
On the Statistical Efficiency of Compositional Nonparametric Prediction

Supplementary Material

A Detailed Proofs

A.1 Proof for Lemma 1

Proof. We first show ||u||∞ ≤ 1:

For any production of finite basis functions from Φ,

||
L∏

1=1

φil(xjl)||∞ ≤
L∏

1=1

||φil(xjl)||∞ ≤ 1

Each component of u is a production of finite basis
functions from Φ. Thus ||u||∞ ≤ 1.

Then we show ||v||1 ≤ ||w||1 if ||w||1 ≤ 1 by induction:

k = 0, ||v||1 = ||w||1;

Assume that for any k < K and any weighted labeled
binary tree h ∈ W2k+1, ||vh||1 ≤ ||wh||1. For k = K,
decompose the tree h(x; f,w) ∈ W2K+1 by the left
subtree hl(x; fl,wl) = 〈vl,ul〉 and the right subtree as
hr(x; fr,wr) = 〈vr,ur〉.

If the root is a ”+”, then ||v||1 = ||vl||1 + ||vr||1 ≤
||wl||1 + ||wr||1 = ||w||1.

If the root is a ”*”, then

||v||1 =
∑
t

∑
s

|vtlvsr |

=
∑
t

|vtl |
∑
s

|vsr |

=
∑
t

|vtl |||vr||1

= ||vl||1||vr||1
≤ ||wl||1||wr||1
≤ ||w||21
≤ ||w||1

A.2 Proof for Lemma 2

Proof. Remind that p is the dimension of the covariate,
and q is the number of basis functions. We define
F∗2k+1 ⊂ F2k+1 as the set of labeled binary trees with
exactly 2k + 1 nodes. In this step, we will show that
|F∗2k+1| ≤ 2k(k)!(pq)k+1.

We first show |F∗2k+1| ≤ (pq)k+1(k)!2k for all k =
0, 1, · · · :

k = 0, |F∗2∗0+1| = pq ≤ (pq)0+1(0)!20;

k = 1, |F∗2∗1+1| = 2(pq)2 − 2pq < (pq)1+1(1)!21;

Assume that |F∗2∗k+1| ≤ (pq)k+1(k)!2k for all k < K,
then for k = K,

|F∗2K+1| = 2
∑

i∈{1,3,··· ,2K−1}

|F∗i ||F∗2K−i|

≤ 2
∑

i=0,··· ,K−1
(pq)i+1(i)!2i

(pq)K−i−1+1(K − i− 1)!2K−i−1

= (pq)K+12K
∑

i=0,··· ,K−1
(i)!(K − i− 1)!

≤ (pq)K+12K
∑

i=0,··· ,K−1
(K − 1)!

≤ (pq)K+12K(K)!

Since for k ≥ 1, we have 2k−1 =
k−1∑
i=0

(k−1)!
i!(k−1−i)! , or

equivalently, 2k−1

(k−1)! =
k−1∑
i=0

1
i!(k−1−i)! , and since 1/x is

concave, by Jensen’s inequality, we have that 2k−1

(k)! =
k−1∑
i=0

1
k

1
i!(k−1−i)! ≤

1
k−1∑
i=0

i!(k−1−i)!/k
. Thus

k−1∑
i=0

i!(k − 1 −

i)! ≤ k (k)!
2k−1 for k ≥ 1. Except for the root node, a

labeled binary tree consists of the left subtree and the
right subtree. Thus

|F∗2k+1| = 2
∑

i∈{1,3,··· ,2k−1}

|F∗i ||F∗2k−i|

≤ (pq)k+12k
∑

i=0,··· ,k−1

(i)!(k − i− 1)!

≤ (pq)k+12kk
(k)!

2k−1

= 2k(k)!(pq)k+1

Finally, we will prove that |F2k+1| ≤ 4k(k)!(pq)k+1.

|F2k+1| =
k∑
i=0

|F∗2i+1|

≤
k−1∑
i=1

2i(i)!(pq)i+1 + pq + 2k(k)!(pq)k+1

≤ k ∗ 2(k − 1)(k − 1)!(pq)k−1+1 + 2k(k)!(pq)k+1

≤ 4k(k)!(pq)k+1

A.3 Proof for Lemma 3

Proof. Define M∗2k+1 = max
f∈F∗2k+1

Mf . Since M∗2k+1 =

M2k+1, it is equivalent to show M∗2k+1 < (1.45)k+1.
We will prove the lemma by induction.

