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Abstract

In this paper, we propose a compositional
nonparametric method in which a model is
expressed as a labeled binary tree of 2k + 1
nodes, where each node is either a summa-
tion, a multiplication, or the application of
one of the ¢ basis functions to one of the
p covariates. We show that in order to re-
cover a labeled binary tree from a given
dataset, the sufficient number of samples is
O(klog(pq) +log(k!)), and the necessary num-
ber of samples is Q(klog(pg) — log(k!)). We
further propose a greedy algorithm for re-
gression in order to validate our theoretical
findings through synthetic experiments.

1 Introduction

Nonparametric methods, such as spline-based methods
and kernel-based methods, have been widely used in
the past 20 years. Most existing methods make assump-
tions regarding the structure of the model in terms of
interactions. For instance, the work of [12] assumes an
additive structure of the predictor function, while in [4]
the kernel family is defined as polynomial combinations
of base kernels of a fixed degree. On the one hand,
there is usually insufficient evidence from the data to
support the assumption of a specific structure. On the
other hand, inclusion of all interactions especially of
high order terms would be burdensome for comput-
ing especially when the data is high dimensional. A
commonly used strategy is to only include low order
interactions into the model [4]. However, this would
still be a restrictive assumption.
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Our goal is to discover the complex structure of the
predictor function in a concise manner. In contrast,
existing methods focus on the discovery of the structure
of kernels |46]. As an illustrative example for predictor
functions, consider the work of Schmidt et al. [14],
which discovered physical laws from experimental data,
and provided concise analytical expressions that are
amenable to human interpretation.

We build our model by compositionally adding or mul-
tiplying basis functions applied to specific dimensions
of the covariate. This model is structurally equivalent
to a labeled binary tree. The sum-product structure
has demonstrated its versatility for several problems.
Examples include sum-product networks for compu-
tation of partition functions and marginals of high-
dimensional distributions [10] and structure discovery
in nonparametric regression for automatic selection of
the kernel family [6].

Our model is a generalization of several popular meth-
ods. For illustration, consider the following examples:

e Tensor product spline surfaces [3]: Assume there
are two covariates & = (x1,x2), and define g(x) =
a 4
Y- Bijodi(x1)¢;(x2), given the basis functions
i=15=1
®1,-..,04 : R = R. For simplicity, assume ¢ = 2,
then Figure is one visualization of g, where
i1 = wiws, P12 = wiwg, Bo1 = waws, faz =
wWoW4.

e Sparse additive models [12]: Assume that g(x) has
an additive decomposition, where € = (z1,...,2p).

P
Define g(x) = > ¢q4,(x;), where ay,...,a, €
j=1

P

{1,...,q} and such that ) I(¢,, # 0) < s for
j=1

some integer s < p.

e Tensor decomposition: Given a set of ¢ functions
®1,...,¢04 and a tensor y;;; for 4,5,k =1,...,p.
The problem is to find the indices a,,b.,c, €
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for » = 1,...,R,
p p R 2
> 22 <Z Wy a, (1) Py, () Pe, (k) yijk) .

r=1

that minimize:

R
Note that > w,dq, (i)ds,.(7)dc,. (k) can be written

r=1
as a fixed weighted labeled binary tree. Figure
1L(b)|illustrates the case when R = 2.

Our contribution is as follows. First, we propose
a general compositional sum-product nonparametric
method, in which a model is expressed as a weighted
labeled binary tree. Second, we provide a general-
ization bound that holds for any data distribution
and any weighted labeled binary tree. We show that
O(klog(pq) + log k!) samples are sufficient, by using
Rademacher-complexity arguments. Third, we further
show that Q(klog(pq)—log k!) samples are necessary, by
using information-theoretic arguments. Thus, our sam-
ple complexity bounds are tight. Furthermore, since
the sample complexity is logarithmic in p and ¢, our
method is statistically suitable for high dimensions and
a large number of basis functions. Finally, we propose a
well-motivated greedy algorithm for regression in order
to validate our theoretical findings.

