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Abstract

We study theoretical properties of block
solvers for the eigenvalue problem. Despite
a recent surge of interest in such eigensolver
analysis, truly block solvers have received rel-
atively less attention, in contrast to the ma-
jority of studies concentrating on vector ver-
sions and non-truly block versions that rely
on the deflation strategy. In fact, truly block
solvers are more widely deployed in practice
by virtue of its simplicity without compro-
mise on accuracy. However, the correspond-
ing theoretical analysis remains inadequate
for first-order solvers, as only local and k-
th gap-dependent rates of convergence have
been established thus far. This paper is de-
voted to revealing significantly better or as-
yet-unknown theoretical properties of such
solvers. We present a novel convergence anal-
ysis in a unified framework for three types of
first-order Riemannian solvers, i.e., determin-
istic, vanilla stochastic, and stochastic with
variance reduction, that are to find top-k
eigenvectors of a real symmetric matrix, in
full generality. In particular, the issue of zero
gaps between eigenvalues, to the best of our
knowledge for the first time, is explicitly con-
sidered for these solvers, which brings new
understandings, e.g., the dependence of con-
vergence on gaps other than the k-th one.
We thus propose the concept of generalized
k-th gap. Three types of solvers are proved to
converge to a globally optimal solution at a
global, generalized k-th gap-dependent, and
linear or sub-linear rate.
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1 INTRODUCTION

The algebraic eigenvalue problem (Wilkinson, 1988),
as one of the most fundamental problems in compu-
tational mathematics, has been studied for a century.
This classical problem, in practice, is often to find a
relatively small number k of top eigenvectors of a given
symmetric matrix A € R"*" (1 < k < n), and can
be formulated as trace maximization in the following
form:

1
X) = ~tr(XTAX). 1
XER"L%?))ETX:If( ) 5 r( ) (1)

It has found numerous applications in science and
engineering computing, such as structural analysis
(Torbjorn Ringertz, 1997), dynamical control systems
(Helmke and Moore, 2012), combinatorial optimiza-
tion (Mohar and Poljak, 1993), data mining and ma-
chine learning (Ng et al., 2002), just to name a few.
When k& = 1, a solver for Problem (1) is referred to
as a vector solver that aims only at the leading eigen-
vector, such as the power method and Lanczos algo-
rithm (Golub and Van Loan, 1996) from numerical al-
gebra as well as Oja’s algorithm (Oja and Karhunen,
1985) in the incremental PCA setting. When & > 1
the solver then is said to be a block solver such as
simultaneous iteration, QR iteration, the block Lanc-
zos algorithm (Golub and Van Loan, 1996), random-
ized singular value decomposition (Halko et al., 2011),
the noisy power method (Hardt and Price, 2014), and
randomized block krylov methods (Musco and Musco,
2015). Due to the nature of finding top-k eigenvec-
tors simultaneously, these solvers are termed to be
truly block. They are different from non-truly block
ones that rely on the projection deflation technique
(Mackey, 2009) to find eigenvectors one by one in de-
scending order of corresponding eigenvalues. In this
paper, we focus on truly block solvers, as they are
more widely deployed than non-truly ones in practice,
by virtue of its simplicity without compromise on accu-
racy. There has been a recent surge of interest in such
eigensolver analysis which is centred on vector versions
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(Balsubramani et al., 2013; Shamir, 2015, 2016b; Gar-
ber et al., 2016; Wang et al., 2016; Lei et al., 2016;
Wang et al., 2017; Gao et al., 2017). It was either
mentioned (Wang et al., 2017) or by default in these
recent studies on vector solvers that their analyses hold
for the block version by the deflation strategy. There
also exists the work of the block solver in which the
analysis is explicitly built on this strategy (Allen-Zhu
and Li, 2016). Thus, they are all subsumed by the
category of non-truly block solvers. For truly block
ones, on one hand, it is unclear so far whether those
recent analyses on vector solvers remain valid as there
has been no such attempt except for Shamir (2015)
and Ge et al. (2016). On the other hand, the afore-
mentioned truly block solvers are not designed to work
in the stochastic setting, albeit with nice properties,
e.g., global/gap-free/optimal convergence rates (Halko
et al., 2011; Musco and Musco, 2015), in their current
forms. The state-of-the-art with the intersection of
both worlds, i.e., stochastic truly block solvers, such as
the noisy power method (Hardt and Price, 2014) and
block VR-PCA (Shamir, 2016a), currently can only
make it to a local/global, k-th gap-dependent, and lin-
ear rate. The noisy power method entails restrictive
assumptions on noises, e.g., k-th gap-dependent and
e-small norm, while the block VR-PCA is local. They
both are k-th gap-dependent. In addition, when the k-
th gap is zero!, the previous gap-free analyses (Musco
and Musco, 2015; Allen-Zhu and Li, 2016) uniformly
assert that gaps play no role in characterizing conver-
gence. However, this would hardly be true, as glob-
ally optimal solutions are not unique any more and
then nearest positive gaps might take effect instead.
Therefore, natural questions that arise are if the con-
vergence analysis of a stochastic truly block solver can
be strengthened to achieve stronger results (e.g., global
convergence) and if we can squeeze out any refreshing
information from the k-th gap-free analysis (i.e., free
from the dependence on the k-th gap). This paper is
devoted to investigations on these questions and the
quick answer to them is affirmative.

