uses only O(1) extra gradient storage. No random
access is involved. Additionally, we incorporate
the momentum technique into SIG to derive an
efficient variant.

e The linear convergence of the proposed SIG algo-
rithm is established under the assumptions that
objective F(w) is strongly convex and each com-
ponent function is smooth. We make no assump-
tion on the convexity of the individual component
function. Moreover, our analysis also covers ran-
dom shuffle as a special case.

We conduct numerical experiments and show that the
SIG algorithm is comparable to SVRG in terms of con-
vergence rate. More importantly, when the dataset is
too large to fit into main memory, our algorithm shows
significant advantage over existing incremental gradi-
ent algorithms, both stochastic and deterministic.

2 Assumptions and Notations

Throughout this paper, we consider Problem under
following assumptions:

Assumption 1. The component function f; is L-
Lipschitz smooth for every i € {1,...,N}: for any
wi,ws € RY,

[V fi(w1) =V fi(wz2)|| < Lljwy — wal|. (2)

Assumption 2. F(w) is p-strongly convex: for any
w1, W € Rd,

(VF(wy) = VF(w2))" (w1 — wz) > pflwy —wal*. (3)

We denote the Euclidean norm by ||-||. With Assump-
tion [T} one can easily show that F is also L-smooth.

The above assumptions imply that ¢ < L and we de-
fine the condition number of F' as k = L/p.

3 Preliminary

Existing IG methods can be written in the following
compact form

W41 = Wt — NGt

where w; is the iterate and g; approximates the full
gradient VF(w;) using the selected component func-
tion. Different methods vary in their component func-
tion selection strategies and gradient approximation
schemes. We summarize some representative algo-
rithms in Table [l

3.1 Gradient Approximation Scheme

We describe three principled gradient approximation
schemes that construct g, given f;, is selected.

Individual Approximation: SGD and DIG esti-
mate VF (w;) with the gradient of an individual com-
ponent function g, = Vf;, (wy). While reading only
one data point in each iteration and requiring only
O(1) gradient storage, such approximation introduces
non-vanishing noise and compromises the linear con-
vergence in GD. Both SGD and DIG use a diminishing
step size and admit only a sublinear convergence rate.
Average Approximation: To reduce the noise, SAG
and TAG approximate VF'(w;) with the average of
historical component gradients. Specifically, g; =
% Zi\il V fi(w,,), where 7; denotes the last iteration
when the ¥ component function is accessed. Using
such gradient approximation rule, SAG and TAG ob-
tain linear convergence with random and cyclical data
access respectively. However, both methods maintain
N component gradients, thus require a huge storage.
Besides, such maintenance has to perform both READ
and WRITE operations on the storage that scale with
the problem dataset and can be even larger in some
other interesting cases (refer to the Nonconvex solver).
Mix Approximation: An alternative to the average
approximation scheme is to mix the current incremen-
tal gradient with the full gradient at some periodically
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Figure 1: Comparison of major page faults and total
execution time of two programs that read 10% data
from datasets of diferernt sizes (2,4, ...,12GB) in ran-
dom order and cyclic order respectively under 4GB
available main memory.

updated snapshot w. Concretely,
gt = Vfi,(w) = Vfi, (W) + VF(0),

where VF(w) is computed once and kept in mem-
ory. Such scheme reads one data point per iteration
and only requires O(1) gradient storage, and if with-
replacement sampling scheme is adopted, linear con-
vergence can be obtained. However, there is no mix
approximation counterpart in the deterministic IG lit-
erature.

3.2 Memory-Friendly Data Accessing
Patterns

When the dataset is too large to fit into physical mem-
ory, certain data access patterns become more efficient
than others due to the modern memory hierarchy [Sil-
berschatz et al., 2014].

Compared to stochastic IG methods, deterministic IG
methods leverage the superiority of sequential data ac-
cess, which usually results in significantly fewer page
faults and hence fewer swapping operations during
component function selection from a huge population.
Figure [1| compares the number of major page faultsﬂ
and the execution time of two programs that perform
the same amount of sequential and random READ op-
erations respectively. It can be seen that sequential
data access has much fewer major page faults than
the random one as the data size becomes larger.

'A major page fault occurs when disk I/0 is involved
to satisfy the page request.
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Figure 2: Execution time of two programs that ac-
cess data in a cyclic order from datasets of different
sizes (4,8, ...,32GB) under 4GB available main mem-
ory. One program performs READ operations which
corresponds to the selection of component functions
while the other performs READ and WRITE opera-
tions which corresponds to the maintenance of indi-
vidual gradients.