For comparison with results on sparse additive models,
the work of [12] presents an L;-regularization approach.
Additionally, a sample complexity of O(qlog((p — s)q))
was shown to be sufficient for the correct identification
of the basis functions in the sparse additive model. Note
that in our work, we are interested in generalization
bounds for the prediction error. The necessary number
of samples for sparse additive models was analyzed
in [11], where a sample complexity of Q(slogp) was
found for the recovery of a function that is close to
the true function in Ly-norm. Our sample complexity
guarantee of O(klogp) matches this bound.

The paper is structured as follows. In Section 2, we
provide a generalization bound. Section 3 discusses the
necessary number of samples. In Section 4, we propose
a greedy search algorithm for regression. In Section 5,
we validate our theoretical results through synthetic
experiments.

2 Compositional Nonparametric Trees
for the General Prediction Problem

In this section, we define the general prediction prob-
lem, and then propose a solution via a compositional
nonparametric method, in which a model is defined
as a weighted labeled binary tree. In this tree, each
node represents a multiplication, an addition, or the
application of a basis function to a particular covariate.
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wi1¢1(z1) wadz(z1) widi(z2) wada(x2)

(a) Tensor product spline surfaces.
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(b) Tensor decomposition.

Figure 1: Examples of tensor product spline surfaces
and tensor decomposition.
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(a) A labeled binary tree.
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(b) A weighted labeled binary tree.

Figure 2: Two tree examples.

The General Prediction Problem. Assume that
x1,...,xT, are n independent random variables on X =
RP, y1,...,y, are on ) C R. The general prediction
problem is defined as

yi = t(g(xi) + ), (1)

where t : R — ) is a fixed function related to the pre-
diction problem, g : R? — R is an unknown function,
and ¢; is an independent noise. We provide two exam-
ples in order to illustrate how to adopt equation (|1)) to
different settings. For regression, we define t(z) = z,
while for classification, we define t(z) = sign(z).

The Labeled Binary Tree. We define a functional
structure built compositionally by adding and multi-
plying a small number of basis functions. A straight-
forward visualization of this structure is a labeled bi-
nary tree. Given an infinite set of basis functions
O ={¢,l=1,2,--- ,00} on R = [—1,1] and a trunca-
tion parameter q, Fory1 is a set of binary trees where:

1. there are no more than 2k + 1 nodes,
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2. the labels of non-leaf nodes can be either “+” or

Wk
)

3. the label of a leaf node can only be a function in
® on a specific dimension of the covariate x =
(x1,...,2zp), that is ¢;(z;) forany i =1,...,¢ and
j = ]‘7 A 7p’

Figure gives an example of a labeled binary tree
with seven nodes. All the leaves are ¢;(z;)s, while all
non-leaf nodes are operations. Note that if we switch
the left sub-tree and the right sub-tree, we obtain an
equivalent structure.

As pointed out later in Remark (1] in the nonparametric
setting, both k and ¢ are allowed to grow as a function
of n.

The Weighted Labeled Binary Tree. It is easy
to show that a labeled binary tree with 2k 4+ 1 nodes
has the following properties:

1. Tt includes k operations.

2. It has k + 1 leaves.

An easy way to add weights is to directly add weights
to each leaf node, as shown in Figure So given a
tree structure f € Fart1, we can define W(f) as the
set of all weighted labeled binary trees given f, with
constraint ||w||; < 1. Additionally, we define

U ww. (2)

fE€Fak+1

Wakt1 =

For a fixed f € Fory1, any h € W(f) can be
rewritten as a summation of some basis functions
and some productions of basis functions. For
instance, given w and the labeled binary tree
structure fy in Figure Figure represents
a function h(z; fo,w) = (wid1(x) + wads(x1)) *
(wsds(x2) + wadi(x3)), and it is the summation of
4 interactions wiwzdy (x2)d3(x2), wiwadr(x2)d1(x3),
wawsPs(x1))ds(x2), and wowsps(z1)d1(x3). Equiv-
alently, h(z; fo,w) = (v,u), where v = ¢ (w) =
(wiws, wiwy, wows, wowy) and w = Y§(x) =

(¢1(w2)d3(w2), P1(w2)P1(23), p3(x1)P3(x2), P3(w1)d1(73)).