Yixi Xu, Jean Honorio, Xiao Wang

k = 0, M∗2∗0+1 = 1 < (1.45)1;

k = 1, M∗2∗1+1 = max(1, 1 + 1) = 2 < (1.45)2;

k = 2, M∗2∗2+1 = 3 < (1.45)3;

Assume that M∗2k+1 < (1.45)k+1 for all k < K, where
K ≥ 3, then for k = K,

M∗2k+1 = max
i∈{1,3,··· ,2K−1}

[max(M∗iM
∗
2K−i,M

∗
i +M∗2K−i)]

< max
i∈{1,3,··· ,2K−1}

[max(1.45
i−1
2 +11.45

2K−i−1
2 +1,

1.45
i−1
2 +1 + 1.45

2K−i−1
2 +1)]

= (1.45)K+1

B Technical Lemma

The following technical lemma regarding the McDi-
armid’s condition for the supremum can be found in [2].

Lemma 4. Let z be a random variable of support
Z = (Rp,Y) and distribution D. Let S = {z1 . . . zn}
be a dataset of n samples. Let H be a hypothesis class
satisfying H ⊆ {h | h : Z → [0, 1]}. The function:

ϕ(S) = sup
h∈H

(
ED[h]− ÊS [h]

)
(11)

satisfies the following condition:

|ϕ(z1, . . . , zi, . . . , zn)− ϕ(z1, . . . , z̃i, . . . , zn)| ≤ 1/n

(∀i,∀z1 . . . zn, z̃i ∈ Z)

C Detailed Greedy Search Algorithm
and Illustration Example

For completeness, we present our main greedy search
algorithm in detail in Algorithm 1, as well as the al-
gorithm to compute the node weights in Algorithm 2.
For simplicity, we assume the covariate xm ∈ [0, 1]p.
As for the set of basis functions Φ, piecewise linear
functions, Fourier basis functions, or truncated polyno-
mials could be good choices in practice. We first define
fw(x) as the output of tree structure f with weights
w for input x. For instance, let f be the tree struc-
ture of Figure 2(a). With a corresponding weight for
each leaf, fw can be visualized as in Figure 2(b). Thus
fw(x) = (w1φ1(x2)+w2φ3(x1))∗(w3φ3(x2)+w4φ1(x3))
in this specific case. The loss function is defined as

L(fw;x,y) =
n∑

m=1
(ym − ŷm)2/2, where ŷm = fw(xm).

We could explore the interaction structure f by adding
and multiplying a basis function on a single dimension
of covariate x.

Algorithm 1 Greedy search algorithm

Input: X = (x1, . . . ,xn)′ ∈ Rn×p: n data points
y = (y1, . . . , yn) ∈ Rn: n observations
Φ: a set of q basis functions, k: the number

of iterations
Initialize the tree fw = w0 + w1φi1(xj1), where
(w0, w1, i1, j1) = arg min

(w′0,w
′,i′,j′)

∑n
m=1(ym − w′0 −

w′φi′(xj′))
2

for iters = 1 to k − 1 do
for node in fw.leaves do
path = path(fw.root, node)
for m = 1 to n do

Algorithm 2 with input (xm, fw, path):
bm = b(xm), km = k(xm)
cm = node(xm) (If node is wφi(xj), then
node(xm) = wφi(xmj))

end for

(w0, w+, i+, j+) = arg min
(w′0,w

′≤1,i′,j′)

n∑
m=1

(ym − w′0 −

bm − km(cm + w′φi′(xmj′)))
2, and define r+ as

the corresponding minimum value attained.

(w0, w∗, i∗, j∗) = arg min
(w′0,w

′≤1,i′,j′)

n∑
m=1

(ym − w′0 −

bm − km(cmw
′φi′(xmj′)))

2, and define r∗ as the
corresponding minimum value attained.
if r+ < r∗ then

Insert the new leaf w+φi+(xj+) at node with
”+”, and call the new tree fnodew

rnode = r+
else

Insert the new leaf(w∗φi∗(xj∗) at node) with
”*”, and call the new tree fnodew

rnode = r∗
end if
Adjust all weights

end for
if rnode < rbest then
rBEST = rnode, f

best
w = fnodew

end if
Update fw with f bestw

end for
Output: fw

On the Statistical Efficiency of Compositional Nonparametric Prediction

Algorithm 2 Compute b(xm) and k(xm)

Input: xm ∈ Rp: data point
fw: current weighted labeled tree
path: path from the root to the insert posi-

tion
Initialize root as the root of fw, k=1, b=0
while path is not empty do

Define subtree as the !path[1] subtree of root
val = evaluate(subtree,xm), where evaluate
gives the output of the weighted labeled tree
subtree with input xm
if root = ” + ” then
b = b+ val ∗ k

else if root = ” ∗ ” then
k = val ∗ k

end if
Update root as its path[1] child
Remove the first element of path

end while
Output: (b, k)