The WRITE operation is considerably more expensive
than the READ operation, which is amplified when the
swap-out occurs frequently. Figure 2] compares the ex-
ecution time of a program with READ-only routines
and a program with READ and WRITE routines. The
latter one increases up to 3.4 times longer than the
former one as the data size gets larger than the phys-
ical memory. Algorithms like SAG and IAG work in
the same manner as the latter program, whose perfor-
mance is undermined by the repeated write operations.
Consequently, a memory-friendly method should cir-
cumvent such pitfall.

3.3 Convex Learning Tasks and Beyond

To further motivate our work, we give some important
tasks that can be casted as Problem .

Empirical Risk Minimization Given a dataset
{x;,y:}Y,, the regularized Empirical Risk Minimiza-
tion (ERM) with linear predictor is defined as

1 N
F(w) =+ > éw zp) + Ellwl* @)
i=1

where the empirical loss function ¢(a, y) is usually con-
vex with respect to the first parameter, e.g. ¢(a,y) =
lla — y||? in Ridge Regression and ¢(a,y) = log(1 +
exp(—y - a)) in lp-Logistic Regression. The regu-
larization pu||w||?/2 prevents overfitting. By writing
fi(w) = ¢(w'z;,y;) + &||w||?, we can phrase Problem

as Problem .

Subroutine in Non-convex Solver Without as-
suming the convexity on the individual component
function, Problem (I) captures tasks beyond con-
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Algorithm 1: SIG Algorithm

input : n, wg, S
for s=0,1,...,5—-1do
compute G = 3 Ef\il V fi(wg)
fort=0,...,N—-1do
w=t+1
Wiy = wi —n(Vfi,(wf) =V f;,(w) + G)
end
wgt = wy
end

return: wg

vex ERM and is of independent interest [Shalev-
Shwartz, 2016, |Allen-Zhu and Yuan, 2016]. In partic-
ular, when minimizing nonconvex smooth finite sum
P(w) = + Zivzl ¢;(w), accelerated solvers like |Allen-
Zhu, 2017, |Carmon et al., 2016| iteratively update
some w so that a local minimum of ®(w) exists in
its vicinity. During the update, their algorithms call a
subroutine to solve the following problem

1 N
min 3 2 dilw

where L is the smoothness parameter of ®(w). It can
be checked that Problem falls in the same category
considered in this paper. Hence our work potentially
accelerates solving important nonconvex problems in
deep neural network.

L -
+le-a? )

4 Snapshot-based Incremental
Gradient Algorithm

In this section, we propose a deterministic IG method
that (1) accesses data in sequential order, (2) requires
no maintenance of historical gradients, and (3) con-
verges linearly to the global optimal, which is sum-
marized in Algorithm [I] Our algorithm utilizes both
the incremental gradient and the full gradient at some
snapshot point, and hence is called Snapshot-based In-
cremental Gradient (SIG).

We use the following gradient approximation scheme
in the s** epoch:

9i = V fir1(wy) —

which is similar to SVRG. However, there are several
fundamental distinctions. First, SVRG selects compo-
nent functions randomly, which leads to inefficiency in
handling massive problems; in contrast, SIG accesses
data in a sequential and thereby memory-friendly pat-
tern. Additionally, the inner loop length of SVRG de-
pends on the condition number of the problenﬂ but in

Vi (wg) + VF(wg),

SIG it is fixed to N, which avoids the complication in
condition number estimation. Our settings of sequen-
tial data access and inner loop length are necessary to
give the important observation

N-1 N-1
gt V fr1(wp), (6)
t=0 t=0
and therefore
N-1 N-1
wet' =wy—n Y gl =wi—n Y Via(w), (7)
t=0 t=0

which is vital to our analysis. In our analysis, we treat

1\:)1 V fir1(wf) as a perturbed gradient evaluated
at wg which leads to a more succinct proof, compared
to complicated Lyapunov construction in [Gurbuzbal-
aban et al., 2017]. Observation also appears in
the proof of DIG [Bertsekas, 2011|, however, the per-
turbation to the gradient VF(wf) does not vanish as
the DIG algorithm progresses. Consequently only sub-
linear convergence is obtained for DIG as diminishing
step size is necessary. As we shall see in Lemma
the design of g7 enables us to show that perturbation
of gradient is bounded by the distance to the optimal
and hence vanishes as the algorithm converges.

5 Convergence Analysis

In our analysis, we consider a more general case in
which the component functions can be processed in
arbitrary order, i.e., i, = 0°(t+ 1) where o* is an arbi-
trary permutation of {1,..., N}. The sequential order
(it = t + 1) is a special case that we are particularly
interested in.