Similarly, for any labeled binary tree f, we could write
h = h(z; f,w) € W(f) as an inner product of two
vectors v and wu:

h(xvfaw): <v7u>, v:w;(w% UZlﬂ?@)a (3)
where the transformation function ¢} and ¢} depend
on f. Define the length of the vector v and w as My,
and M/ also depends on f. Define
max M. (4)

Moy 1 =
f€Fart1

Lemma 1. If |lw|; <1 and ||¢;||, < 1Vi, regardless
of f, we always have ||v|; <1 and ||u| < 1.

Proof sketch. By induction. O

(Detailed proofs can be found on Appendix A.)

3 Sufficient Number of Samples

In this section, we provide a generalization bound that
holds for any data distribution and any labeled binary
tree. This not only implies the sufficient number of
samples to recover a labeled binary tree from a given
dataset, but also guarantees that the empirical risk (i.e.,
the risk with respect to a training set) is a consistent
estimator of the true risk (i.e., the risk with respect
to the data distribution). We first bound the size of
Fok+1, and then show a Rademacher-based uniform
convergence guarantee.

Properties of the Labeled Binary Tree Set. Let
|Fok+1| denote the size of Far11: the labeled binary
tree set with no more than 2k + 1 nodes. The lemma
below gives the upper bound of the size of the functional
space, which will be used later to show the uniform
convergence.

Lemma 2. For k > 1,
Ak (k)!(pg) .

we have |Fopi1| <

Proof sketch. By induction. O

The lemma below gives the upper bound of Magq,
which is used to later to bound the Rademacher com-
plexity. Remind that My is defined in eq..

Lemma 3. My, < (1.45)F+1
Proof sketch. By induction. O

Rademacher-based  Uniform  Convergence.
Next, we present our first main theorem, which
guarantees a uniform convergence of the empirical risk
to the true risk, regardless of the tree structure and
weights.

Assume that d: Y x )Y — [0, 1] is a 1-Lipschitz function
related to the prediction problem. For regression, we
assume ) = R, and d(y,y’) = min(1, (y — v')?/2),
while for classification, we assume ) = {—1, 1}, and
d(y,y’) = min(1, max(0,1 — yy')). Let z = (z,y) € Z,
where Z = X x Y. Furthermore, let H(f) = {h(z) =
d(y,g(z)),g € W(f)} for a fixed labeled binary tree f.
Let Hor+1 be a hypothesis class satisfying

U #w.

f€Fart1

Hop+1 =
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For every h € H(f), we define the true and empirical
risks as

S\H

]ED[M = EZND[h’( )]

=R 2O

Next, we state our generalization bound that shows that
O(klog(pq) + log k!) samples are sufficient for learning.

Theorem 1. Let z = (z,y) be a random variable of
support Z and distribution D. Let S = {z1...2,} be a
dataset of n i.i.d. samples drawn from D. Fiz § € (0,1).
With probability at least 1 — § over the choice of S, we
have:

(Vf €f2k+1,Vh S H(f))

o k+1
Eplh] < Bslh] +2y/ ——+
\/(k + 1) log pq + log 8k(k)! + log (1/6)
2n

Proof. Given a function h:Z" — R, we define
Es[h(S)] = Eg~p»[h(S)]. The function ¢f(S) =
SUDp (1) (IED [h] — Eﬂh]) fulfills the condition in Mc-
Diarmid’s inequality and H(f) C {h|h : Z — [0,1]},
by Lemma [4| (Please see Appendix B.), therefore

Plps(S) — Eslps(S)] > ¢] < eSmaa/m? = e=ne®,

Furthermore, by applying the union bound for all
[ € Fakq1, by Lemma[2] and by Hoeffding’s inequality,
we have:

P[(3f € For+1), 0 (S) — Eslpf(9)] > €]l <

ST Ples(S) — Eslps(8)] > €] < 2|Fappale 2
fE€Fart1

< Sk(k)!(pq)k+1672ne2

Equivalently, P[(Vf € For+1), 05 (S) — Egles(S)] <
e]] > 1 — 8k(k)!(pg)*+te=2ne
Setting 8k (k)!(pg)FTle=2n<" = ¢, we get

6_\/(k+1 1ogpq+1og8k(k)'+log(1/5) . Thus:

