
Accelerated Stochastic Power Iteration

Peng Xu1 Bryan He1 Christopher De Sa2 Ioannis Mitliagkas3 Christopher Ré1
1Stanford University 2Cornell University 3University of Montréal

Abstract

Principal component analysis (PCA) is one
of the most powerful tools for analyzing ma-
trices in machine learning. In this paper,
we study methods to accelerate power iter-
ation in the stochastic setting by adding a
momentum term. While in the determinis-
tic setting, power iteration with momentum
has optimal iteration complexity, we show
that naively adding momentum to a stochas-
tic method does not always result in accelera-
tion. We perform a novel, tight variance anal-
ysis that reveals a “breaking-point variance”
beyond which this acceleration does not oc-
cur. Combining this insight with modern
variance reduction techniques yields a simple
version of power iteration with momentum
that achieves the optimal iteration complex-
ities in both the online and o✏ine setting.
Our methods are embarrassingly parallel and
can produce wall-clock-time speedups. Our
approach is very general and applies to many
non-convex optimization problems that can
now be accelerated using the same technique.

1 Introduction

Principal Component Analysis (PCA) is a fundamen-
tal tool for data processing and visualization in ma-
chine learning and statistics [Hot33; Jol02]. PCA
captures variable interactions in a high-dimensional
dataset by identifying the directions of highest vari-
ance: the principal components. Modern machine
learning problems have become too big for full-pass
PCA methods, leading practitioners to stochastic
methods: algorithms that only ingest a random sub-
set of the available data at every iteration. Stochastic

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

methods have been proposed for the o✏ine, or finite-
sample setting, in which the algorithm is given ran-
dom access to a finite set of samples, and therefore
could perform a full-pass periodically [Sha15]. Other
methods target the online setting, in which the sam-
ples are randomly drawn from a distribution, and full
passes are not possible [MCJ13; Bou+15; Jai+16]. In-
formation theoretic bounds [AZL16b] show that the
sample complexity, which is defined as the number of
samples necessary to recover the principal component,
is at least O(1/�2) in the online setting, where � is
the eigen-gap. Elegant variants of the power method
have been shown to match this lower bound [Jai+16;
AZL16b]. However, sample complexity is not a great
proxy for run time.

Iteration complexity—the number of outer loop itera-
tions required, when the inner loop is embarrassingly
parallel—provides an asymptotic measure of an algo-
rithm’s performance on a highly parallel computer.
We would like to match the Lanczos algorithm’s op-
timal convergence rate of O(1/

p
�) iterations from

the full-pass setting. Unfortunately, the Lanczos al-
gorithm cannot operate in a stochastic setting and
none of the simple stochastic power iteration vari-
ants achieve this accelerated iteration complexity. Re-
cently, carefully tuned numerical methods based on
approximate matrix inversion [Gar+16; AZL16a] have
achieved an accelerated rate in the stochastic setting.
However, these methods are significantly more com-
plex than stochastic power iteration and are largely
theoretical in nature. This context motivates the ques-
tion: is it possible to achieve the optimal sample and
iteration complexity with a method as simple as power
iteration?

In this paper, we propose a class of simple PCA al-
gorithms based on the power method that (1) operate
in the stochastic setting, (2) have a sample complex-
ity with an asymptotically optimal dependence on the
eigen-gap, and (3) have an iteration complexity with
an asymptotically optimal dependence on the eigen-
gap (i.e. one that matches the worst-case rate for the
Lanczos method). As background for our method, we
first note that a simple modification of the power it-
eration, power iteration with momentum, achieves the

Accelerated Stochastic Power Iteration

optimal accelerated convergence rate O(1/
p
�) in the

deterministic setting. Our proposed algorithms come
from the natural idea of designing an e�cient, stochas-
tic version of that method.

We demonstrate that simply adding momentum to a
stochastic method like Oja’s does not always result in
acceleration. Although adding momentum with a fixed
learning rate accelerates the initial convergence, it also
increases the size of the noise ball. This is because mo-
mentum accelerates the convergence of the expected
iterates, but also increases the variance, which typi-
cally dominates, so no overall acceleration is observed
(cf. Section 3). Using Chebyshev polynomials to derive
an exact expression for the variance of the iterates of
our algorithm, we identify the precise relationship be-
tween sample variance and acceleration. Importantly,
we identify the exact break-down point beyond which
the variance is too much for acceleration to happen.

Based on this analysis, we can design a stochastic mo-
mentum power method that is guaranteed to work.
We first propose a mini-batching technique to ensure
acceleration. However, this algorithm requires increas-
ingly large batch sizes to reach small errors. To rem-
edy this, we additionally propose a variance reduction
technique, which ensures acceleration with a constant
batch size. Both of these techniques are used to speed
up computation in stochastic optimization and are em-
barrassingly parallel. This property allows our method
to achieve true wall-clock time acceleration even in the
online setting, something not possible with state-of-
the-art results. Hence, we demonstrate that the more
complicated techniques based on approximate matrix
inversion are not necessary: simple momentum-based
methods are su�cient to accelerate PCA.

Our tight variance analysis can apply to general
stochastic three-term recurrence (cf. Section 4). It is
straightforward to show that randomized Kaczmarz al-
gorithms [SV09; GR15] can be accelerated using mo-
mentum for solving linear systems. It also enables
many non-convex problems, including matrix comple-
tion [JNS13], phase retrieval [CLS15] and subspace
tracking [BNR10], to be accelerated using a single
technique, and suggests that the same might be true
for a larger class of non-convex optimization problems.

Our contributions

• We study the relationship between variance and
acceleration by finding an exact characterization
of variance for a general class of power iteration
variants with momentum in Section 3.1.

