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Abstract

We propose a simple approach which, given
distributed computing resources, can nearly
achieve the accuracy of k-NN prediction, while
matching (or improving) the faster prediction
time of 1-NN. The approach consists of aggre-
gating denoised 1-NN predictors over a small
number of distributed subsamples. We show,
both theoretically and experimentally, that
small subsample sizes suffice to attain similar
performance as k-NN, without sacrificing the
computational efficiency of 1-NN.

1 INTRODUCTION

While k-Nearest Neighbor (k-NN) classification or re-
gression can achieve significantly better prediction ac-
curacy than 1-NN (k = 1), practitioners often default
to 1-NN as it can achieve much faster prediction that
scales better with large sample size n. In fact, much
of the commercial tools for nearest neighbor search re-
main optimized for 1-NN rather than for k-NN, further
biasing practice towards 1-NN. Unfortunately, 1-NN is
statistically inconsistent, i.e., its prediction accuracy
plateaus early as sample size n increases, while k-NN
keeps improving longer for choices of k n→∞−−−−→∞.

In this work we consider having access to a small num-
ber of distributed computing units, and ask whether bet-
ter tradeoffs between k-NN and 1-NN can be achieved
by harnessing parallelism at prediction time. A simple
idea is bagging multiple 1-NN predictors computed over
distributed subsamples; however this tends to require
a large number of subsamples, while the number of
computing units is often constrained in practice. In
fact, an infinite number of subsamples is assumed in
all known consistency guarantees for the 1-NN bagging
approach (Biau et al., 2010; Samworth et al., 2012).
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Here, we are particularly interested in small numbers
of distributed subsamples (say 1 to 10) as a practical
matter. Hence, we consider a simple variant of the
above idea, consisting of aggregating a few denoised
1-NN predictors. With this simple change, we obtain
the same theoretical error-rate guarantees as for k-NN,
using fewer subsamples, while individual processing
times are of the same order or better than 1-NN’s
computation time.

The main intuition behind denoising is as follows. The
increase in variance due to subsampling is hard to
counter if too few predictors are aggregated. We show
that this problem is suitably addressed by denoising
each subsample as a preprocessing step, i.e., replacing
the subsample labels with k-NN estimates based on
the original data. Prediction then consists of aggregat-
ing – by averaging or by majority voting – the 1-NN
predictions from a few denoised subsamples (of small
size m� n).

Interestingly, as shown both theoretically and ex-
perimentally, we can let the subsampling ratio
(m/n)

n→∞−−−−→ 0 while achieving a prediction accuracy
of the same order as that of k-NN. Such improved accu-
racy over vanilla 1-NN is verified experimentally, even
for relatively small number of distributed predictors.
Note that, in practice, we aim to minimize the number
of distributed predictors, or equivalently the number of
computing units which is usually costly in its own right.
This is therefore a main focus in our experiments. In
particular, we will see that even with a single denoised
1-NN predictor, i.e., one computer, we can observe a
significant improvement in accuracy over vanilla 1-NN
while maintaining the prediction speed of 1-NN. Our
main focus in this work is classification – perhaps the
most common form of NN prediction – but our results
readily extend to regression.

Detailed Results And Related Work

While nearest neighbor prediction methods are among
the oldest and most enduring in data analysis (Fix and
Hodges Jr, 1951; Cover and Hart, 1967; Kulkarni and
Posner, 1995), their theoretical performance in prac-
tical settings is still being elucidated. For statistical
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consistency, it is well known that one needs a number
k

n→∞−−−−→∞ of neighbors, i.e., the vanilla 1-NN method
is inconsistent for either regression or classification (De-
vroye et al., 1994). In the case of regression, Kpotufe
(2011) shows that convergence rates (l2 excess error
over Bayes) behave as O(n−2/(2+d)), for Lipschitz re-
gression functions over data with intrinsic dimension
d; this then implies a rate of O(n−1/(2+d)) for binary
classification via known relations between regression
and classification rates (see e.g. Devroye et al. (1996)).
Similar rates are recovered in (Cannings et al., 2017)
under much refined parametrization of the marginal
input distribution, while a recent paper of Moscovich
et al. (2016) recovers similar rates in semisupervised
settings.