PI(Vf € Fort1): 05(S) < Eslps(S)]+

\/(k: + 1) log pq + log 8k(k)! + log (1/5)]
2n
>1-6 (6)

Note that by the definition of the supremum, by the
definition of the function ¢ : Z™ — R, and by eq.(@)7
with probability at least 1 — §, simultaneously for all

f € ]:2k+1 and h € H(f)

Bolh] - Bsli] < sup (Eolt] - Eslh])
= ¢£(95)
_ \/(k + 1) log pg + 102gn8k(k)! +log (1/6) N
Eslps(9)] (7)

The next step is to bound Eg[pf(S)] in eq.(7) in terms
of the Rademacher complexity of W(f). By the defini-
tion of ¢, by the ghost sample technique, the Ledoux-
Talagrand Contraction Lemma, we can show that

Esler(9)] = 2R, (H(f)) < 28,0V (/)

The final step is to bound R, (W(f)), and it is sufficient
to bound Rg(W(f)) for any f € Fops1. Then for a
fixed f € Fakt1, any g € W(f) can be rewritten as a
summation of no more than [(1.45)¥*!] productions of
basis functions, where [m] denotes that largest integer
smaller than or equal to m according to Lemma [3] We
could decompose h = h(z; f,w) as in equation ,
thus h = h(zx; f,w) = (v,u), where ||v||; < 1 and
||u||oo <1 by Lemmal[i] By using a technique similar
to [9] for linear prediction, we have

)
sup oig(x
gEW(S) ( Z )]

RG]

) -
<7E0’ 7
] (zm )]

RsW(f)) = Eo

:Eo_

||'v| <1
=—E,| sup (v,> 0, ciu)
n lv]l, <1

v n i
_ Pl g, s sy ]

n

17 ‘
“n Eq [sup ) i, Ui[u(z)]j]

L J

V 210gM2k: 1 n i
= Y= sup [ [w®)?

n J
2log Magy1 2
SNAITLITSRV AN

S / 2 log M2k+1

n
\/ (k+1) log145

ﬁ

Finally, we have (f) = Eswpn [%S(W(f))] <

\/E O
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Corollary 1. Define h = argminEg[h], and h =
h€Hok+1

argmin Ep[h]. Then under the same setting of The-

h€Hak4+1

orem fix 6 € (0,1). With probability at least 1 — 26

over the choice of S, we have:

Ep[h] — Ep[h] < 2\/’“ +1. \/log(l/é)+

n 2n
\/(k + 1) log pq + log 8k(k)! + log (1/6)
2n

Proof. By Theorem [1] with probability at least 1 — §
over the choice of S,

N ~ k+1
Eplf] < Bslf] + 21/ —+

\/(k + 1) log pq + log 8k(k)! + log (1/6)
2n

By Hoeffding’s inequality, with probability at least 1—4§
over the choice of S,

log(1/9)

Es[h] — Eplh] < on

Since h minimizes Eg[h], Eg[h] < Eg[h]. With proba-
bility at least 1 — 2§ over the choice of S,
Eplh] — Ep[h] = Ep[h] — Es[h] + Es[h] — Ep|[R]

< Ep[h] - Es[h] + Es[h] — Epl[h]

. 2\/k+1 N \/10g(1/5)+
n 2n

\/(k + 1) log pq + log 8k(k)! + log (1/4)
2n

O

Next, we present a useful remark in the nonparametric
setting, where both k and ¢ are allowed to grow as a

function of n.
1—2e

Remark 1. If k € O(min(nl/Q’E,’ﬁogP ), ¢ €

0(6"1/276) for any e € (0,1/2), then the generaliza-
tion error in Theorem [1] could be uniformly bounded by

O(n—°).

4 Necessary Number of Samples

In this section, we analyze the necessary number of
samples to recover a labeled binary tree from a given
dataset. To show the necessary number of samples,
we restrict the operation to multiplications only, and
consider unit weights. Note that the necessary num-
ber of samples in restricted ensembles yields a lower
bound for the original problem. The use of restricted

ensembles is customary for information-theoretic lower
bounds [13/15]. We utilize Fano’s inequality as the
main proof technique.