• Using this bound, we design an algorithm that
uses mini-batching to obtain the optimal iteration
and sample complexities for the online setting in
Section 3.2.

• We design a second algorithm that uses variance
reduction to obtain the optimal rate for the o✏ine
setting in Section 3.3. Notably, when operating in
the o✏ine setting, we are able to use a batch size
that is independent of the target accuracy.

• We demonstrate the acceleration of our variance-
reduced methods on real-world network datasets
in Section 3.4.

2 Power method with momentum

In this section, we provide background knowledge to
help introduce our stochastic method. We begin by
describing the basic PCA setup and show that a sim-
ple momentum scheme accelerates the standard power
method. This momentum scheme, and its connection
with the Chebyshev polynomial family, serves as the
foundation of our stochastic method.

PCA Let x1, · · · ,xn 2 Rd be n data points. The
goal of PCA is to find the top eigenvector of the
symmetric positive semidefinite (PSD) matrix A =
1
n

Pn
i=1 xixT

i 2 Rd⇥d (the sample covariance matrix)
when the data points are centered at the origin. We
assume that the target matrix A has eigenvalues 1 �
�1 > �2 � · · ·�d � 0 with corresponding normalized
eigenvectors u1,u2, · · · ,ud. The power method esti-
mates the top eigenvector by repeatedly applying the
update step

wt+1 = Awt

with an initial vector w0 2 Rd. After O
�

1
� log 1

✏

�

steps, the normalized iteratewt/kwtk
1 is an ✏-accurate

estimate of top principal component. Here ✏ accuracy
is measured by the squared sine of the angle between
u1 and wt, which is 1� (uT

1 wt)2/kwtk
2.

When �1 is close to �2 (the eigengap � is small), the
power method will converge very slowly. To address
this, we propose a class of algorithms based on the
alternative update step

wt+1 = Awt � �wt�1. (A)

We call the extra term, �wt�1, the momentum term,
and � the momentum parameter, in analogy to the
heavy ball method [Pol64], which uses the same tech-
nique to address poorly conditioned problems in con-
vex optimization. For appropriate settings of �, this
accelerated power method can converge dramatically
faster than the traditional power method; this is not
surprising, since the same is true for analogous accel-
erated methods for convex optimization.

Orthogonal polynomials We now connect the dy-
namics of the update (A) to the behavior of a family of

1The k·k in this paper is `2 norm for vectors and spectral
norm for matrices.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

Table 1: Asymptotic complexities for variants of the power method to achieve ✏ accuracy, 1� (uT
1 w)2  ✏. For

momentum methods, we choose the optimal � = �2
2/4. Here � := �1 � �2 is the eigen-gap, �2 is the variance

of one random sample and r is an a.s. norm bound (see Definition (1)). In O notation, we omit the factors
depending on failure probability �. Jain et al. [Jai+16] and Shamir [Sha15] give the best known results for
stochastic PCA without and with variance reduction respectively. However, neither of these results achieve the
optimal iteration complexity. Furthermore, they are not tight in terms of the variance of the problem (i.e. when
�2 is small, the bounds are loose).

Setting Algorithm Number of Iterations Batch Size Reference

Deterministic
Power O

�
1
� · log

�
1
✏

��
n [GVL12]

Lanczos O

⇣
1p
�
· log

�
1
✏

�⌘
n [GVL12]

Power+M O

⇣
1p
�
· log

�
1
✏

�⌘
n This paper

Online
Oja’s O

⇣
�2

�2 ·
1
✏ +

1p
✏

⌘
O(1) [Jai+16]

Mini-batch Power+M O

⇣
1p
�
· log

�
1
✏

�⌘
O

⇣p
d�2

�3/2 ·
1
✏ log

�
1
✏

�⌘
This paper

O✏ine
VR-PCA O

⇣
r2

�2 · log
�
1
✏

�⌘
O(1) [Sha15]

VR Power+M O

⇣
1p
�
· log

�
1
✏

�⌘
O

⇣p
d�2

�3/2

⌘
This paper

orthogonal polynomials, which allows us to use well-
known results about orthogonal polynomials to ana-
lyze the algorithm’s convergence. Consider the poly-
nomial sequence pt(x), defined as

pt+1(x) = xpt(x)� �pt�1(x), p0 = 1, p1 = x/2. (P)

According to Favard’s theorem [Chi11], this recurrence
forms an orthogonal polynomial family—in fact these
are scaled Chebyshev polynomials of the first kind. If
we use the update (A) with appropriate initialization,
then our iterates will be given by

wt = pt(A)w0 =
Pd

i=1 pt(�i)uiuT
i w0.

We use this expression and properties of the Cheby-
shev polynomials to explicitly bound the convergence
rate of the accelerated power method with Theorem 1
(analysis and proof in Appendix A).

Theorem 1. Given a PSD matrix A 2 Rn⇥n with
eigenvalues 1 � �1 > �2 � · · · � �n � 0, running
update (A) with �2  2

p
� < �1 results in estimates

with worst-case error

1�
(uT

1 wt)2

kwtk
2 

4
��wT

0 u1

��2
·

2
p
�

�1 +
p
�2
1 � 4�

!2t

.

We can derive the following corollary, which gives the
iteration complexity to achieve ✏ error.

Corollary 2. In the same setting as Theorem 1, up-
date (A) with w0 2 Rd such that uT

1 w0 6= 0, for any

✏ 2 (0, 1), after T = O

✓ p
�p

�2
1�4�

· log 1
✏

◆
iterations

achieves 1� (uT
1 wT)2

kwT k2  ✏.