Such classification rates can be sharpened by taking
into account the noise margin, i.e., the mass of data
away from the decision boundary. This is done in the
recent work of Chaudhuri and Dasgupta (2014) which
obtain faster rates of the form O(n−α(β+1)/(2α+d)) –
where the regression function is assumed α-smooth –
which can be much faster for large β (characterizing
the noise margin). However such rates require large
number of neighbors k = O(n2α/(2α+d)) growing as a
root of sample size n; such large k implies much slower
prediction time in practice, which is exacerbated by
the scarcity of optimized tools for ‘k’ nearest neighbor
search. In contrast, fast commercial tools for 1-NN
search are readily available, building on various space
partitioning data structures (Krauthgamer and Lee,
2004; Clarkson, 2005; Beygelzimer et al., 2006; Gionis
et al., 1999).

In this work we show that the classification error of
the proposed approach, namely aggregated denoised 1-
NN’s, is of the same optimal order Õ(n−α(β+1)/(2α+d))
plus a term Õ(m−α(β+1)/d) wherem ≤ n is the subsam-
ple size used for each denoised 1-NN. This additional
term, due to subsampling, is of lower order provided
m = Ω̃(nd/(2α+d)); in other words we can let the sub-
sampling ratio (m/n) = Ω̃(n−2α/(2α+d))

n→∞−−−−→ 0 while
achieving the same rate as k-NN. We emphasize that
the smaller the subsampling ratio, the faster the predic-
tion time: rather than just maintaining the prediction
time of vanilla 1-NN, we can actually get considerably
better prediction time using smaller subsamples, while
at the same time considerably improving prediction
accuracy towards that of k-NN. Finally notice that
the theoretical subsampling ratio of Ω̃(n−2α/(2α+d)) is
best with smaller d, the intrinsic dimension of the
data, which is not assumed to be known a priori. Such
intrinsic dimension d is smallest for structured data
in IRD, e.g. data on an unknown manifold, or sparse
data, and therefore suggests that much smaller sub-
samples – hence faster prediction times – are possible

with structured data while achieving good prediction
accuracy.

As mentioned earlier, the even simpler approach of bag-
ging 1-NN predictors is known to be consistent (Biau
and Devroye, 2010; Biau et al., 2010; Samworth et al.,
2012), however only in the case of an infinite bag size,
corresponding to an infinite number of computing units
in our setting – we assume one subsample per com-
puting unit so as to maintain or beat the prediction
time of 1-NN. Interestingly, as first shown in (Biau and
Devroye, 2010; Biau et al., 2010), the subsampling ratio
(m/n) can also tend to 0 as n → ∞, while achieving
optimal prediction rates (for fixed α = 1, β = 0), albeit
assuming an infinite number of subsamples. In contrast
we show optimal rates – on par with those of k-NN – for
even one denoised subsample. This suggests, as verified
experimentally, that few such denoised subsamples are
required for good prediction accuracy.

The recent work of Kontorovich and Weiss (2015), of
a more theoretical nature, considers a similar ques-
tion as ours, and derives a penalized 1-NN approach
shown to be statistically consistent unlike vanilla 1-
NN. The approach of Kontorovich and Weiss (2015)
roughly consists of finding a subsample of the data
whose induced 1-NN achieves a significant margin be-
tween classes (two classes in that work). Unfortunately
finding such subsample can be prohibitive (computable
in time O(n4.376)) in the large data regimes of interest
here. In contrast, our training phase only involves ran-
dom subsamples, and cross-validation over a denoising
parameter k (i.e., our training time is akin to the usual
k-NN training time).

Finally, unlike in the above cited works, our rates are
established for multiclass classification (for the sake of
completion), and depend logarithmically on the number
of classes. Furthermore, as stated earlier, our results
extend beyond classification to regression, and in fact
are established by first obtaining regression rates for
estimating the so-called regression function E [Y |X].