An example to illustrate Algorithm 2. Take Fig-
ure 7 for example, and assume we are trying to insert
a new leaf wx34 with either a ”+” or ”*” at the Node
E, that is to replace the weighted leaf −.05x1 with ei-
ther −.05x1 +wx34 or −.05x1 ∗wx34. With an unknown
weight w and an unknown intercept w0, the output ŷm
for the input xm of the new tree is

w0 + [.1x2m2 − .05xm1 + wx3m4](.3 sin(πxm2) + .02xm3)

, w0 + b(xm) + k(xm)(wx3m4 − .05xm1)

for ”+”, and

w0 + [.1x2m2 + wx3m4(−.05)xm1](.3 sin(πxm2) + .02xm3)

= w0 + b(xm) + k(xm)(−.05wx3m4xm1)

for ”*”.

Figure 7: Inserting a new leaf at Node E.

Note that b(xm) and k(xm) are con-
stant with respect to the to-be-defined

weight, and thus, the optimization problems

min
w

n∑
m=1

(ym − w0 − b(xm)− k(xm)(wx3m4 − .05xm1))2

and min
w

n∑
m=1

(ym − w0 − b(xm)− k(xm)(−.05wx3m4xm1))2

are both least square problems. We add a constraint
|w| ≤ 1 according to the assumption of Theorem 1, to
ensure the uniform convergence. However, it is not
straightforward to compute b(xm) and k(xm). As
shown in Algorithm 2, we compute the value of b(xm)
and k(xm) iteratively along the path from the root
to the insert position. We continue with our current
setting, and move on to compute b(xm) and k(xm)
according to Algorithm 2, assuming xm = (1, 1, 1).

1. Input: xm = (1, 1, 1), fw is the tree in Figure 7,
path = (left, right)

2. Initialize: root =Node A, k = 1,b = 0

3. In a first iteration path[1] = left, so define subtree
as the right =!left subtree of root(consisting of
Nodes C, F, G),

valm = evaluate(subtree,xm) = .3 sin(πxm2) +
.02xm3 = .02

4. Since root = ” ∗ ”, k = valm ∗ k = .02

5. Update root as its left child: root =Node B,
path = (right) after removing the first element
of path

6. In a second iteration path[1] = right, so update
subtree as the left =!right subtree of root (con-
sisting of Node D only)

valm = evaluate(subtree,xm) = .1x2m2 = .1

7. Since root = ” + ”, b = b+ valm ∗ k = .002

8. Update root as its right child, path = () after
removing the first element of path

9. Stop the iterations since path is empty

10. Return (b(xm) = .002, k(xm) = .02)

D Real World Experiments

Airline Delays. For real-world experiments, we
evaluate our algorithm on the US flight dataset.
We use a subset of the data with flight arrival
and departure times for commercial flights in 2008.
The dataset is publicly available at http://stat-
computing.org/dataexpo/2009/. The flight delay is
the response variable, which is predicted by using the
following variables: the age of the aircraft, distance
that needs to be covered, airtime, departure time, ar-
rival time, day of the week, day of the month, and

Yixi Xu, Jean Honorio, Xiao Wang

month. We randomly select 800,000 datapoints, using
a random subset of 700,000 samples to train the model
and 100,000 to test it. Although our method uses only
k = 10 (i.e., 2k+ 1 = 21 nodes, or k+ 1 = 11 functions
of features), we obtain a test RMSE of 34.89. For
comparison, the authors in [7] also randomly selected
800,000 samples (700,000 for training, 100,000 for test-
ing) and obtained an RMSE between 32.6 and 33.5
with 1200 iterations on a Gaussian processes approach.
In general, Gaussian processes predict the output by
memorization of the 700,000 training points. Our tree
depends only on evaluating k + 1 = 11 functions of
features. When predicting, our tree does not need to
remember the training set.

World Weather. The world weather dataset con-
tains monthly measurements of temperature, precip-
itation, vapor, cloud cover, wet days and frost days
from Jan 1990 to Dec 2002 (156 months) on a 5 × 5
degree grid that covers the entire world. The dataset is
publicly available at http://www.cru.uea.ac.uk/. The
response variable is temperature. We use 19,000 sam-
ples for training, 8000 samples for testing, and run
30 iterations. Although our method uses only k = 30
(i.e., 2k + 1 = 61 nodes, or k + 1 = 31 functions of
features), we obtain a test RMSE of 1.319. Gaussian
processes obtained a test RMSE of 1.23. Since the
standard deviation of the output variable is 16.98, both
our method and Gaussian processes obtain a coefficient
of determination of 0.99.

	Detailed Proofs
	Proof for Lemma 1
	Proof for Lemma 2
	Proof for Lemma 3

	Technical Lemma
	Detailed Greedy Search Algorithm and Illustration Example
	Real World Experiments