Remark. Minimizing
p
�p

�2
1�4�

over [�2
2/4,�

2
1/4) tells

us that � = �2
2/4 is the optimal setting.

In comparison to power iteration, this algorithm con-
verges at an accelerated rate. In fact, as shown in
Table 1, this momentum power method scheme (with
the optimal assignment of � = �2

2/4) even matches the
worst-case rate of the Lanczos method.

Extensions In Appendix B.1, we extend this mo-
mentum scheme to achieve acceleration in the setting
where we want to recover multiple top eigenvectors of
A, rather than just one. In Appendix B.2 we show that
this momentum method is numerically stable, whereas
the Lanczos method su↵ers from numerical instability
[TBI97; GVL12]. Next, in Appendix B.3 we provide
a heuristic for auto-tuning the momentum parameter,
which is useful in practice. Finally, in Appendix B.4,
we consider a larger orthogonal polynomial family, and
we show that given some information about the tail
spectrum of the matrix, we can obtain even faster con-
vergence by using a 4-term inhomogeneous recurrence.

3 Stochastic PCA

Motivated by the results in the previous section, we
study using momentum to accelerate PCA in the
stochastic setting. We consider a streaming PCA set-
ting, where we are given a series of i.i.d. samples, Ãt,
such that

E[Ãt] = A, max
t
kÃtk  r, E[kÃt �Ak

2
] = �2. (1)

In the sample covariance setting of Section 2, Ãt

can be obtained by selecting xixT
i , where xi is uni-

Accelerated Stochastic Power Iteration

formly sampled from the dataset. One of the most
popular streaming PCA algorithms is Oja’s algorithm
[Oja82], which repeatedly runs the update2 wt+1 =
(I + ⌘Ãt)wt. A natural way to try to accelerate Oja’s
algorithm is to directly add a momentum term, which
leads to

wt+1 = (I + ⌘Ãt)wt � �wt�1. (2)

In expectation, this stochastic recurrence behaves like
the deterministic three-term recurrence (A), which can
achieve acceleration with proper setting of �. However,
we observe empirically that (2) usually does not give
acceleration. In Figure 1(a), we see that while adding
momentum does accelerate the initial convergence to
the noise ball, it also increases the size of the noise
ball—and decreasing the step size to compensate for
this roughly cancels out the acceleration from momen-
tum. This same counterintuitive phenomenon has in-
dependently been observed in Goh [Goh17] for stochas-
tic optimization. The inability of momentum to accel-
erate Oja’s algorithm is perhaps not surprising because
the sampling complexity of Oja’s algorithm is asymp-
totically optimal in terms of the eigen-gap [AZL16b].

In Section 4, we will characterize this connection be-
tween the noise ball size and momentum in more depth
by presenting an exact expression for the variance of
the iterates. Our analysis shows that when the sample
variance is bounded, momentum can yield an acceler-
ated convergence rate. In this section, we will present
two methods that can be used to successfully control
the variance: mini-batching and variance reduction.
A summary of our methods and convergence rates is
presented in Table 1.

3.1 Stochastic power method with
momentum

In addition to adding momentum to Oja’s algorithm,
another natural way to try to accelerate stochastic
PCA is to use the deterministic update (A) with ran-
dom samples Ãt rather than the exact matrix A.
Specifically, we analyze the stochastic recurrence

wt+1 = Ãtwt � �wt�1, (3)

where Ãt is an i.i.d. unbiased random estimate of A.
We write this more explicitly as Algorithm 1.

When the variance is zero, the dynamics of this algo-
rithm are the same as the dynamics of update (A),
so it converges at the accelerated rate given in Theo-
rem 1. Even if the variance is nonzero, but su�ciently
small, we can still prove that Algorithm 1 converges
at an accelerated rate.

2Here we consider a constant step size scheme, in which
the iterate will converge to a noise ball. The size of the
noise ball depends on the variance.

Algorithm 1Mini-batch Power Method with Momen-
tum (Mini-batch Power+M)

Require: Initial point w0, Number of Iterations T ,
Batch size s, Momentum parameter �
w�1 0,
for t = 0 to T - 1 do
Generate a mini-batch of i.i.d. samples

B = {Ãt1 , · · · , Ãts}

Update: wt+1 (1s
Ps

i=1 Ãti)wt � �wt�1

Normalization:
wt wt/kwt+1k,wt+1 wt+1/kwt+1k.

end for
return wT

Theorem 3. Suppose we run Algorithm 1 with 2
p
� 2

[�2,�1). Let ⌃ = E [(At �A)⌦ (At �A)]3. Suppose
that kw0k = 1 and

��uT
1 w0

�� � 1/2. For any � 2 (0, 1)
and ✏ 2 (0, 1), if

T =

p
�p

�2
1 � 4�

log

✓
32
�✏

◆
,

k⌃k  (�2
1 � 4�)�✏

256
p
dT

=
(�2

1 � 4�)3/2�✏

256
p
d
p
�

log�1

✓
32
�✏

◆
,

(4)

then with probability at least 1 � 2�, we have 1 �
(uT

1 wT)2  ✏.

When we compare this to the result of Theorem 1, we
can see that as long as the variance k⌃k is su�ciently
small, the number of iterations we need to run in the
online setting is the same as in the deterministic set-
ting (up to a constant factor that depends on �). In
particular, this is faster than the power method with-
out momentum in the deterministic setting. Of course,
in order to get this accelerated rate, we need some way
of getting samples that satisfy the variance condition
of Theorem 3. Certain low-noise datasets might sat-
isfy this condition, but this is not always the case. In
the next two sections, we discuss methods of getting
lower-variance samples.