We present a simple yet effective theoretical analy-
sis for Problem (1) via first-order Riemannian opti-
mization. Three types of Riemannian gradient solvers,
i.e., deterministic, vanilla stochastic, and stochastic
with variance reduction, are cast into a unified frame-
work and analyzed in full generality. Instead of the
commonly used chordal distance (Shamir, 2016a; Xu
et al., 2017), ie., O(X, Vi) = k=37 cos? 0;(X, V),
a novel potential function is defined by a variant of
the Binet-Cauchy distance on Stiefel manifolds, i.e.,
U(X,V;) = 1— [0 cos?,(X, V), where X €

i
Jj=

!Then the multiplicity of the k-th eigenvalue is greater
than 1.

St(n, k) (see Section 3 for notations), V; consists of
top-1 eigenvectors of A, and 60;(X, V;) represents the
j-th principal angle between X and V; (see Section 4.1
for definitions). In particular, we make the following
contributions:

e We propose a novel potential function for the con-
vergence analysis of first-order truly block eigen-
solvers. It is key to global convergence and han-
dling zero gaps.

e Different from the gap-free analysis, we figure out
the surrogate role of the k-th gap in characteriz-
ing convergence when it is zero. To unify two dis-
tinct cases, i.e., k-th gap-dependent and -free, we
propose generalized k-th gap. Particularly, larger
generalized k-th gap reap faster convergence.

e A deterministic Riemannian gradient truly block
eigensolver with constant/diminishing step-sizes
is shown to converge to a globally optimal solution
at a global, generalized k-th gap-dependent rate
of type O(log 1)/0(2).

e A stochastic Riemannian gradient truly block
eigensolver is shown to converge to a globally op-
timal solution at a global, generalized k-th gap-
dependent rate of type O(1).

e A RSVRG truly block eigensolver with con-
stant/diminishing step-sizes is shown to con-
verge to a globally optimal solution at a global,
generalized k-th gap-dependent rate of type

O(log £)/0(3).

The rest of the paper is organized as follows. Section
2 reviews the literature work with a focus on recent
studies. Preliminaries about Riemannian optimization
and three types of first-order truly block Riemannian
solvers are presented in Section 3, which then is fol-
lowed by theoretical analysis in Section 4. The paper
concludes with discussions in Section 5.

2 RELATED WORK

There is a vast literature on solvers for the eigenvalue
probelm due to its century long history. We concen-
trate only on those recent closely related studies, and
briefly discuss three versions of recent solvers (i.e., vec-
tor, non-truly block, and truly block) and the gap-free
analysis.

Recent eigensolver analyses mainly focus on the vec-
tor case. Balsubramani et al. (2013) gave finite-sample
convergence rates of two schemes of the incremental
PCA, i.e., Krasulina (1969), Oja and Karhunen (1985).
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Table 1: Comparison of Truly Block Eigensolvers

Solver Convergence k-th gap rate solution stoc VR
Hardt et al. (2014)  global dependent O(log %) globally optimal yes 1o
Musco et al. (2015) global dependent or free  O(log <) or ed% globally optimal no no
Shamir (2016a) local dependent O(log 1) globally optimal yes  yes
Ge et al. (2016) global dependent O(log i) globally optimal no no
Absil et al. (2008)  global or local free O(log %) critical or optimal no  no
Bonnabel (2013) global free unknown critical point yes  no
Zhang et al. (2016)  global free 1/e critical point yes  yes
Xu et al. (2016) local dependent 1/€ globally optimal yes 1o
Liu et al. (2016) local dependent O(log 1) globally optimal no  no
Xu et al. (2017) local dependent O(log i) globally optimal yes  yes
Theorem 4.1 global depedent or free  O(log %) or % globally optimal no no
Theorem 4.2 global depedent or free 1/e globally optimal yes  no
Theorem 4.3 global depedent or free  O(log 1) or % globally optimal yes  yes

(where stoc and VR stand for stochastic and variance reduction, respectively)

The rates are global, k-th gap-dependent and sub-
linear O(%). Shamir (2015) proposed the VR-PCA
which is the first stochastic variance reduced PCA,
and proved its local, k-th gap-dependent and linear
convergence rate O(log 2). Garber et al. (2016) pre-
sented a robust analysis of the shift-and-invert pre-
conditioning method for faster eigenvector computa-
tion and achieved a global, k-th gap-dependent and
linear convergence rate. Note that this is not a con-
ventional stochastic algorithm like stochastic gradient
descent (SGD). The merit of the method is that it en-
ables the problem to be decomposed into a series of
linear system problems that can leverage fast stochas-
tic gradient methods, e.g., SVRG (Johnson and Zhang,
2013). This idea or similar ones were also exploited or
extended to the generalized eigenvalue problem and
canonical correlation analysis (Ge et al., 2016; Wang
et al., 2016, 2017; Gao et al., 2017). The analyses
above have not been extended to truly block cases ex-
cept for Shamir (2015) and Ge et al. (2016), as such
an extension is often non-trivial though the non-truly
block case is apparent. Shamir (2016a) extended the
VR-PCA to the truly block setting with the same the-
oretical guarantee stated, while Ge et al. (2016) ana-
lyzed the deterministic truly block CCA and achieved
global, k-th gap-dependent and linear rates of conver-
gence. Allen-Zhu and Li (2016) presented an improved
analysis of the shift-and-invert method for stochastic
non-truly block singular value decomposition.