We construct a restricted ensemble as follows. De-
fine a sequence of basis functions ¢;(z) = v/2 cos(irz),
where z € [-1,1] for ¢ = 1,...,q. Furthermore, let
x; ~ Unif[-1,1]P, ¢; ~ N(0,02). Let S = {(x;,2;) :
zi = gla) + e, = 1,...,n}, and S = {(@;,y) :
yi = t(z),i = 1,...,n}, where t : R — ) is a fixed
function related to the prediction problem, as intro-
duced in Section 2. This defines a Markov chain
g — S — S — §. To apply Fano’s inequality, we
need to further bound the mutual information I(g, S")
by a sum of Kullback-Leibler (KL) divergences of the
form KL(Pg y|g,|Pe.y)g) where g; and g; are two dif-
ferent compositional trees. Consider a labeled binary
tree subspace Gog41 of Fapy1, where we only allow for
multiplication nodes (i.e., additions are not allowed)
and where each covariate z; of the independent vari-
able « is used only once. Furthermore, we consider a
restricted ensemble with unit weights. Equivalently,

Gonr1 ={gal@) = [[ ¢ile)):
(i,j)€A
AC{l,....,¢} x{1,...,p},
Al < k+1,Y(i,5) € A, 1 #£i= (1) € A}.

ko
Let ¢ = |Gap11| = ;:1 gt (i—fl)'

Next, we state our information-theoretic lower bound
that shows that Q(klog(pq) — log k!) samples are nec-
essary for learning.

Theorem 2. Assume nature uniformly picks a true
hypothesis g from Gag11. For any estimator g, if n <
(log(qk'H (kﬁ1)) —2log 2)052/27 then P[g # g] > %

Proof. Any g4 € Gopy1 can be decomposed by the
dimension of x:

ga(x) = H g7 (),

where g;“ = ¢i; if 3(ij,7) € A, and g7 = 1if (4,5) ¢ A
for any 7. In addition, fil $¢i(x)dz =0 and (¢;, ¢y ) =
[, 26i(x) ¢y (x)da = I(i = i'). Thus,

1 1
1
(9.4, 9.07) :/ /1 2779;‘(%')9;4 (zj)dzy - dxy
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Furthermore,

ga — g |1 = (9.4,94) + (947, 90) — 294, 9.47)

=2I(ga=gy4)
(10)

By the data processing inequality [5] in the Markov
chain ¢ -+ S — 8’ — g, and since the mutual informa-
tion can be bounded by a pairwise KL bound [16], we
have

I(g,5) <1(g,S)

1
2 YD KL(PsjgulPs,.)

A A

n
2 Z Z KL(Pf%yl!J.A |Pm7y\gAx )

A A

- 5 3T KL N o)

_ C%ZZ |lg.4 20%4 12

IN

By the Fano’s inequality [5] on the Markov chain g —
S — S — g, we have

n/o? +log?2

~ I(g,5') +1log2 .
log ¢

Plg#g>1 g c
By making

n/o? +log 2
log ¢

)

S=Pl#g>1-

we have

n < (loge —2log2)o?/2
Since ¢ > ¢(,2,), 0 < (logld™(,2,)) -
2log2)o?/2 implies P[§ # g] > 3. If p > k, the
above is equivalent to

o2
n=yQ (5(10g[qk+1pk+1/(k + 1)) —2log 2))

€ Q((k+1)log(pq) — log(k + 1)!)
O

Corollary 2. Assume nature uniformly picks a true
function g from Gogy1. For each g € Gopi1, define a
corresponding h(x,y) = %(y —g(x))%. The correspond-
ing true hypothesis is h = h(x,y) = %(y —g(x))?. Let
Horr1 = {h(z,y) = %(y —g(x))% g € Gogy1}. For
any estimator h = iL(w,y) = %(y —g(x2))?, ifn <
(log(q*1(,7,)) — 21og 2)02 /2, then Ep[h] — Ep[h] > 1
with probability at least %