3.2 Controlling variance with mini-batches

In the online PCA setting, a natural way of getting
lower-variance samples is to increase the batch size (pa-
rameter s) used by Algorithm 1. Using the following
bound on the variance,

k⌃k = kE [(At �A)⌦ (At �A)]k

 E [k(At �A)⌦ (At �A)k]

= E
h
kAt �Ak2

i
=

�2

s
,

we can get an upper bound on the mini-batch size we
will need in order to satisfy the variance condition in
Theorem 3, which leads to the following corollary.

3⌦ denotes the Kronecker product.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

(a) Oja’s algorithm with Momentum (b) Without Variance Reduction (c) With Variance Reduction

Figure 1: Di↵erent PCA algorithms on a synthetic dataset X 2 R106⇥10 where the covariance matrix has eigen-
gap � = 0.1. Figure 1(a) shows the performance of Oja’s algorithm with momentum. The momentum is set to
the optimal � = (1+⌘�2)2/4. Di↵erent dashed lines correspond to di↵erent step sizes (� changes correspondingly)
for momentum methods. Figure 1(b) shows the performance of mini-batch power methods. Increasing the mini-
batch size led to a smaller noise ball. Figure 1(c) shows the performance of VR power methods. The epoch
length T = 10 was estimated according to (7) by setting � = 1% and c = 1/16. Stochastic methods report the
average performance over 10 runs.

Corollary 4. Suppose we run Algorithm 1 with 2
p
� 2

[�2,�1). Assume that kw0k = 1 and
��uT

1 w0

�� � 1/2.
For any � 2 (0, 1) and ✏ 2 (0, 1), if

T =

p
�p

�2
1 � 4�

log

✓
32

�✏

◆
,

s �
256
p
d�2T

(�2
1 � 4�)�✏

=
256
p
d
p
��2

(�2
1 � 4�)3/2�✏

log

✓
32

�✏

◆
,

then with probability at least 1� 2�, 1� (uT
1 wT)2  ✏.

This means that no matter what the variance of the
estimator is, we can still converge at the same rate as
the deterministic setting as long as we can compute
mini-batches of size s quickly. One practical way of
doing this is by using many parallel workers: a mini-
batch of size s can be computed in O(1) time by O(s)
machines working in parallel. If we use a su�ciently
large cluster, this means that Algorithm 1 converges
in asymptotically less time than any non-momentum
power method that uses the cluster for mini-batching,
because we converge faster than even the deterministic
non-momentum method.

One drawback of this approach is that the required
variance decreases as a function of ✏, so we will need
to increase our mini-batch size as the desired error de-
creases. If we are running in parallel on a cluster of
fixed size, this means that we will eventually exhaust
the parallel resources of the cluster and be unable to
compute the mini-batches in asymptotic O(1) time.
As a result, we now seek methods to reduce the re-
quired batch size, and remove its dependence on ✏.

3.3 Reducing batch size with variance
reduction

Another way to generate low-variance samples is the
variance reduction technique. This technique can be
used if we have access to the target matrix A so that
we can occasionally compute an exact matrix-vector
product with A. For example, in the o✏ine setting,
we can compute Aw by occasionally doing a complete
pass over the data. In PCA, Shamir [Sha15] has ap-
plied the standard variance reduction technique that
was used in stochastic convex optimization [JZ13], in
which the stochastic term in the update is

Awt + (At �A)(wt � w̃), (5)

where w̃ is the (normalized) anchor iterate, for which
we know the exact value of Aw̃. We propose a
slightly di↵erent variance reduction scheme, where the
stochastic term in the update is

⇥
A+ (At �A)(I � w̃w̃T)

⇤
wt

= Awt + (At �A)(I � w̃w̃T)wt.
(6)

It is easy to verify that both (5) and (6) can be com-
puted using only the samples At and the exact value
of Aw̃. In the PCA setting, (6) is more appropriate
because progress is measured by the angle between wt

and u1, not the `2 distance as in the convex optimiza-
tion problem setting: this makes (6) easier to analyze.
In addition to being easier to analyze, our proposed
update rule (6) produces updates that have generally
lower variance because for all unit vectors wt and w̃,
kwt � w̃k � k(I � w̃w̃T)wtk. Using this update step

Accelerated Stochastic Power Iteration

results in the variance-reduced power method with mo-
mentum in Algorithm 2. A number of methods use

Algorithm 2 VR Power Method with Momentum
(VR Power+M)

Require: Initial point w0, Number of Iterations T ,
Batch size s, Momentum parameter �
w�1 0
for k = 1 to K do
ṽ Aw̃k (Usually there is no need to materi-
alize A in practice).
for t = 1 to T do
Generate a mini-batch of i.i.d. samples B =
{Ãt1 , · · · , Ãts}

Update: ↵ wT
t w̃k,

wt+1
1
s

Ps
i=1 Ãti(wt�↵w̃k)+↵ṽ��wt�1

Normalization: wt wt/kwt+1k,
wt+1 wt+1/kwt+1k.

end for
w̃k+1 wT .

end for
return wK

this kind of SVRG-style variance reduction technique,
which converges at a linear rate and is not limited by a
noise ball. Our method improves upon that by achiev-
ing the accelerated rate throughout, and only using a
mini-batch size that is constant with respect to ✏.

Theorem 5. Suppose we run Algorithm 2 with 2
p
� 2

[�2,�1) and a initial unit vector w0 such that 1 �
(uT

1 w0)2 
1
2 . For any �, ✏ 2 (0, 1), if

T =

p
�p

�2
1 � 4�

log

✓
1
c�

◆
, s � 32

p
d
p
��2

c(�2
1 � 4�)�

log

✓
1
c�

◆
,

(7)

then after K = O (log(1/✏)) epochs, with probability
at least 1� log

�
1
✏

�
�, we have 1� (uT

1 w̃K)2  ✏, where
c 2 (0, 1/16) is a numerical constant.