Since in SIG the component function we choose at each
iteration is not independent of the previous ones, it is
difficult to analyze the relations between two consec-
utive iterates. In Theorem [I} we bound the distance
between the iterates at the start of two consecutive
epochs instead.

Before diving into the convergence analysis of Algo-
rithm [1} we present the following useful lemma.

Lemma 1. Suppose that Assumption holds and the

step size n satisfies n < NL, then

nL?>N?

nLN)

I < sy s =l

N—
Z ||vflt wt vflt( )
t=0

2There is a less known variant of SVRG proposed

by [Hofmann et al., 2015] which does not use x to deter-
mine the inner loop length, but instead updates the snap-
shot with probability 1/N at each iteration.
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The proof of Lemma [I]is deferred to Appendix [A]

Theorem 1. Suppose that Assumption[l] and Assump-
tion hold. And assume that n < u/(2L2N), the dis-
tance to optimum |w§ — w*||* converges linearly:

s+1 w*”Z

[w < aflwy —w*?,

where a =1 — %n,uN < 1.

Remark 1. Our analysis makes no assumption on
the order in which we select component functions,
and therefore our theorem covers both cyclical selec-
tion strategy and without-replacement sampling strat-
egy. Our result extends [Shamir, 2016] which is only
applicable to ridge regression. For practical considera-
tion, we focus on the sequential order since such data
accessing pattern is memory-friendly and is particu-
larly efficient for extremely large dataset that cannot
fit into physical memory.

Remark 2. Theorem[]] implies that Algorithm[1] takes
O(k*Nlog(1/e)) component gradient evaluations to
get an e-accurate solution under Assumption [1] and[g
in the worst case. By contrast, SVRG has a complex-
ity of only O(N + m/ﬁlog(l/e)) in expectation under
the same assumptions [Allen-Zhu and Hazan, 2016].
With an additional assumption that each f; is convex,
SVRG, SAG, and SAGA have a smaller complexity of
O((rk+N)log(1/€)) in expectation. On the other hand,
the worst-case complezity of IAG is O(kN?log(1/e))
under the same assumptions as ours. Therefore SIG
is better than IAG when N > k, which coincides with
the problem of interest. Otherwise, IAG is better. Our
numerical results in Section[7 show that SIG is compa-
rable to stochastic IG methods with linear convergence
rates such as SVRG and SAGA and is much better
than IAG in terms of convergence rates.

Proof. First, we show that our algorithm can be in-
terpreted as a perturbed full gradient method. We

rewrite the distance to the optimal ||wit! —w*|| using
observation [7
N-1
lwg*t —w|l = llwf —w* =0 Y Vi, (w])]
t=0
= [[wg — w" =NV F(wp)

N-1

=Y (Vi (w)) = Vi, (w))]]
B 8)

Then we use triangle inequality twice to upper bound

as follows:

Jlwg ™ = w*||

< lwg — w* =NV E (wp)]|

2

+ 1|
t

(Vi (wr) =V fi, (wg)) |

Il
=)

*

< lwg — w™ =NV E (wp)]|
N-1

+0 Y IV fi(w) = Vi, (wp)]. (9)
t=0

The first term of @D corresponds to the distance to
optimun of the GD method. The second term can be
seen as an additional noise.

Since F' is p-strongly convex and L-smooth, we have
the following well-known result [Bubeck, 2014, Lemma
3.5]:

(VE(z) = VF(y),r —y)

nL 9 1
z eyl + 7 V@) = Vi)l (10)

Now we derive an upper bound of ||w§ — w* —

NNV E(wg)|. Notice that
lw§ — w* = nNVF (wg)]|?
= [[w§ — w*||* + n*N?||VF (w§) |
= 29N (VF(wg) = VF(w")" (w§ — w*)

pL s ok
<(1- QUNm)Hwo —w*|?
2 s *
+nN(nN — m)HVF(wo) — VF(w")|* (11)

where the first inequality holds because of .

Since n < u/(2NL?) <1/(2NL) <1/(Nu+ NL), we
have nN —2/(u+ L) < 0. On the other hand, it fol-
lows from and Jensen’s inequality that |VF(w) —
VF(wx)|| > pllw — w *||. Therefore,

|w§ — w* = nNVF(w)]?

:U'L 2 2 s * (|12
<|1-2nN——+nN N — —)||Jwg —w
<[ N N M+L)]||O I
= (1=2nNp+n*N*p?) |w§ — w*||?
= (1 = nNp)*|lwg —w*|*.