Paper outline. Section 2 presents our theoretical
setup and the prediction approach. Theoretical results
are discussed in Section 3, and the analysis in Section
4. Experimental evaluations on real-world datasets are
presented in Section 5.

2 PRELIMINARIES

2.1 Distributional Assumptions

Our main focus is classification, although our results
extend to regression. Henceforth we assume we are
given an i.i.d. sample (X,Y)

.
= (Xi, Yi)

n
1 where X ∈

X ⊂ IRD, and Y ∈ [L]
.
= {1, 2, . . . , L}.
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The conditional distribution PY |X is fully captured by
the so-called regression function, defined as η : X 7→
[0, 1]L, where ηi(x) = P (Y = i|X = x). We assume
the following on PX,Y .
Assumption 1 (Intrinsic dimension and regularity of
PX). First, for any x ∈ X and r > 0, define the ball
B(x, r)

.
= {x′ ∈ X : ‖x− x′‖ ≤ r}. We assume, there

exists an integer d, and a constant Cd such that, for
all x ∈ X , r > 0, we have PX(B(x, r)) ≥ Cdrd ∧ 1.

In this work d is unknown to the procedure. How-
ever, as is now understood from previous work (see
e.g. Kpotufe (2011)), the performance of NN meth-
ods depends on such intrinsic d. We will see that the
performance of the approach of interest here would
also depends on such unknown d. In particular, as is
argued in (Kpotufe, 2011), d is low for low-dimensional
manifolds, or sparse data, so we would think of d� D
for structured data. Note that the above assumption
also imposes regularity on PX , namely by ensuring
sufficient mass locally on X (so that NNs of a point x
are not arbitrarily far from it).
Assumption 2 (Smoothness of η). The function η is
(λ, α)-Hölder for some λ > 0, 0 < α ≤ 1, i.e.,

∀x, x′ ∈ X , ‖η(x)− η(x′)‖∞ ≤ λ ‖x− x
′‖α .

We will use the following version of Tsybakov’s noise
condition (Audibert and Tsybakov, 2007), adapted to
the multiclass setting.
Assumption 3 (Tsybakov noise condition). For any
x ∈ X , let η(l)(x) denote the l’th largest element in
{ηl(x)}Ll=1. There exists β > 0, and Cβ > 0 such that

∀t > 0, P
(∣∣η(1)(X)− η(2)(X)

∣∣ ≤ t) ≤ Cβtβ .
2.2 Classification Procedure

For any classifier h : X 7→ [L], we are interested in the
0-1 classification error

err(h) = PX,Y (h(X) 6= Y ) .

It is well known that the above error is mimimized by
the Bayes classifier h∗(x)

.
= argmaxl ηl(x). Therefore,

for any estimated classifier ĥ, we are interested in
the excess error err(ĥ) − err(h∗). We first recall the
following basic nearest neighbor estimators.
Definition 1 (k-NN prediction). Given k ∈ N, let
kNN-I(x) denote the indices of the k nearest neighbors
of x in the sample X. Assume, for simplicity, that
ties are resolved so that |kNN-I(x)| = k. The k-NN
classifier can be defined via the regression estimate
η̂ : X 7→ [0, 1]L, where

η̂l(x)
.
=

1

k

∑
i∈kNN-I(x)

1 {Yi = l} .

The k-NN classifier is then obtained as:

hη̂(x) = argmax
l

η̂l(x).

Finally we let rk(x) denote the distance from x to its
k-th nearest neighbor.

We can now formally describe the approach considered
in this work.

Definition 2 (Denoised 1-NN). Consider a random
subsample (without replacement) X′ of X of size
m ≤ n. For any x ∈ X , let NN(X′;x) denote the near-
est neighbor of x in X′. The denoised 1-NN estimate
at x is given as ĥ(x) = hη̂(NN(X′;x)), where hη̂ is as
defined above for some fixed k.

This estimator corresponds to 1-NN over a sample X′

where each X ′i ∈ X′ is prelabeled as hη̂(X ′i).