There are relatively less recent studies on a truly block
solver. Halko et al. (2011) studied randomized SVD
which first makes use of random sampling to com-
press the input matrix and then does the job in the
reduced space. Musco and Musco (2015) proposed
a stronger and faster approximate SVD by random-

ized block Krylov methods and proved global, k-th
gap-dependent or gap-free, and linear O(log %) or sub-
linear O(ﬁ) rates. However, they don’t have stochas-

tic versions. Hardt and Price (2014) proposed the
noisy power method which is truly block with a global,
k-th gap-dependent and linear convergence rate. Al-
though the stochastic version is included as a special
case, the rate comes with restrictive assumptions. For
example, the noise norm is required to be e-small,
which can hardly hold at the beginning of stochastic
algorithms even with variance reduction.

We now turn to first-order truly block solvers, which is
more closely related to our focus in this paper. Absil
et al. (2008) provided analysis for general line-search
based Riemannian first-order methods with global and
linear convergence to critical points or local and linear
convergence to globally optimal points. Global con-
vergence to critical points for the SGD on Riemannian
manifolds was established by Bonnabel (2013). Zhang
et al. (2016) showed global and sub-linear O(1) con-
vergence of the RSVRG (i.e., Riemannian SVRG) to
critical points. They all aim to address general first-
order Riemannian optimization, and hence are appli-
cable to Problem (1) and gap-free. In addition, the
doubly stochastic truly block Riemannian solver was
shown to have a local, k-th gap-dependent and sub-
linear O(%) rate of convergence by sampling the data
and variable simultaneously Xu et al. (2016), and a
linear rate was further achieved by variance reduction
(Xuet al., 2017). In a distinct fashion, i.e., by showing
an explicit Lojasiewicz exponent at 3, Liu et al. (2016)
established a local, k-th gap-depedent and linear rate
of convergence of Riemannian line-search methods for
quadratic problems with orthogonality constraints in-
cluding Problem (1) as a special case. It is worth not-
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ing that the block VR-PCA is subsumed by first-order
truly block solvers as well. Our work falls into this cat-
egory. Deterministic, vanilla stochastic, and RSVRG
truly block solves are proved to converge to a globally
optimal solution at global, k-th gap-dependent/-free,
and linear O(log 1)/sub-linear O(1) rates. A compar-
ison of truly block solvers is summarized in Table 1.

There have been a few gap-free studies as well (Musco
and Musco, 2015; Allen-Zhu and Li, 2016). Note that
the gap-freeness in previous analysis means that con-
vergence does not depend on any of (n — 1) gaps. Our
analysis shows that the dependence on gaps is inherent
in characterizing convergence of such solvers. Specifi-
cally, it depends either on the k-th gap itself or on its
nearest positive ones. And they are unified in a con-
cept called generalized k-th gap. It brings new under-
standings other than the gap-free analysis. While our
analysis is based on first-order Riemannian optimiza-
tion, the idea might be instrumental to other scenarios
as well.

3 PRELIMINARIES

In this section, we present some basic background
knowledge on Riemannian optimization. It is then fol-
lowed by a brief introduction to three types of first-
order Riemannian gradient solvers that are to be ana-
lyzed.

3.1 Riemannian Optimization

For a d-dimensional Riemmanian manifold (Lee, 2012)
M its tangent space at a point X € M, denoted as
Tx M, is a d-dimensional Euclidean space R? tangen-
tial to M at X. The Riemannian gradient of a function
f(X) on M, denoted as Vf(X), depends on the Rie-
mannian metric which is a family of smoothly varying
inner products on tangent spaces, i.e., (f,n>x, where
&,n e TxM for any X € M. Vf(X) € TxM is the
unique tangent vector that satisfies

(VF(X),&)x = Df(X)[¢]

for any ¢ € Tx M, where D f(X)[¢] represents the di-
rectional derivative of f(X) in . Updates in Rieman-
nian gradient descent (Absil et al., 2008) on M can be
written as:

Xei1 = R (Xp, 0001 V(X))

where a;11 > 0 is the step-size along the gradient
direction at the ¢-th step, and R(Xq,-) represents the
retraction at X; that maps a tangent vector £ € Tx, M
to a point on M. An ideal retraction is the exponential
map which, however, is computationally costly in gen-
eral. Its first-order approximation is used in practice.

In addition, an arithmetic operator between tangent
vectors at different points cannot act as in Euclidean
space until they are parallel transported to the same
tangent space. Likewise, only its first-order approxi-
mation of parallel transport, known as vector trans-
port, is used. The vector transport of a tangent vector
from X to Y on M, denoted as Tx_.y, is a mapping
from Tx M to Ty M. When M is an embedded Rie-
mannian sub-manifold of a Euclidean space, it can be
simply defined as Tx_v({x) = Py (éx) where Py ()
represents the orthogonal projector onto Ty M.

Problem (1) can be treated as trace maximization on
the Stiefel manifold, i.e.,

St(n, k) = {X e R* . XTX =1},

where I represents an identity matrix of appropriate
size. It is an embedded Riemannian sub-manifold
of R™*F with metric (£,7)x = tr(¢Tn), for &,n €
TxSt(n,k). The projection of ¢ € R" * onto
TxSt(n, k) is given by

Px(€) = (I — XX )¢ + Xskew (X €).