(12)
By computing the square root of both sides, we obtain
an upper bound of the first term of @[):

[wg —w" =NVF(wg)|| < (1 —=nNp)l|lws —w||
(13)
Next, we proceed to upper bound the noise term

S IV Fi(wp) = Vi (w)]| using Lemma [} No-
tice that Lemma[llholds under Theorem [II's conditions
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since n < p/(2L2N) implies that n < ﬁ Combining
@D, , and Lemma [1}, we have

lwtt —w?|
277272
n“N-L
< (1= N + S g — |
21 —yNL)/) " (14)
Since 1 =nNL > 1— 47 > %, we have
277272
n°N-L 27272 1
——— < p*N*L* < —nNpu. 15
20— Ny = < gniVp (15)
Combining 7 and , we have
S * 1 5 *
g™ — w2 < (1= V) g — |
= afwg —w*|?, (16)

where & = 1 — 2nuN < 1. This concludes the proof of
Theorem [Il

O

6 Accelerated Variant with
Momentum

A common approach to accelerate a first order method
is to use the momentum technique. |[Nesterov, 2013]
shows the effectiveness of such technique in accelerat-
ing full gradient descent methods. Katyusha [Allen-
Zhu, 2016 attempts to extend such technique to the
stochastic incremental gradient literature. In the de-
terministic IG literature, [Gurbuzbalaban et al., 2017]
proposes TAG-M, an TAG variant with momentum, by
adding an extra momentum term to the IAG update.

We attempt to accelerate SIG with the multiple mo-
mentum technique from |Allen-Zhu, 2016 and propose
a variant named SIG-M which is summarized in Algo-
rithm Like SIG, the number of iterations in one
epoch of SIG-M is the same as the data size. We up-
date w and maintain two auxiliary variables, y and
z at each iteration. The iterate wy,, is the weighted
sum of wg, z; and y;. The two momentum parameters
71, T2 € [0, 1] are input arguments of the algorithm and
71 + 72 < 1. In the next section, we compare the per-
formance of SIG-M with SIG by conducting numerical
experiments on several standard real datasets.

7 Experiment

In this section, we conduct numerical experiments to
demonstrate the performance of SIG and SIG-M. We
focus on the #5-regularized Logistic Regression (LR)

N

C1 7 A 5
ur}rngd N ;:;log(l + exp(—y; X; w)) + §||w||2, (17)

Algorithm 2: SIG-M Algorithm

input : a, w8, S, 11, To
0_ .0 0.

yO —ZO <_w0,

for s=0,1,...,5—1do

compute G = & Zi\; V fi(w§)

fort=0,...,N—-1do
w=t+1
wiy =112 +owi + (1 — 711 — 2)yf
zip =20 — Vi, (wf) = V fi,(w§) + G)
Yirr = wipq +71(2841 — 27)

end
s+1 _ s s+1 __ s s+1 _ _s
Wy  =WnN, Y = YNs 2 T AN
end

return: wy

and the fo-regularized squared hinge loss (SVM)

N
o1 2 A
min 53 (L wiX[wl )’ + Slwl3,  (8)

R
we e

where X; € R? and y; € {—1,1} denote the feature
vector and label of sample i, respectively.

We used six datasets in our experiments: MNISTEL
rcvl.binaryﬂ a9a?, avazu?, criteo?, and HIGGS*. De-
tailed information of these datasets and models are
listed in Table Note that in our experiments, all
data points in each dataset has been normalized, as
suggested by [Xiao and Zhang, 2014]). The optimal
point w* is obtained by running the SIG method for a
sufficiently long time. And we use the best-tuned step
sizes for all algorithms in our experiments, typically
from 0.1/L to 1/L. For SIG-M, we set 75 = 1/2 and
71 = a/(s+b) during the s epoch where a and b are
hyperparameters, as suggested by |Allen-Zhu, 2016].

7.1 Small Size Dataset

The numerical results of SIG and SIG-M over three
small datsets (MNIST, rcvl and a9a) are shown in
Figure We compare both SIG and SIG-M with
the baselines including full gradient descent method
(GD), some stochastic IG methods including SVRG
under with-replacement sampling, Katyusha, SVRG
under random reshuffling (SVRG-RR), and SAGA un-
der random reshuffling (SAGA-RR), and determinis-
tic IG methods including DIG and TAG. It can be
seen that the performance of SIG is better than GD,
DIG, and TAG methods. It’s worth noting that while

SIG converges with a step size which is close to those

3http://yann.lecun.com/exdb/mnist/
“https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/
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Figure 3: Comparison of SIG, SIG-M and other algorithms on different problems over three datasets: MNIST,
rcvl.binary, and a9a. Each column corresponds to results on one dataset respectively. The plots on the first

row measure the suboptimality (F(w3) — F(w*))/(F(w§) — F(w*)) versus number of epochs. The second row

measures the relative distance to the optimal ||w§ — w*||?/|jw] —

measures the suboptimality versus execution time.

of SVRG and SAGA, TAG can only converge with a
much smaller step size, and is thus worse than SIG
in practice even when N < k. Moreover, the perfor-
mance of SIG is comparable to and sometimes better
than the stochastic VR methods SVRG, SVRG-RR,
and SAGA-RR. It is reasonable to conjecture that our
bound of convergence rate in theoretical analysis is
possibly conservative. And one can see that SIG-M
outperforms SIG.