Proof. g is the true function, so y = g(x) + €, where

€ ~ N(0,02). Recall that by Theorem 2, if n <
(log(¢"** (%)) — 2log2)o?/2 then Plg # §] > 1/2.
Thus, assuming that g # ¢, we have
Eplh]~Eplh] = JE(ey)nlly — (@) — (y — g())’]
= Bevnis 1 [(9(@) + €~ §(@)? - )
e~N(0,02)
= Eecl(9(@) — 3())? + 2€(5()  o(a))]
= Eel(9(z) — g(w))]+
B[ * Eal(9(2) — g(2))
Lo e
=59 =4l
=5 *21(5#9)
=1

O

Remark 2. Ezcess risk measures how well the em-
pirical risk minimizer performs when compared to the
best candidate in the hypothesis class. On the one
hand, Corollary [1| discusses the upper bound of the
excess risk, and indicates that the sufficient sample
complezity is O(klog(pq) + logk!). On the other hand,
Corollary [ discusses the lower bound of the excess
risk, and shows that the necessary sample complexity
is Q(klog(pg) — logk!). Especially when k < pq, both
the sufficient sample complezity and necessary sample
complezity are O(klog(pq)).

5 Greedy Search Algorithm for
Regression

In this section, we propose a greedy search algorithm
to recover a weighted labeled binary tree for regression.
As mentioned in Section 3.2, for regression, we define
d(y,y') = min(1, (y—»')%/2). For simplicity, we assume
Y = [-1,1], thus d(y,y’) = (y — 3')?/2. Consequently,
we have H(f) = {h(2) = h(z,y) = (y — 9(x))?/2,9 €
W(f)} for a fixed labeled binary tree f. The true
risk and the empirical risk are defined as Ep[h] =

Elel(y—9(@)?/2) and Bslh] = 3 (5~ g(w:))?/2.

i=1
Based on Theorem 1 in Section 3.2, it is straightforward
to have a brute-force algorithm to traverse all possible
trees in Fary1, and to compute the best weights for
each tree. Theorem 1 could guarantee that the risk at
the empirical risk minimizer is close to the minimum
possible risk over all functions in Why 41, given enough
training samples. However the space of trees grows
exponentially with the number of nodes, as shown in



Yixi Xu, Jean Honorio, Xiao Wang

Lemma [2] and therefore the brute-force algorithm is
exponential-time.

After decades of work, the literature in tensor decom-
position has still failed to provide polynomial-time
algorithms with guarantees, for a general nonsymmet-
ric tensor decomposition problem. In general, it has
been shown that most tensor problems are NP-hard [8].
Therefore most existing literature considers a specific
tensor structure like the symmetric orthogonal decom-
position [1]. As shown in Figure we can model
the tensor decomposition problem in our framework,
for a fixed tree. However in our problem, we learn the
tree structure. Thus, our problem is harder than tensor
decomposition.

Given the above, we propose a greedy search algorithm
for learning the structure of predictor functions. A
greedy approach was also taken in [6] for learning the
structure of kernels. Before we proceed, note that the
uniform convergence of the empirical risk to the true
risk holds for any h € Hory1 and therefore, it applies
to the greedy algorithm output, which is an element of
Hoky1-

Our algorithm begins by applying all basis functions
to all input dimensions, and picking the one that min-
imizes Y1 _ (Ym — w'¢ir(z;/))?/2 among all function
indices ¢’ € {1,...,q} and coordinates j' € {1,...,p},
where w’ is estimated separately for each candidate
option (¢/, 7). This produces a tree with a single node.
After this, we repeat the following search operators
over the leaves of the current tree: Any leaf V can be
replaced with V + V', or V1, where V' = w/¢;s (xj).

Our algorithm searches over the space of trees using
a greedy search approach. At each stage, we evaluate
the replacement of every leaf by either a summation
or multiplication, and compute the weight for the new
candidate leaf while fixing all the other weights. Then
we take the search operation with the lowest score
among all leaves, and adjust all weights by coordinate
descent at each iteration. (For completeness, we include
our main algorithm in Appendix C.)

Computing the Weight. A main step in our main
algorithm is the computation of the weight of a new
candidate leaf, while fixing all the other weights. For-
tunately, computing the new weight turns out to be
a simple least square problem, but involves traversing
the tree from the root to the candidate node being
evaluated. (The corresponding algorithm can be found
on Appendix C, with a concrete example to illustrate
our algorithm.)