The resulting estimator, which we denote subNN for
simplicity, is defined as follows.

Definition 3 (subNN). Let {ĥi}Ii=1, denote denoised
1-NN estimators defined over I independent subsam-
ples of size m (i.e., the I sets of indices corresponding
to each subsample are picked independently, although
the indices in each set are picked with replacement in
[n]). At any x ∈ X , the subNN estimate h̄(x) is the
majority label in {ĥi(x)}Ii=1.

It is clear that the subNN estimate can be computed in
parallel over I machines, while the final step – namely,
computation of the majority vote – takes negligible time.
Thus, we will view the prediction time complexity
at any query x as the average time (over I machines)
it takes to compute the 1-NN of x on each subsam-
ple. This time complexity gets better as (m/n) → 0.
Furthermore, we will show that, even with relatively
small I (increasing variability), we can let (m/n) get
small while attaining an excess error on par with that
of k-NN (here hη̂). This is verified experimentally.

3 OVERVIEW OF RESULTS

Our main theoretical result, Theorem 1 below, concerns
the statistical performance of subNN. The main techni-
cality involves characterizing the effect of subsampling
and denoising on performance. Interestingly, the rate
below does not depend on the number I of subsamples:
this is due to the averaging effect of taking majority
vote accross the I submodels, and is discussed in detail
in Section 4 (see proof and discussion of Lemma 2). In
particular, the rate is bounded in terms of a bad event
that is unlikely for a random submodel, and therefore
unlikely to happen for a majority.
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Theorem 1. Let 0 < δ < 1. Let V denote the VC
dimension of balls on X . With probability at least 1−Lδ,
there exists a choice of k ∈ [n], such that the estimate
h̄ satisfies

err(h̄)− err(h∗) ≤ C1 ·
(
V ln(Ln/δ)

n

)α(β+1)/(2α+d)

+ C2 ·
(
V ln(m/δ)

m

)α(β+1)/d

,

for constants C1, C2 depending on PX,Y .

The first term above is a function of the size n of the
original sample, and recovers the recent optimal bounds
for k-NN classification of Chaudhuri and Dasgupta
(2014). We note however that the result of Chaudhuri
and Dasgupta (2014) concerns binary classification,
while here we consider the more general setting of
multiclass. Matching lower bounds were established
earlier in (Audibert and Tsybakov, 2007).

The second term, a function of the subsample size m,
characterizes the additional error (over vanilla k-NN
hη̂) due to subsampling and due to using 1-NN’s at
prediction time. As discussed earlier in the introduc-
tion, the first term dominates (i.e. we recover the same
rates as for k-NN) whenever the subsampling ratio
(m/n) = Ω̃(n−α/(2α+d)) which goes to 0 as n → ∞.
This is remarkable in that it suggests smaller subsam-
ple sizes are sufficient (for good accuracy) in the large
sample regimes motivating the present work. We will
see later that this is also supported by experiments.

As mentioned earlier, similar vanishing subsampling ra-
tios were shown for bagged 1-NN in (Biau and Devroye,
2010; Biau et al., 2010; Samworth et al., 2012), but
assuming an infinite number of subsamples. In contrast
the above result holds for any number of subsamples,
and the improvements over 1-NN are supported in ex-
periments over varying number of subsamples, along
with varying subsampling ratios.

The main technicalities and insights in establishing
Theorem 1 are discussed in Section 4 below, with some
proof details relegated to the appendix.

4 ANALYSIS OVERVIEW

The proof of Theorem 1 is obtained by combining the
statements of Propositions 2 and 3 below. The main
technicality involved is in establishing Proposition 3
which brings together the effect of noise margin β,
smoothness α, and the overall error due to denoising
over a subsample. We overview these supporting results
in the next subsection, followed by the proof of Theorem
1.