In particular, Riemannian gradients can be obtained
via projection of ambient Euclidean gradients V f(X),
ie., Vf(X) = Px(Vf(X)). We use the retraction de-
fined by the polar decomposition

R(X,§) = (X+ &[T+ 72, ¢ € TxSt(n, k).
3.2 First-Order Riemannian Solvers

Solver 1: deterministic One update of the
deterministic Riemannian gradient solver (Absil
et al., 2008) is X;41 = R(Xt,at+1@f(Xt)), where
V(X)) = (I XX )AX,.

Solver 2: wvanilla stochastic Assume that A =
(1/L) Zf:l A;. One update of the vanilla stochas-
tic Riemannian gradient solver (Bonnabel, 2013)
can be written as Xi11 = R(X¢, a1 9(Xe, yet1))s
where y:;+1 is a random variable uniformly sam-
pled from {1,2,---,L} at the t¢th step, and
9(X¢, ye+1) is stochastic Riemannian gradient defined
as 9(Xp,yep1) = (I— XX ) A1 Xy with Ay =
A, ., and satisfying E[g(X¢, yi41)|X] = V f(X;) with
expectation taken with respect to y:41. Two gradients
are related as follows

9(X¢, Y141)
= VX)) + T -X X)) (A1 — A)Xy, (2)

where the last term is stochastic and zero-mean con-
ditioned on X;. In particular, the step-size sequence
satisfies >, oy = +o0 and Y, a7 < +oo so that oy
decays to zero but not too fast. In practice, it is often
set to ap = 9(t + 7)7" with constants 9 > 0, 7 > 0
and k € (0.5,1].
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Algorithm 1 RSVRG eigensolver

1: Input: matrix A, initial iterate XO, step-size a,
epoch length m
2: for s=1,2,--- do

3 VX)) =0-X,,X] )AX, ,
4 XO = X1
5 fort=1,2,--- ,m do
6: Pick y; € {1,2,..., L} uniformly at random
7 Xi=R (thlv ag(xsflaxtfla yt))
8 end for
9: X=X
10: end for
Solver 3: variance reduction One update of

RSVRG solver (Xu et al., 2017) can be written
as X1 = R(Xe a1 9(X, Xy, ye41)), where the
RSVRG is

g(X’Xtayt+1) R o
= (Xt Y1) — TXaXt((g(vat+1) — Vf(X))By).

X is the estimated X at the snapshot point after ev-
ery m steps. By = PP/ is obtained from the SVD:
X/X = P;A;P/. In addition, Tx_,x, transports
gradients from tangent space Tk St(n,k) to another
Tx,St(n, k). Using Equation (2), this gradient can be
expanded as follows:
g(Xa Xtu yt+1)
= VX)) +T-XX (A1 — A)X; —
P, (1 XXT)(A 1~ A)XBY)
= V(X)) + (I-X: X/ )(Ap1 — A)(X; — XBy) +
(I-XX)XXT (A1 — A)XB, —
X, skew (X, (I - XXT)(Ap1 — A)XBy),
which is related to the full gradient Vf(X,) as
well, albeit in a more complicated form. Note that
9(X, X, y141) — Vf(Xy) is also stochastic and zero-

mean conditioned on X;. Algorithmic steps are in-
cluded in Algorithm 1 for reference.

4 Theoretical Analysis

Before proceeding with the analysis, necessary and im-
portant notions and notations are introduced including
the potential function for measuring the closeness of
the iterate X to a globally optimal solution. Main re-
sults are then presented and followed by proofs. Other
proofs are deferred to the supplementary material.

4.1 Notions and Notations

Suppose that A has eigenvalues A\; > \o > .-+ > A\,
and corresponding eigenvectors vy, va, ..., v, € R"*1,

Denote X; = diag(A1,---,A;) and V; = (v, ,v;),
i =1,2,---,n. Let V = V; be the set of globally
optimal solutions to Problem (1), i.e.,

Vi ={V €St(n, k) : AV = VI, }.

For other [ # k, V; can be similarly defined and assume
that Vo = (. For convenience, a k-dimensional sub-
space and one of its orthonormal bases V € St(n, k)
are used interchangeably and the concrete meaning is
clear from the context. If Ay > Agyq then V. € V
is unique, otherwise the size of V depends on the al-
gebraic/geometric multiplicity of Ag. In any case, it
suffices for our purpose to find a single V € V.

Define the I-th gap Ay =\ — Npp forl=1,--- ,n—1
and Ag = +o00, A,, = +o0o. Further, let

kmin max{l: A;>0,1=0,1,--- k—1},
kmax = min{l:A;>0,l=k, -+ ,n}.
Then kmax — kmin is the algebraic multiplicity of Ag.

If A >0, ie., knax = k, then the analysis is termed
to be k-th gap-dependent, otherwise it is k-th gap-free
and Ay ., Ag _ are its nearest positive gaps. Note
that we can always assume without loss of generality
that

max

0< mln{Ak Ay } < 400,

otherwise kmax — kmin = n. f(X) then is a constant
function equal to kA; and Problem (1) is trivial. We
now can define generalized k-th gap as

_ Aka
A‘q o { min{Akmm,Akmx},

which is always positive. As we will see shortly, the
convergence is always generalized k-th gap-dependent.