By comparing to the results of Theorem 1 and Theo-
rem 5, we notice that the VR power method with mo-
mentum achieves the same convergence rate, in terms
of the total number of iterations we need to run, as the
deterministic setting. In contrast to the non-variance-
reduced setting, the mini-batch size we need to use
does not depend on the desired error ✏, which allows us
to use a fixed mini-batch size throughout the execution
of the algorithm. This means that we can use Algo-
rithm 2 together with a parallel mini-batch-computing
cluster of fixed size to compute solutions of arbitrary
accuracy at a rate faster than any non-momentum
power method could achieve. As shown in Table 1, in
terms of number of iterations, the momentum meth-
ods achieve accelerated linear convergence with proper
mini-batching (our results there follow Corollary 4 and
Theorem 5, using the optimal momentum � = �2

2/4.).

3.4 Experiments

We first use synthetic experiments (details in Ap-
pendix E) to illustrate how the variance a↵ects the mo-
mentum methods. Figure 1(b) shows that the stochas-
tic power method maintains the same linear conver-
gence as the deterministic power method before hitting
the noise ball. Therefore, the momentum method can
accelerate the convergence before hitting the noise ball.
Figure 1(c) shows that the variance-reduced power
method indeed can achieve an accelerated linear con-
vergence with a much smaller batch size on this same
synthetic dataset.

We additionally demonstrate that our variance-
reduced method results in accelerated convergence for
finding the first eigenvector of the adjacency matrices
of several networks. For these experiments, We use the
arXiv ASTRO-PH collaboration network [LKF07], the
arXiv High-energy physics citation network [LKF05],
and the Google web graph [Les+09]. This is the eigen-
vector centrality task, which is often used in network
analysis [Bra05; Bon72]. In the eigenvector centrality
task, components of the top eigenvector that are large
correspond to nodes that are central to the network.
The eigenvector centrality task is closely related the
PageRank metric. Figure 2 shows that the variance-
reduced power method achieves an accelerated linear
convergence on this task. In these experiments, mo-
mentum results in larger improvements in convergence
when the eigen-gap is small.

4 Convergence analysis

In this section, we sketch the proofs of Theorems 3
and 5. The main idea is to tightly bound the vari-
ance of the iterates with properties of the Chebyshev
polynomials. Both with mini-batches (Algorithm 1)
and variance reduction (Algorithm 2), the dynamics
of the stochastic power method with momentum from
(3) can be written as wt = Ftw0/kFtw0k where {Ft}

is a sequence of stochastic matrices in Rd⇥d satisfying

Ft+1 = At+1Ft � �Ft�1, F0 = I, F�1 = 0. (8)

The random matrix At 2 Rd⇥d has di↵erent forms
in Algorithm 1 and Algorithm 2. However, in both
algorithms, At will be i.i.d. and satisfy E [At] =
A. In fact, this recurrence (8) is general enough to
be applied in many other problems, including least-
squares regression and the randomized Kaczmarz al-
gorithm [SV09; GR15], as well as some non-convex
matrix problems [DSRO15] such as matrix comple-
tion [JNS13], phase retrieval [CLS15] and subspace
tracking [BNR10]. Since Ft obeys a linear recur-
rence, its second moment also follows a linear recur-
rence (in fact, all its moments do). We decompose

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

(a) ASTRO-PH collaboration (b) High Energy Physics paper citation (c) Google web graph

Figure 2: Variance-reduced and full-pass PCA algorithms on large network datasets. The dimensions are
(a) 18,772, (b) 34,546, and (c) 875,713. The relative eigen-gaps are (a) 0.20, (b) 0.047, and (c) 0.027. Our
momentum-based methods result in larger improvements in the convergence rate when the relative eigen-gap is
smaller.

this recurrence using Chebyshev polynomials to get a
tight bound on the covariance of Ft, which is shown
in Lemma 6. This bound is exact in the scalar case.

Lemma 6. Suppose �2
1 � 4� and ⌃ =

E [(At �A)⌦ (At �A)]. The norm of the covariance
of the matrix Ft is bounded by

kE [Ft ⌦ Ft]� E [Ft]⌦ E [Ft]k



tX

n=1

k⌃kn�t�n
X

k2Sn+1
t�n

n+1Y

i=1

U2
ki

✓
�1

2
p
�

◆
,

where Uk(·) is the Chebyshev polynomial of the second
kind, and Sn

m denotes the set of vectors in Nn with
entries that sum to m, i.e.

Sn
m = {k = (k1, · · · , kn) 2 Nn

|
Pn

i=1 ki = m} .

For the mini-batch power method without vari-
ance reduction (Algorithm 1), the goal is to bound
1 � (uT

1 wt)2, which is equivalent to boundingPd
i=2(u

T
i Ftw0)2/(uT

1 Ftw0)2. We use Lemma 6 to get
a variance bound for the denominator of this expres-
sion, which is

Var
⇥
uT
1 Ftw0

⇤
 p2t (�1;�) ·

8k⌃kt

�2
1 � 4�

. (9)

With this variance bound and Chebyshev’s inequal-
ity we get a probabilistic lower bound for |uT

1 Ftw0|.
Lemma 6 can also be used to get an upper bound for
the numerator, which is

E
"

dX

i=2

(uT
i Ftw0)

2

#

 p2t (�1;�) ·

8
p
dk⌃kt

(�2
1 � 4�)

+
p2t (2

p
�;�)

p2t (�1;�)

! (10)

By Markov’s inequality we can get a probabilistic up-
per bound for

Pd
i=2(u

T
i Ftw0)2. The result in Theo-

rem 3 now follows by a union bound. The details of
the proof appear in Appendix C.1.