4.1 Supporting Results

Theorem 1 relies on first establishing a rate of con-
vergence for the k-NN regression estimate η̂, used in
denoising the subsamples. While such rates exist in the
literature under various assumptions (see e.g. Kpotufe
(2011)), we require a high-probability rate that holds
uniformly over all x ∈ X . This is given in Proposition
1 below, and is established for our particular setting
where Y takes discrete multiclass values (i.e. η̂ and
η are both multivariate functions). Its proof follows
standard techniques adapted to our particular aim, and
is given in the appendix (supplementary material).
Proposition 1 (Uniform k-NN regression error). Let
0 < δ < 1. Let η̂ denote the k-NN regression estimate
in Definition 1. The following holds for a choice of
k = O

((
ln nL

δ

) d
2α+d (nCd)

2α
2α+d

)
. With probability at

least 1 − 2δ over (X,Y), we have simultaneously for
all x ∈ X :

‖η̂(x)− η(x)‖∞ ≤ C
(
V ln(nL/δ)

nCd

) α
2α+d

where C is a function of α, λ.

The above statement is obtained, by first remarking
that, under structural assumptions on PX , (namely
that there is sizable mass everywhere locally on X ),
nearest neighbor distances can be uniformly bounded
with high-probability. Such nearest neighbor distances
control the bias of the k-NN estimator, while its vari-
ance behaves like O(1/k).

Such a uniform bound on NN distances is given in
Lemma 1 below following standard insights.
Lemma 1 (Uniform bound on NN distances rk ). As in
Definition 1, let rk(x) denote the distance from x ∈ X
to its k’th nearest neighbor in a sample X ∼ PnX . Then,
with probability at least 1 − δ over X, the following
holds for all k ∈ [n]:

sup
x∈X

rk(x) ≤
(

3

Cd

) 1
d

·max

(
k

n
,
V ln 2n+ ln 8

δ

n

) 1
d

.

4.2 SubNN Convergence

We are ultimately interested in the particular regression
estimates induced by subsampling: the denoised 1-
NN estimates ĥ over a subsample can be viewed as
ĥ = argmaxl∈[L] η̂

]
l for a regression estimate η̂](x)

.
=

η̂(NN(X′;x)), i.e., η̂ evaluated at the nearest neighbor
NN(X′;x) of x in X′. Our first step is to relate the
error of η̂] to that of η̂. Here again the bound on NN
distances of Lemma 1 above comes in handy since η̂]
can be viewed as introducing additional bias to η̂, a
bias which is in turn controlled by the distance from a
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query x to its NN in the subsample X′. By the above
lemma, this distance is of order Õ(m−1/d), introducing
a bias of order Õ(m−α/d) given the smoothness of η.

Thus, combining the above two results yields the fol-
lowing regression error on denoised estimates.

Proposition 2 (Uniform convergence of denoised
1-NN regression). Let 0 < δ < 1. Let η̂ de-
note the k-NN regression estimate in Definition 1.
Let X′ denote a subsample (without replacement) of
X. Define the denoised 1-NN estimate η̂](x)

.
=

η̂(NN(X′;x)). The following holds for a choice of
k = O

(
(V ln nL

δ )
d

2α+d (nCd)
2α

2α+d

)
. With probability

at least 1− 3δ over (X,Y), and X′, we have simulta-
neously for all x ∈ X :

‖η̂](x)− η(x)‖∞ ≤C
(
V ln(nL/δ)

nCd

) α
2α+d

+ C

(
V ln(m/δ)

mCd

)α
d

,

where C is a function of α, λ.

Proof. Define x′ = NN(X′;x) so that η̂](x) = η̂(x′).
We then have the two parts decomposition:

‖η̂](x)− η(x)‖∞ = ‖η̂(x′)− η(x)‖∞
≤ ‖η̂(x′)− η(x′)‖∞ + ‖η(x′)− η(x)‖∞

≤ C
(
V ln(nL/δ)

nCd

) α
2α+d

+ ‖η(x′)− η(x)‖∞, (1)

where the last inequality follows (with probability 1−
2δ) from Proposition 1.