For any X € St(n, k), Y € St(n,1), since |XTY]2 <
[IX]l2]|'Y|l2 = 1, we can define principal angles (Golub
and Van Loan) 0 < 0; < 0y < - < Opingry <
5 between them by singular values of XTY, ie.,
c0s0;(X,Y) = 0;(X"Y), 5 = 1,-- ,min{k,l}. We
use a variant of the Binet-Cauchy distance as our po-
tential function. It is defined by principal angles be-

tween X and V; € V; as follows

Ak >0
otherwise

b

min{k,l}
VX, V) =1- [ cos®0;(X, Vo),

j=1

which can be related to determinants:

min{k,l}

vy XTVVIX), 12
Hl COS 9] (X-7Vl) - { det(VlTXXTVl)v l < k
ji=

Note that when [ = k then W2 (X, V;) recovers the
Binet-Cauchy distance on Stiefel/Grassmann mani-
folds (Ham and Lee, 2008). It is easy to see that
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U(X,V;) € [0,1]. Accordingly, we can define a vari-
ant of the Chordal distance as ©(X, V;) = min{k, [} —
IXTVi| € [0, mingk, 1}

4.2 Main Results

For ease of exposition, hereafter, we use p, 1, £ to
represent positive numerical constants with possibly
varying values at different places or cases. We are
interested in globally e-optimal solutions in terms of
our potential function, ie., (X, V) < e. For v €
(0,1) and 1 <1 < 2L let

. 1, A\
n) = 1= Heted in(eos (04
2 2
n—0 1 n+1 . 1, 4
2F1 ( 5 ,§»T;le151n2(COS Y(y21))),

where 5 F} is the Gaussian hypergeometric function of
matrix argument. Define pg(y) = 0 and

Pr(7)s Ap >0
— pk(7>7 Ak =0 and kmax =n
ply) = Dhax V), Ak =0 and kpin =0
Phmar (V): Ak =0, 0 < kin and kax <1

The information about p(y) that is useful to us is that
0 < p(y) <1 and p(y) — 0 as v — 0. See Remark
2 with Lemma 4.7 in the supplementary material for
details. Our main results are stated as follows, under
the assumption that kpax < ”T'H

Theorem 4.1. For any e,v € (0,1), with probabil-
ity at least 1 — p(vy), Solver 1 is able to converge
to a globally e-optimal solution V. € V, at a global
and k-th gap-dependent rate O(@ log 1) with a con-
YA
7
and k-th gap-free rate O(%) with diminishing step-
7= where 2ymin{Ay,,., Ay, 30 > 1 and
2l min{Akmin 7Akmax}(1_7) }
; .
Theorem 4.2. For anye,v,. € (0, 1), with probability
at least 1 — p(7y) — ¢, Solver 2 is able to converge to a
globally e-optimal solution V € V in expectation at
a global and generalized k-th gap-dependent rate O(%)
with diminishing step-sizes oy = t_% where 2yA 0 > 1
and 9 < Tp.

stant step-size 0 < a < min{p, 2=} or at a global

S1Z€ES Qi = min ? max

Y < 7min{p,

Theorem 4.3. For anye€,v,. € (0, 1), with probability
at least 1 — p(y) — ¢, Solver 3 is able to converge to a
globally e-optimal solution V € V in expectation at a
global and k-th gap-dependent rate O('v%A}i log %) with

a constant step-size 0 < « < min{p, 7?’“} and the

epoch length m > m or at a global and k-th
gap-free rate O(L) with diminishing step-sizes sy =

where m > 1, 2ymin{Ay_, , Ak,... 19 > 1 and

_ 9
t+sm—+T1
9 < Tp.

max

Remark 1 For the k-th gap-free convergence, the
role of nearest positive gaps min{Ay . ,Ag, . } are
covered up in theorems. In fact, the explicit rate is
as follows:

)2’yA119 n

U(Xyq1, Vi) < (X, Vi)( PR

t+7+1

Setting | = kpin and | = kpax shows that larger val-
ues of min{Ay, . ,Ak,...} yield faster convergence to
certain V € V. In addition, the k-th gap-free conver-
gence of Solver 3 comes from a direct application of
Theorem 4.2 for Solver 2, as RSVRG g(f(, Xi,Yri1) €
Tx,St(n, k) is a special case of the vanilla stochas-
tic Riemannian gradient, i.e., E[g(X, Xy, yi11)|Xe] =
VI(Xs).

min

Remark 2 ~ is related to the initial X € St(n, k).
We can see that larger v yields faster convergence.
In particular, we can take v = 1VXo Vi) - How-
ever, it will be small if Xy is uniformly sampled
from Grass(n, k) at random?, especially in the high-
dimensional setting. Large values of v can be expected
from a warm start to solvers. Wart-started solvers are
given an initial X close to a solution and thus having a
small value of ¥(Xy, V;). This explains the better per-
formance achieved by hybrid solvers (Shamir, 2016a;
Xu et al., 2017). Note that small values of v does not
affect global convergence in our analysis, while their
counterparts do in local convergence analysis (Shamir,
2016a; Xu et al., 2017).

4.3 Proofs

Before proofs, we present several supporting lemmas.
First, wee have the following obvious lemma which
holds no matter whether Ay = 0.