Next, we consider the case with variance reduction (Al-
gorithm 2). The analysis contains two steps. The first
step is to show a geometric contraction for a single
epoch, i.e.

1� (uT
1 wT)

2
 ⇢ ·

�
1� (uT

1 w0)
2
�
, (11)

with probability at least 1 � �, where ⇢ < 1 is a nu-
merical constant. Afterwards, the second step is to
get the final ✏ accuracy of the solution, which trivially
requires O (log(1/✏)) epochs. Thus, the analysis boils
down to analyzing a single epoch. Notice that in this
setting,

At+1 = A+
⇣

1
s

Ps
i=1 Ãti �A

⌘
(I �w0wT

0), (12)

and again wt = Ftw0/kFtw0k. Using similar tech-
niques to the mini-batch power method setting, we
can prove a variant of Lemma 6 specialized to (12).

Lemma 7. Suppose �2
1 � 4�. Let w0 2 Rd be a unit

vector, ✓ = 1� (uT
1 w0)2, and

⌃ = E
h⇣

1
s

Ps
i=1 Ãti �A

⌘
⌦

⇣
1
s

Ps
i=1 Ãti �A

⌘i
.

Then, the norm of the covariance will be bounded by

kE [Ftw0 ⌦ Ftw0]� E [Ftw0]⌦ E [Ftw0]k

 4✓ ·
tX

n=1

k⌃kn�t�n
X

k2Sn+1
t�n

n+1Y

i=1

U2
ki

✓
�1

2
p
�

◆
.

Comparing to the result in Lemma 6, this lemma shows
that the covariance is also controlled by the angle be-
tween u1 and w0 which is the anchor point in each

Accelerated Stochastic Power Iteration

epoch. Since the anchor point w̃k is approaching u1,
the norm of the covariance is shrinking across epochs—
this allows us to prove (11). From here, the proof of
Theorem 5 is similar to non-VR case, and the details
are in Appendix C.2.

Remark 1. As summarized in Table 1, we achieved
the optimal, accelerated iteration complexity, by al-
lowing computation to be wide (massively parallel) in-
stead of deep (many sequential steps). This ability for
massive parallelization comes at a cost of an extra

p
d

factor in total computation. It is an interesting open
question whether this extra computation is fundamen-
tal and unavoidable for massively parallel methods.

Remark 2. Note that Theorems 3 and 5 only state
the local convergence complexity. However, it is worth
mentioning that there is no technical challenge in ob-
taining the state of warm initialization in the theo-
rems. For example, starting from random uniform ini-
tialization, it will take O(d/�2) iterations for Alecton
[DSRO15] to get into a constant error ball. This is
independent of ✏ and negligible comparing to the local
complexity.

5 Related work

PCA A recent spike in research activity has fo-
cused on improving a number of computational and
statistical aspects of PCA, including tighter sam-
ple complexity analysis [Jai+16; Li+16], global con-
vergence [DSRO15; AZL16b; BDF13], memory ef-
ficiency [MCJ13] and doing online regret analy-
sis [Bou+15]. Some work has also focused on tighten-
ing the analysis of power iteration and Krylov methods
to provide gap-independent results using polynomial-
based analysis techniques [MM15]. However, that
work does not consider the stochastic setting. Some
works that study Oja’s algorithm [Oja82] or stochas-
tic power methods in the stochastic setting focus on
the analysis of a gap-free convergence rate for the dis-
tinct PCA formulation of maximizing explained vari-
ance (as opposed to recovering the strongest direc-
tion) [Sha16; AZL16b]. Others provide better depen-
dence on the dimension of the problem [Jai+16]. Gar-
ber et al. [Gar+16] and Allen-Zhu and Li [AZL16c]
use faster linear system solvers to speed up PCA algo-
rithms such that the convergence rate has the square
root dependence on the eigengap in the o✏ine setting.
However their methods require solving a series of lin-
ear systems, which is not trivially parallelizable. Also
none of these results give a convergence analysis that
is asymptotically tight in terms of variance. Another
line of work has focused on variance control for PCA in
the stochastic setting [Sha15] to get a di↵erent kind of
acceleration. Since this is an independent source of im-

provement, these methods can be further accelerated
using our momentum scheme. In addition [XLS15]
study the stochastic power methods for kernel PCA
in the random feature space, where our momentum
scheme is also applicable.

Stochastic acceleration Momentum is a common
acceleration technique in convex optimization [Pol64;
Nes83], and has been widely adopted as the de-facto
optimization method for non-convex objectives in deep
learning [Sut+13]. Provably accelerated stochastic
methods have previously been found for convex prob-
lems [Cot+11; Jai+17]. However, similar results for
non-convex problems remain elusive, despite empirical
evidence that momentum results in acceleration for
some non-convex problems [Sut+13; KB14].

Orthogonal Polynomials The Chebyshev polyno-
mial family is a sequence of orthogonal polynomi-
als [Chi11] that has been used for analyzing accel-
erated methods. For example, Chebyshev polynomi-
als have been studied to accelerate the solvers of lin-
ear systems [GV61; GVL12] and to accelerate con-
vex optimization [SdB16]. Trefethen and Bau III
[TBI97] use Chebyshev polynomials to show that the
Lanczos method is quadratically faster than the stan-
dard power iteration. The Lanczos method is conven-
tionally considered the accelerated version of power
method with momentum [HP14].