To bound the second term in inequality (1), notice
that X′ can be viewed as m i.i.d. samples from PX .
Therefore ‖x′ − x‖ can be bounded using Lemma 1.
Therefore by smoothness condition on η in Assumption
2, we have with probability at least 1−δ, simultaneously
for all x ∈ X :

‖η(x′)− η(x)‖∞ ≤ λ‖x′ − x‖α

≤ λ
(

3V ln 2m+ 3 ln 8
δ

mCd

)α
d

≤ C
(V ln m

δ

mCd

)α
d

. (2)

Combining (1) and (2) yields the statement.

Next we consider aggregate regression error, i.e., the
discrepancy (ηh∗(x)(x)− ηh̄(x)(x)) between the coordi-
nates of η given by the labels h∗(x) and h̄(x). This
will be bounded in terms of the error φ(n,m) attain-
able by the individual denoised regression estimates
(as bounded in the above proposition).

Lemma 2 (Uniform convergence of aggregate regres-
sion). Given independent subsamples {X′i}

I
i=1 from

(X,Y), define η̂]i (x) = η̂(NN(X′i;x)), i.e., the re-
gression estimate η̂ evaluated at the nearest neighbor
NN(X′i;x) of x in X′i. Suppose there exists φ = φ(n,m)
such that,

max
i∈[I]

PX,Y,X′i

(
∃x ∈ X , ‖η̂]i (x)− η(x)‖∞ > φ

)
≤ δ,

for some 0 < δ < 1. Then, let h̄ denote the subNN
estimate using subsamples {X′i}

I
i=1. With probability at

least 1−Lδ over the randomness in (X,Y) and {X′i}
I
1,

the following holds simultaneously for all x ∈ X :

ηh∗(x)(x)− ηh̄(x)(x) ≤ 2φ.

Remark. Notice that in the above statement, the prob-
ability of error goes from δ to Lδ, but does not depend
on the number I of submodels. This is because of the
averaging effect of the majority vote. For intuition, sup-
pose B is a bad event and 1Bi is whether B happens
for submodel i. Suppose further that E1Bi ≤ δ for all
i. Then the likelihood of B happens for a majority of
models (more than I/2) is

E1

{∑
i

1Bi ≥ I/2

}
≤ 2

I
· E
∑
i

1Bi ≤ 2δ,

by a Markov inequality. We use this type of intuition in
the proof, however over a sequence of related bad events,
and using the fact that, the submodels’ estimates are
independent conditioned on X,Y.

Proof. The result is obtained by appropriately bound-
ing the indicator 1

{
∃x : ηh∗(x)(x)− ηh̄(x)(x) > 2φ

}
.

Let ĥi denote the denoised 1-NN classifier on sample
X′i, or for short, the i’th submodel. First notice that, if
the majority vote h̄(x)

.
= l for some label l ∈ [L], then

at least I/L submodels ĥi(x) predict l at x. In other
words, we have

L

I

I∑
i=1

1
{
ĥi(x) = l

}
≥ 1.

Therefore, fix x ∈ X , and let h̄(x)
.
= l; we then have:

1
{
ηh∗(x)(x)− ηh̄(x)(x) > 2φ

}
.
= 1

{
ηh∗(x)(x)− ηl(x) > 2φ

}
≤ L

I

I∑
i=1

1
{
ĥi(x) = l

}
1
{
ηh∗(x)(x)− ηl(x) > 2φ

}
≤ L

I

I∑
i=1

1
{
ηh∗(x)(x)− ηĥi(x)(x) > 2φ

}
. (3)
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We bound the above as follows. Suppose ĥi(x)
.
= li

and h∗(x)
.
= l∗ for some labels li and l∗ in [L]. Now,

if ‖η(x) − η̂]i (x)‖∞ ≤ φ, then ηl∗(x) ≤ η̂]i,l∗(x) + φ

and ηli(x) ≥ η̂]i,li(x)− φ. Also by definition we know
that li = ĥi(x) is the maximum entry of η̂]i (x), so
η̂]i,l∗(x) ≤ η̂]i,li(x). Therefore

ηh∗(x)(x)− ηĥi(x)(x) ≤ (η̂]i,l∗(x) + φ)− (η̂]i,li(x)− φ)

= (η̂]i,l∗(x)− η̂]i,li(x)) + 2φ ≤ 2φ.