Lemma 4.4. X € V if and only if U(X, Vi . ) =
U (X, Vg,..)=0.

As we can assume kpax — kmin < n, there are four
scenarios to be handled:

e Ayp > 0. We then have A; = Ay and only need
to show that (X, V) < e for each solver as V is
unique.

e Ay =0 and kmin = 0. We then have Ay, = Ay
and it suffices to show that ¥(X;, Vi
as every k-dimensional subspace of Vi,
tutes a solution V.

max

max) <€
consti-

max

o Ay =0 and kmax = n. We then have Ay = Ay
and it suffices to show that ¥(X, Vi _..) < €,

2Quotient manifold Grass(n, k) = St(n, k)/St(k, k).
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as the direct sum of Vi_. and every (k — kmin)-
dimensional subspace of Vklmin constitutes a so-
lution V' where Vfc-mm represents the orthogonal
complement of Vy,

min

e A =0, 0 < kpin and kpax < n. We then have
Ay = min{Ag,,, , Ak,..} and need to show that
both ¥(X;, Vi, ..) < € and U(X¢, Vi, . ) < e
Then the direct sum of Vy,_, and every (k—Fkmin)-
dimensional subspace of V. —Vy, . constitutes
a solution V, where Vi —Vy . represents the
space Vi,

after removing its intersection with
Vi

min
max

min *

Fortunately, they can be handled in a unified way. In
what follows, assume that A; > 0. We now present
three key lemmas.

Lemma 4.5. If ¥(X;,V;) < 1—7, 0 < aq1 < p,
and 0 < v < 1, we have
E[W (X1, Vi) IXd]
< WX, V1) 2000 (1 U(X, Vi) (X))
+of 1 n¥(Xe, Vi) + 07186y,

where

pxy - { HQULBQu) ~ (T AX)), 1>
D= () - 0(Q,XTAX, Q) I<k

P ALQl,, 1>k
XTV _ 5 » Lt
e { QAP 1<k
represents the rank-min{k,1} SVD of X[ V;, and

0, Solver 1
B =< 1, 3 Solver 2
U (X, Vi) + (X1, Vi), Solver3

This lemma characterizes a unified (stochastic) recur-
rence relation for three solvers.

Lemma 4.6.
AU (X, V) < BE(Xy) <min{k, 1T (A1 —A) ¥ (Xy, V).

Lemma 4.7. For a uniformly sampled point Y €
Grass(n,l) with | < "T'H and 0 < v < 1, we have that
U(Y,V)) < 1—~ with probability at least 1 — p;(7y).

We are now ready to prove theorems.
Proof of Theorem 4.1

Proof. Note that 8; = 0 and first consider Ay > 0.
Setting | = k and o441 = «a in Lemmas 4.5-4.6, we
have

U(Xiy1, V) < (X, V) +a2n¥(X,, V)
—20A, U (X, V)(1 — ¥ (X, V))
< U(X, V)1 = 2a(vAg —na)).

When 0 < o < min{p, Vﬁ’“}, p = 2a(yAr —na) €

(0,1) and ¥(X;, V) < 1— for t > 1. We then get

U (X4, V) (1=p)¥(Xi-1,V)

IN N CIA

(1-p)"¥(Xo, V).

By Lemma 4.7, ¥(X(,V) < 1 — v with probability
at least 1 — p(y). Solving (1 — p)T = € yields T =

%log%. Hence, when 0 < o < min{p, ”’?’“}, Solver 1

returns a globally e-optimal solution after = %log% =

O(@ log 1), with probability at least 1 — p(v).

Consider A, = 0 and set ay = HLT. If ¥(X¢,V)) <

1—vand 0 < azy1 < p (e.g., ¥ < 7p suffices), then

\I’(XHlaVl)

< U(Xy, Vi) = 2004174 Y (X4, Vi)
—|—Ozf+177‘I/(Xt7 Vi)

< (1= 2001720 (X, Vi) + 770‘§+1'

If ¥ < 7min{p, W}, we have

(1= 20417AK) (1 =) +naj, <1—7.

Accordingly, U(X;, V) < 1—~ for ¢t > 1 and thus the
recursion holds for ¢ > 0. By Lemma D.1 in Balsub-
ramani et al. (2013), if 2yA;¥ > 1 then recursion can
yield

)27A”9 n

\Ij(Xt+17Vl) g \IJ(X(%VI)( t+7'+ 17

t+7+1

provided that ¥(Xo,V;) < 1 — v and ¥ <
YA (1—y

7 min{p, )}. The proof completes by setting
I = kmin and | = kpax and noting Lemma 4.7. O

Proof of Theorem 4.2

Proof. Note that 8, = 1 and oy = t_% now. If

U(Xy, V) < 1 —~, then there exists p such that
p*\/2T log(1/1) + p*T + ¥(Xo, V;) < 1 —~ holds. By
Lemma B.8, ¥(X,;,V;) <1—vholdsfor 1 <¢t<T-1
with probability at least 1 — ¢. As a result, as long as
(X, V) <1l—vand 0 < agy1 < p (or ¥ < 7p), we
will have the recursion

E[W(X41, Vi) [X4]
< U(X, V) =200 017AY (X, V)
+04t2+177lp(xt7 Vk)) + a%+1£
< (1= 2001720 Y(Xe, Vi) + (n + €)ad, 1,
and then

E[¥(X¢y1, Vi)
< (1= 20117 A)E[Y(Xy, V)] + naiyy
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holds for 1 <t < T —1. If ¥(Xo, V) <1—7v,9<7p
and further 2yAg®¥ > 1, as with the case of Ay =0 in
the proof of Theorem 4.1, we have

T )2’yA119 n

E[¥ (X, V)] < ¥(Xo, Vi) (75— T

with probability at least 1 — ¢. The proof completes.