6 Conclusion

This paper introduced a very simple accelerated PCA
algorithm that works in the stochastic setting. As a
foundation, we presented the power method with mo-
mentum, an accelerated scheme in the deterministic
setting. We proved that the power method with mo-
mentum obtains quadratic acceleration like in the con-
vex optimization setting. Then, for the stochastic set-
ting, we introduced and analyzed the stochastic power
method with momentum. By leveraging the Cheby-
shev polynomials, we derived a convergence rate that
is asymptotically tight in terms of the variance. Us-
ing a tight variance analysis, we demonstrated how
the momentum scheme behaves in a stochastic sys-
tem, which can lead to a better understanding of how
momentum interacts with variance in stochastic op-
timization problems [Goh17]. Specifically, with mini-
batching, the stochastic power method with momen-
tum can achieve accelerated convergence to the noise
ball. Alternatively, using variance reduction, acceler-
ated convergence at a linear rate can be achieved with
a much smaller batch size.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

Acknowledgments

We thank Aaron Sidford for helpful discussion and
feedback on this work.

We gratefully acknowledge the support of the De-
fense Advanced Research Projects Agency (DARPA)
SIMPLEX program under No. N66001-15-C-4043,
D3M program under No. FA8750-17-2-0095, the Na-
tional Science Foundation (NSF) CAREER Award
under No. IIS- 1353606, the O�ce of Naval Re-
search (ONR) under awards No. N000141210041 and
No. N000141310129, a Sloan Research Fellowship,
the Moore Foundation, an Okawa Research Grant,
Toshiba, and Intel. Any opinions, findings, and con-
clusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of DARPA, NSF, ONR, or the U.S.
government.

References

[AZL16a] Zeyuan Allen-Zhu and Yuanzhi Li. “Dou-
bly Accelerated Methods for Faster CCA
and Generalized Eigendecomposition”. In:
arXiv preprint arXiv:1607.06017 (2016).

[AZL16b] Zeyuan Allen-Zhu and Yuanzhi Li.
“First E�cient Convergence for Stream-
ing k-PCA: a Global, Gap-Free, and
Near-Optimal Rate”. In: arXiv preprint
arXiv:1607.07837 (2016).

[AZL16c] Zeyuan Allen-Zhu and Yuanzhi Li.
“LazySVD: Even faster SVD decom-
position yet without agonizing pain”.
In: Advances in Neural Information
Processing Systems. 2016, pp. 974–982.

[BDF13] Akshay Balsubramani, Sanjoy Dasgupta,
and Yoav Freund. “The fast convergence
of incremental pca”. In: Advances in Neu-
ral Information Processing Systems. 2013,
pp. 3174–3182.

[BNR10] Laura Balzano, Robert Nowak, and Ben-
jamin Recht. “Online identification and
tracking of subspaces from highly in-
complete information”. In: Communica-
tion, Control, and Computing (Allerton),
2010 48th Annual Allerton Conference on.
IEEE. 2010, pp. 704–711.

[Bon72] Phillip Bonacich. “Factoring and weight-
ing approaches to status scores and clique
identification”. In: Journal of Mathemati-
cal Sociology 2.1 (1972), pp. 113–120.

[Bou+15] Christos Boutsidis et al. “Online prin-
cipal components analysis”. In: Proceed-
ings of the Twenty-Sixth Annual ACM-

SIAM Symposium on Discrete Algo-
rithms. SIAM. 2015, pp. 887–901.

[Bra05] Ulrik Brandes. Network analysis: method-
ological foundations. Vol. 3418. Springer
Science & Business Media, 2005.

[Chi11] Theodore S Chihara. An introduction to
orthogonal polynomials. Courier Corpora-
tion, 2011.

[CLS15] Emmanuel J Candes, Xiaodong Li, and
Mahdi Soltanolkotabi. “Phase retrieval
via Wirtinger flow: Theory and algo-
rithms”. In: IEEE Transactions on In-
formation Theory 61.4 (2015), pp. 1985–
2007.

[Cot+11] Andrew Cotter et al. “Better mini-batch
algorithms via accelerated gradient meth-
ods”. In: Advances in neural information
processing systems. 2011, pp. 1647–1655.

[DSRO15] Christopher De Sa, Christopher Ré, and
Kunle Olukotun. “Global Convergence of
Stochastic Gradient Descent for Some
Non-convex Matrix Problems”. In: Inter-
national Conference on Machine Learn-
ing. 2015, pp. 2332–2341.

[Gar+16] Dan Garber et al. “Faster eigenvector
computation via shift-and-invert precon-
ditioning”. In: International Conference
on Machine Learning. 2016, pp. 2626–
2634.

[Goh17] Gabriel Goh. “Why Momentum Really
Works”. In: Distill (2017). doi: 10 .
23915 / distill . 00006. url: http : / /
distill.pub/2017/momentum.

[GR15] Robert M Gower and Peter Richtárik.
“Randomized iterative methods for linear
systems”. In: SIAM Journal on Matrix
Analysis and Applications 36.4 (2015),
pp. 1660–1690.

[GV61] Gene H Golub and Richard S Varga.
“Chebyshev semi-iterative methods, suc-
cessive overrelaxation iterative methods,
and second order Richardson iterative
methods”. In: Numerische Mathematik
3.1 (1961), pp. 147–156.

[GVL12] Gene H Golub and Charles F Van Loan.
Matrix computations. Vol. 3. JHU Press,
2012.