In other words, ηh∗(x)(x)− ηĥi(x)(x) > 2φ only when
‖η(x)− η̂]i (x)‖∞ > φ. Thus, bound (3) to obtain:

1
{
ηh∗(x)(x)− ηh̄(x)(x) > 2φ

}
≤ L

I

I∑
i=1

1
{
‖η(x)− η̂]i (x)‖∞ > φ

}
.

Finally we use the fact that, for an event A(x), we have
1 {∃x ∈ X : A(x)} = supx∈X 1 {A(x)}. Combine this
fact with the above inequality to get:

1
{
∃x ∈ X : ηh∗(x)(x)− ηh̄(x)(x) > 2φ

}
= sup
x∈X

1
{
ηh∗(x)(x)− ηh̄(x)(x) > 2φ

}
≤ sup
x∈X

L

I

I∑
i=1

1
{
‖η(x)− η̂]i (x)‖∞ > φ

}
≤ L

I

I∑
i=1

sup
x∈X

1
{
‖η(x)− η̂]i (x)‖∞ > φ

}
=
L

I

I∑
i=1

1
{
∃x ∈ X : ‖η(x)− η̂]i (x)‖∞ > φ

}
.

The final statement is obtained by integrating both
sides of the inequality over the randomness in X,Y and
the (conditionally) independent subsamples {X′i}

I
1.

Next, Proposition 3 below states that the excess error
of the subNN estimate h̄ can be bounded in terms of
the aggregate regression error (ηh∗ − ηh̄) considered
in Lemma 2. In particular, the proposition serves to
account for the effect of the noise margin parameter β
towards obtaining faster rates than those in terms of
smoothness α only.
Proposition 3. Suppose there exists φ = φ(n,m) such
that, with probability at least 1 − δ over the random-
ness in (X,Y) and the subsamples {X′i}

I
i=1, we have

simultaneously for all x ∈ X , ηh∗(x)(x)−ηh̄(x)(x) < 2φ.

Then with probability at least 1− δ, the excess classifi-
cation error of the estimate h̄ satisfies:

err(h̄)− err(h∗) ≤ Cβ(2φ)β+1.

Proof. Since, for any classifier h, ηh(x)(x)
.
=

P (Y = h(x)), the excess error of the sub-NN classi-
fier h̄ can be written as EX

[
ηh∗(X)(X)− ηh̄(X)(X)

]
.

Thus, the assumption in the proposition statement –
that for all x ∈ X, ηh∗(x)(x) − ηh̄(x)(x) < 2φ (with
probability at least 1 − δ) – yields a trivial bound of
2φ on the excess error. We want to refine this bound.

Let η(l)(x) be the l-th largest entry in the vector η(x) =

{ηl}Ll=1, and define ∆(x)
.
= η(1)(x)− η(2)(x).

Then at any fixed point x, we can refine the bound on
excess error at x (namely ηh∗(x)(x)− ηh̄(x)(x)), by sep-
arately considering the following exhaustive conditions
A(x) and B(x) on x:

A: ∆(x) ≥ 2φ, in which case the excess error is 0.
This follows from η(1)(x) = ηh∗(x)(x) and that:

ηh∗(x)(x)− ηh̄(x)(x) < 2φ ≤ ηh∗(x)(x)− η(2)(x)

In other words ηh̄(x)(x) is larger than η(2), so
equals η(1)(x)

.
= ηh∗(x)(x).

B: ∆(x) < 2φ, in which case the excess error cannot
be refined at x. However, the total mass of such x’s
is at most Cβ(2φ)β by Tsybakov’s noise condition
(Assumption 3).

Combining these conditions, we have with probability
at least 1− δ that the excess error satisfies:

err(h̄)− err(h∗) = EX

[
ηh∗(X)(X)− ηh̄(X)(X)

]
≤ EX [0 · 1 {A(X)}+ 2φ · 1 {B(X)}]
≤ 2φ · E [1 {B(X)}] ≤ 2φ · P (∆(x) ≤ 2φ)

≤ Cβ(2φ)β+1.