Computational Complexity. Next, we analyze the
time complexity of our method. In iteration D, we solve
O(pgD) single-dimensional closed-form optimization

problems: for all the D tree leaves, our algorithm
tries to insert a new node with either ”+” or 7*”,
all ¢ basis functions, and all p dimensions of x. In
addition, it takes O(nD) time to compute the optimal
weight (in closed-form) for a specific basis function of a
specific dimension of @ at a specific insert position on a
dataset of size n. Finally, it takes O(nD) to adaptively
update all weights at each step by coordinate descent.
The computational complexity of our algorithm for &
iterations is thus O(pgn(12+22+- - -+k?)) € O(pgnk?).
This can be reduced by processing the tree leaves (or
alternatively, batches of data samples) in parallel.

6 Experiments

In this section, we demonstrate our theorem in four
simulation experiments. We use a function g(x) =
0.3sin(3mx1)cos(2mxs) + 0.423 — 0.324, and noise stan-
dard deviation ¢ = 0.05. Our choice of the set of
basis functions ® include B-spline of degree 1, Fourier
basis functions: {sin(imx),cos(imx)}i=1,... 0 and trun-
cated polynomials: {z,z? 23, (z —¢)3,t € R}, where
()4 = max(z,0). We designed four different exper-
iments to demonstrate our theoretical contributions.
For each setting, the generalization error is estimated
by the mean of 20 repeated trials in order to show error
bars at 95% confidence level.

Experiment 1 We set the dimension of the explana-
tory variables p = 100, the number of basis functions:
q = 40, and the number of iterations £ = 10. For
each value of n € {50,100, 150, 200, 250}, we sampled
n random samples x;, y; = g(x;) + ¢, i =1,--- ,n for
training, and n/3 samples for testing. In Figure 3| we
observe that the generalization error has a sharp decline
when n increases from 50 to 100, and a slower decline
for higher values of n. This demonstrates that the

generalization error o< 4/ + as prescribed by Theorem
n
m
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Figure 3: Generalization error vs. sample size n.
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We set the sample size n = 250, the
q = 40, and the num-

Experiment 2
number of basis functions:

ber of iterations k& = 10. For each value of p €
{10, 20, 50, 100, 200}, we sampled 250 p — dimensional
random samples x;, y; = g(x;) + ¢, 1 = 1,---,n

for training, and 83 samples for testing. Figure []
shows that the generalization error grows rapidly when
p € (0,50), and the growth slows down as p increases.
This finding matches the conclusion of Theorem [I] that
the generalization error o +/log p.
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Figure 4: Generalization error vs. dimension of the
explanatory variable p.

Experiment 3 We set the dimension of the explana-
tory variables p = 100, the number of basis functions:
q = 40, and the sample size n = 250. For each value of
the number of iterations k € {1,5, 10,20}, we sampled
250 random samples x;, y; = g(x;) +€,i=1,---,n
for training, and 83 samples for testing. As shown in
Figure p| the generalization error grows almost linearly
as k increases when k is small, but the growth rate
decreases apparently when k£ > 15. This is consistent
with the theoretical result that the generalization error

x Vk.
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Figure 5: Generalization error vs. number of iterations

k.

Experiment 4 We set the dimension of the explana-
tory variables p = 20, the sample size n = 250, and
the number of iterations £ = 10. For each value of
q € {10, 20,50, 100}, we sampled 250 random samples
x;, yi = g(x;) + €, 1 =1,---  n for training, and 83
samples for testing. Figure [0 indicates that the gen-
eralization error grows rapidly when ¢ is small, and
the growth slows down as ¢ continue to increase. This
matches the conclusion of Theorem [I] that the general-

ization error o /log q.
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Figure 6: Generalization error vs. number of basis
functions q.

Our methods are comparative to methods like Gaussian
processes for two real-world data sets, although our
model sizes are much smaller. (Please see Appendix
D.)

7 Concluding Remarks

There are several ways of extending this research.
While we focused on the sample complexity for trees
of predictor functions, it would be interesting to ana-
lyze trees of kernels as well, as many popular kernel
structures [6] are equivalent to a labeled binary tree.
Additionally, while we focused on learning trees, it
would be interesting to propose methods for learning
general directed acyclic graphs.
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