[Hot33] Harold Hotelling. “Analysis of a complex
of statistical variables into principal com-
ponents.” In: Journal of educational psy-
chology 24.6 (1933), p. 417.

https://doi.org/10.23915/distill.00006
https://doi.org/10.23915/distill.00006
http://distill.pub/2017/momentum
http://distill.pub/2017/momentum

Accelerated Stochastic Power Iteration

[HP14] Moritz Hardt and Eric Price. “The noisy
power method: A meta algorithm with
applications”. In: Advances in Neural
Information Processing Systems. 2014,
pp. 2861–2869.

[Jai+16] Prateek Jain et al. “Matching Matrix
Bernstein with Little Memory: Near-
Optimal Finite Sample Guarantees for
Oja’s Algorithm”. In: arXiv preprint
arXiv:1602.06929 (2016).

[Jai+17] Prateek Jain et al. “Accelerating Stochas-
tic Gradient Descent”. In: arXiv preprint
arXiv:1704.08227 (2017).

[JNS13] Prateek Jain, Praneeth Netrapalli, and
Sujay Sanghavi. “Low-rank matrix com-
pletion using alternating minimization”.
In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing.
ACM. 2013, pp. 665–674.

[Jol02] Ian Jolli↵e. Principal component analysis.
Wiley Online Library, 2002.

[JZ13] Rie Johnson and Tong Zhang. “Accel-
erating stochastic gradient descent using
predictive variance reduction”. In: Ad-
vances in Neural Information Processing
Systems. 2013, pp. 315–323.

[KB14] Diederik Kingma and Jimmy Ba. “Adam:
A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[Les+09] Jure Leskovec et al. “Community struc-
ture in large networks: Natural cluster
sizes and the absence of large well-defined
clusters”. In: Internet Mathematics 6.1
(2009), pp. 29–123.

[Li+16] Chris J Li et al. “Near-Optimal Stochastic
Approximation for Online Principal Com-
ponent Estimation”. In: arXiv preprint
arXiv:1603.05305 (2016).

[LKF05] Jure Leskovec, Jon Kleinberg, and Chris-
tos Faloutsos. “Graphs over time: den-
sification laws, shrinking diameters and
possible explanations”. In: Proceedings
of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery
in data mining. ACM. 2005, pp. 177–187.

[LKF07] Jure Leskovec, Jon Kleinberg, and Chris-
tos Faloutsos. “Graph evolution: Den-
sification and shrinking diameters”. In:
ACM Transactions on Knowledge Discov-
ery from Data (TKDD) 1.1 (2007), p. 2.

[MCJ13] Ioannis Mitliagkas, Constantine Carama-
nis, and Prateek Jain. “Memory limited,
streaming PCA”. In: Advances in Neu-

ral Information Processing Systems. 2013,
pp. 2886–2894.

[MM15] Cameron Musco and Christopher Musco.
“Randomized block krylov methods for
stronger and faster approximate singu-
lar value decomposition”. In: Advances in
Neural Information Processing Systems.
2015, pp. 1396–1404.

[Nes83] Yurii Nesterov. “A method of solving a
convex programming problem with con-
vergence rate O (1/k2)”. In: Soviet Mathe-
matics Doklady. Vol. 27. 2. 1983, pp. 372–
376.

[Oja82] Erkki Oja. “Simplified neuron model as a
principal component analyzer”. In: Jour-
nal of mathematical biology 15.3 (1982),
pp. 267–273.

[Pol64] Boris T Polyak. “Some methods of speed-
ing up the convergence of iteration meth-
ods”. In: USSR Computational Math-
ematics and Mathematical Physics 4.5
(1964), pp. 1–17.

[SdB16] Damien Scieur, Alexandre d’Aspremont,
and Francis Bach. “Regularized Nonlin-
ear Acceleration”. In: Advances In Neu-
ral Information Processing Systems. 2016,
pp. 712–720.

[Sha15] Ohad Shamir. “A stochastic PCA and
SVD algorithm with an exponential con-
vergence rate”. In: Proc. of the 32st Int.
Conf. Machine Learning (ICML 2015).
2015, pp. 144–152.

[Sha16] Ohad Shamir. “Convergence of stochastic
gradient descent for PCA”. In: Interna-
tional Conference on Machine Learning.
2016, pp. 257–265.

[Sut+13] Ilya Sutskever et al. “On the importance
of initialization and momentum in deep
learning”. In: Proceedings of the 30th in-
ternational conference on machine learn-
ing (ICML-13). 2013, pp. 1139–1147.

[SV09] Thomas Strohmer and Roman Vershynin.
“A randomized Kaczmarz algorithm with
exponential convergence”. In: Journal of
Fourier Analysis and Applications 15.2
(2009), pp. 262–278.

[TBI97] Lloyd N Trefethen and David Bau III. Nu-
merical linear algebra. Vol. 50. Siam, 1997.

[XLS15] Bo Xie, Yingyu Liang, and Le Song.
“Scale up nonlinear component analysis
with doubly stochastic gradients”. In: Ad-
vances in Neural Information Processing
Systems. 2015, pp. 2341–2349.

	Introduction
	Power method with momentum
	Stochastic PCA
	Stochastic power method with momentum
	Controlling variance with mini-batches
	Reducing batch size with variance reduction
	Experiments

	Convergence analysis
	Related work
	Conclusion
	Momentum PCA and Orthogonal Polynomials
	Proof of Theorem 1
	Effect of Momentum

	Extensions
	Block Update for Multiple Components
	Stable Implementation of Momentum Methods
	Tuning Momentum
	Inhomogeneous Polynomial Recurrence
	Derivation of 4-term Recurrence (16)
	Proofs

	Convergence Analysis for Stochastic Power methods with Momentum
	Convergence analysis for Algorithm 1
	Convergence analysis for Algorithm 2

	Technical Lemmas
	Data Generation for Figure 1