7.2 Large Size Dataset

Figure [] shows the suboptimality versus time of SIG
and SIG-M compared with some IG methods on three
large datasets (avazu, criteo, and HIGGS). We re-
stricted the maximal amount of main memory usage to
2GB for avazu and HIGGS and 8GB for criteo to sim-
ulate the scenario in which the dataset is too large to
fit into main memory instead of using extremely large
datasets due to time limit. One can see that SIG and
SIG-M outperform DIG, TAG, SVRG, and Katyusha
in terms of execution time. Moreover, SIG-M out-

w*||? versus number of epochs. The third row

performs SIG. We note that for sparse datasets, all
incremental gradient methods in our experiments are
implemented with the lagged update technique pro-
posed by [Schmidt et al., 2017]. The basic idea of the
lagged update technique is to defer the update of some
coordinate of the iterate w until the next iteration it is
accessed. More details can be found in [Schmidt et al.,

2017, section 4].

Figure [5| compares the computation time with data
transfer time for SIG and SVRG algorithms with lim-
ited main memory usage of different sizes. It is shown
that for the SIG method which selects the component
functions in a cyclic scheme, the fraction of time spent
on data transfer remains low. However, for the SVRG
method which selects the component functions in a
stochastic scheme, the fraction of time spent on data
transfer becomes higher (up to 50%) as the amount of
available main memory gets smaller. The main reason
is that when the dataset cannot fit into main memory,
more page faults occur in the random data access rou-
tine than in the sequential data access routine. There-
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Table 2: Datasets and regularization parameters.

dataset data size dimension A model
MNIST 60,000 (0.09GB) 784 | 1074 LR
rcvl.binary 20,242 (0.77GB) 47,236 | 1078 LR
a9a 32,561 (0.01GB) 123 | 1077 | SVM
avazu 14,596,137 (3.37GB) 999,990 | 10~8 LR
criteo 45,840,617 (26.98GB) | 1,000,000 | 10~° LR
HIGGS 11,000,000 (4.31GB) 28 | 1078 | SVM

suboptimality
suboptimality

suboptimality

T
0 1000 2000 3000 0 1000

T T 10° T T T T
3000 4000 5000 0 200 400 600 800 1000

time(s) time (s)

Figure 4: Comparison of SIG, SIG-M and other IG methods on avazu, criteo, and HIGGS dataset. The x-axis
stands for execution time. The y-axis stands for the suboptimality.
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Figure 5: Comparison of the CPU time and data trans-
fer time in inner loops of SIG and SVRG on criteo
dataset with limited physical memory usage of differ-
ent sizes. We ran both algorithms for 10 epochs.
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Figure 6: Comparison of SVRG and SIG algorithms
on criteo dataset with limited physical memory usage
of different sizes.

fore, for extremely large datasets, the SIG method is
more efficient than the stochastic IG methods in terms
of per iteration cost. Figure [f] shows the suboptimal-
ity versus time of SVRG and SIG with limited main
memory usage of different sizes. We find that SIG con-
verges faster than SVRG in terms of execution time as
the amount of available main memory gets smaller.

8 Discussion

In this paper, we proposed a deterministic incremen-
tal gradient method, SIG, for solving large-scale op-
timization problems of minimizing strongly convex fi-
nite sums where the component functions are smooth
but potentially non-convex. We proved that the SIG
method enjoys a linear convergence rate. We further
proposed a method named SIG-M, which aims to use
momentums to accelerate the SIG method. Our nu-
merical results show that SIG outperforms existing de-
terministic IG methods including DIG and IAG and is
comparable to stochastic VR methods such as SVRG
and SAGA-RR. And the use of momentums acceler-
ates the convergence of SIG. Moreover, the proposed
methods are time-efficient on large-scale optimization
problems.

We note that SIG can be easily extended to the prox-
imal case for solving a more general class of problems,
min, cpa vazl fi(w) +r(w), where r(w) is convex and
possibly non-differentiable. The convergence analysis
of the proximal case is left for future work.
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