O
Proof of Theorem 4.3
Proof. Note that 8; = ¥(Xy, Vi) —&—\I!(Xs,l,Vk) now.

First consider A, > 0. Setting [ = k, ayy1 = « and
by Lemmas 4.5-4.6, we have the following recursion

E[¥(X¢41, V)]
< E[¥(X, V)] = 207 AE[¥(Xy, V)]
+04277E[‘I’(Xt7 V)]
+a¢E[U(X,, V)] + *€E[¥(X,_1, V)]
< (1 =2a(yAr — (n+ §)a))E[¥(X, V)]

+02€¢E[U (X _1, V).

Similarly to the proof of Theorem 4.2, if ¥(X,_, V) <
1—vand 0 < a < p, then ¥(X;, V) < 1—+ holds for
t=1,---,m — 1 with probability at least 1 —¢. The
recursion then holds for ¢t = 0,1,--- ,m — 1. Letting
v =2a(yAy, — na) and p = o?€, we can write

E[¥(X,, V)] =E[¥(Xm, V)]
< (1 =v)EY(Xp-1, V)] + pE[¥ (X1, V)]
< (1= V)’”]E[‘P(XO,V)]
+ Z (1= v)'E[¥(X,-1, V)]
1=0
- «1—wm+u§fu—mwmmﬁkhvn
< (A=) +u21—u (Xs-1, V)]
:<ufwm+9mw®%hvm
where
(1 —v)™ =exp{mlog(l —v)} < exp{—mav}.

For any 6 € (0
1 — 24, namely

, 1), letting 1 < 6v and exp{—mar} <

< fyAk, . flog(1725)7
< 75 22—
we can arrive at

E[¥ (X, V)]

IN

(1 =)™ + DEW(X,1, V)

IN

(1 - OE[¥(Xs-1, V).

Choose § = i. By recursion over s, we get that for
any ¢ € (0,1) and ¢/ € (0, g) it holds that

E[¥(Xs, V)] < 27%E[W(Xo, V)]

with probability at least 1 — St/ = 1 — . Solv-
ing 275 = ¢ yields S = O(logl) and thus T =
mS = O(@log%). Noting Lemma 4.7, the k-th
gap-dependent result holds.

Consider A, = 0 now. Similarly, we have

E[W(Xi41, Vi)

E[¥ (X, V)] — 200 017AE[P (X, V7))

+ai  mE[Y (X, V)]

a7 EE[ (X, Vi) + of 1 EB[U (X1, Vi)
< (=207 A)E[W (X, Vi) + O‘t+1(77 +£).

IN

Unfolding the epoch over s and using the step-size
st = amts +m > Solver 2 with RSVRG is recovered.
The proof of the k-th gap-free result completes. O

5 Discussions

In this paper, we studied generalized k-th gap-
dependent convergence properties of three types of
first-order truly block Riemannian eigensolvers. For
first-order truly block solvers, this is the first time
that global convergence rates are established, though
they exist already with other solvers. Our analysis
demonstrates that the dependence on gaps is inherent
in characterizing eigensolvers’ convergence behaviors.
They are related to either the k-th gap itself or its
nearest positive ones corresponding to linear or sub-
linear rates. This work can be improved in several
ways. First, there are some limitations in the current
analysis. For example, Lemma 4.7 requires [ < ";rl
Although in general we have k <« ”JQFI for real prob-
lems, the case that k.. < "7'"1 does not hold always
in theory. Second, rates are not optimal. It would
be a good direction to derive optimal rates matching
those in other settings, e.g., non-truly solvers. Third,
it is worth exploring ways of improving the quadratic
dependence on the generalized k-th gap.

Acknowledgements

We would like to thank Renaud-Alexandre Pitaval
for his insightful suggestion on the potential func-
tion. This research is supported by the funding from
King Abdullah University of Science and Technology
(KAUST).



Zhiqiang Xu

References

P-A Absil, Robert Mahony, and Rodolphe Sepul-
chre. Optimization algorithms on matriz manifolds.
Princeton University Press, 2008.

Zeyuan Allen-Zhu and Yuanzhi Li. Even faster svd
decomposition yet without agonizing pain. In Ad-
vances in Neural Information Processing Systems,
pages 974-982, 2016.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav
Freund. The fast convergence of incremental pca.
In Advances in Neural Information Processing Sys-
tems, pages 3174-3182, 2013.

Silvere Bonnabel. Stochastic gradient descent
on riemannian manifolds. IEEE Trans. Au-
tomat. Contr., 58(9):2217-2229, 2013. doi:
10.1109/TAC.2013.2254619.

Chao Gao, Dan Garber, Nathan Srebro, Jialei Wang,
and Weiran Wang. Stochastic canonical correla-
tion analysis. CoRR, abs/1702.06533, 2017. URL
http://arxiv.org/abs/1702.06533.

Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade,
Cameron Musco, Praneeth Netrapalli, and Aaron
Sidford. Faster eigenvector computation via shift-
and-invert preconditioning. In International Confer-
ence on Machine Learning, pages 2626-2634, 2016.

Rong Ge, Chi Jin, Sham M. Kakade, Praneeth Ne-
trapalli, and Aaron Sidford. Efficient algorithms
for large-scale generalized eigenvector computation
and canonical correlation analysis. In International
Conference on Machine Learning, pages 27412750,
2016.

Gene H. Golub and Charles F. Van Loan. Matriz
Computations (8rd Ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 1996. ISBN 0-8018-
5414-8.

G.H. Golub and C.F. Van Loan. Matriz Computa-
tions. Johns Hopkins Studies in the Mathematical
Sciences. ISBN 9781421407944.

Nathan Halko, Per-Gunnar Martinsson, and Joel A.
Tropp. Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate ma-
trix decompositions. SIAM Review, 53(2):217-288,
2011. doi: 10.1137/090771806.

Jihun Ham and Daniel D. Lee. Grassmann discrim-
inant analysis: a unifying view on subspace-based
learning. In International Conference on Machine
Learning, pages 376-383, 2008.

Moritz Hardt and Eric Price. The noisy power method:
A meta algorithm with applications. In Advances

in Neural Information Processing Systems, pages
2861-2869, 2014.

Moritz Hardt, Eric Price, and test. The noisy power
method: A meta algorithm with applications. In Ad-
vances in Neural Information Processing Systems,
pages 2861-2869, 2014.

Uwe Helmke and John B Moore. Optimization and dy-
namical systems. Springer Science & Business Me-
dia, 2012.

Rie Johnson and Tong Zhang. Accelerating stochas-
tic gradient descent using predictive variance reduc-
tion. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 315-323, 2013.

TP Krasulina. The method of stochastic approxima-
tion for the determination of the least eigenvalue of
a symmetrical matrix. USSR Computational Math-
ematics and Mathematical Physics, 9(6):189-195,
1969.

John M. Lee. Introduction to smooth manifolds.
Springer, 2012.
Qi Lei, Kai Zhong, and Inderjit S. Dhillon.

Coordinate-wise power method. In Advances in
Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2056-2064, 2016.

Huikang Liu, Weijie Wu, and Anthony Man-Cho
So. Quadratic optimization with orthogonality con-
straints: Explicit lojasiewicz exponent and linear
convergence of line-search methods. In ICML, pages
1158-1167, 2016.

Lester W Mackey. Deflation methods for sparse pca. In
Advances in neural information processing systems,
pages 1017-1024, 2009.

Bojan Mohar and Svatopluk Poljak. Eigenvalues in
combinatorial optimization. In Combinatorial and
graph-theoretical problems in linear algebra, pages

107-151. Springer New York, 1993.

Cameron Musco and Christopher Musco. Randomized
block krylov methods for stronger and faster approx-
imate singular value decomposition. In NIPS, pages
1396-1404, 2015.

Cameron Musco, Christopher Musco, and test. Ran-
domized block krylov methods for stronger and
faster approximate singular value decomposition. In
NIPS, pages 1396-1404, 2015.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
On spectral clustering: Analysis and an algorithm.
In T.G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing
Systems 14, pages 849-856. MIT Press, 2002.



On Truly Block Eigensolvers via Riemannian Optimization

Erkki Oja and Juha Karhunen. On stochastic approxi-
mation of the eigenvectors and eigenvalues of the ex-
pectation of a random matrix. Journal of mathemat-
ical analysis and applications, 106(1):69-84, 1985.

Ohad Shamir. A stochastic PCA and SVD algorithm
with an exponential convergence rate. In Interna-
tional Conference on Machine Learning, pages 144—
152, 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and
PCA: convergence properties and convexity. In In-
ternational Conference on Machine Learning, pages
248-256, 2016a.

Ohad Shamir. Convergence of stochastic gradient de-
scent for PCA. In International Conference on Ma-
chine Learning, pages 257265, 2016b.

U. Torbjorn Ringertz. Eigenvalues in optimum struc-
tural design. Institute for Mathematics and Its Ap-
plications, 92:135, 1997.

Jialei Wang, Weiran Wang, Dan Garber, and Nathan
Srebro. Efficient coordinate-wise leading eigenvector
computation. CoRR, abs/1702.07834, 2017. URL
http://arxiv.org/abs/1702.07834.

Weiran Wang, Jialei Wang, Dan Garber, and Nati
Srebro. Efficient globally convergent stochastic op-
timization for canonical correlation analysis. In
Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 766774, 2016.

J. H. Wilkinson, editor. The Algebraic Eigenvalue
Problem. Oxford University Press, Inc., New York,
NY, USA, 1988. ISBN 0-198-53418-3.

Zhigiang Xu, Peilin Zhao, Jianneng Cao, and Xiaoli Li.
Matrix eigen-decomposition via doubly stochastic
riemannian optimization. In International Confer-
ence on Machine Learning, pages 1660-1669, 2016.

Zhigiang Xu, Yiping Ke, and Xin Gao. A fast stochas-
tic riemannian eigensolver. In UAI 2017.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra.
Riemannian SVRG: fast stochastic optimization on
riemannian manifolds. In NIPS, pages 4592-4600,
2016.