Combining the results of this section yield the main
theorem whose proof is given next.

4.3 Proof Of Theorem 1

Our main result follows easily from Propositions 2 and
3. This is given below.

Proof. Fix any 0 < δ < 1. Note that the conditions of
Lemma 2 are verified in Proposition 2, namely that,
with probability 1 − 3δ, all regression errors (of sub-
models) are bounded by

φ
.
= C

(
V ln(Ln/δ)

n

)α/(2α+d)

+ C

(
V ln(m/δ)

m

)α/d
,

(4)
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Table 1: Datasets Used In Evaluating subNN
Name #train #test #dimension #classes Description

MiniBooNE 120k 10k 50 2 Particle identification (Roe, 2010)
TwitterBuzz 130k 10k 50 2 Buzz in social media (François Kawala, 2013)
LetterBNG 34k 10k 16 26 English alphabet (ML)

NewsGroups20 11k 7.5k 130k 20 Document classification (Mitchell, 1999)
YearPredMSD 34k 10k 90 regression Release year of songs (Bertin-Mahieux, 2011)
WineQuality 5.5k 1.0k 12 regression Quality of wine (Cortez, 2009)

where C is a constant depending on α and λ.

Next, the conditions of Proposition 3 are obtained in
Lemma 2 with the same setting of φ. It follows that
with probability at least 1− 3Lδ, we have:

err(h̄)− err(h∗) ≤ Cβ(2φ)β+1,

with φ as in (4). Given that g(x) = xβ+1 is a convex
function, we conclude by applying Jensen’s inequality
(viewing (1/2C) · φ as an average of two terms).

5 EXPERIMENTS

Experimental Setup. Data is standardized along
each coordinate of X.
- Fitting subNN. We view the subsample size m and the
number I of subsamples as exogenous parameters deter-
mined by the practical constraints of a given application
domain. Namely, smaller m yields faster prediction
and is driven by prediction time requirement, while
larger I improves prediction error but is constrained
by available computing units. However, much of our
experiments concern the sensitivity of subNN to m
and I, and yield clear insights into tradeoffs on these
choices. Thus, for any fixed choice of m and I, we
choose k by 2-fold cross-validation. The search for k
is done in two stages: first, the best value k′ (minimiz-
ing validation error) is picked on a log-scale {2i}dlogne

i=1 ,
then a final choice for k is made on a refined linear
range [dk′/2e − 10 : 2k′ + 10].
- Fitting k-NN. The choice of k for vanilla k-NN is also
made in two stages as above.

Table 1 describes the datasets used in the experi-
ments. We use k-d-tree for fast NN search from Python
scikit-learn for all procedures and all datasets ex-
cept NewsGroups20, for which we perform a direct
search (due to high-dimensionality and sparsity). As
explained earlier, our main focus is on classification,
however theoretical insights from previous sections ex-
tend to regression, as substantiated in this section.

Results. Our main experimental results are de-
scribed in Table 2, showing the relative errors (error
of the method divided by that of vanilla k-NN) and
relative prediction time (prediction time divided by

that of k-NN) for versions of subNN((m/n), I), where
m/n is the subsampling ratio used, and I is the number
of subsamples. For regression datasets, the error is the
MSE, while for classification we use 0-1 error. The
prediction time reported for the subNN methods is the
maximum time over the I subsamples plus aggregation
time, reflecting the effective prediction time for the
distributed-computing settings motivating this work.
The results support our theoretical insights, namely
that subNN can achieve accuracy close or matching
that of k-NN, while at the same time achieving fast
prediction time, on par or better than those of 1-NN.

- Sensitivity to m and I. As expected, better times are
achievable with smaller subsample sizes, while better
prediction accuracy is achievable as more subsamples
tend to reduce variability. This is further illustrated
for instance in Figure 1, where we vary the number of
subsamples. Interestingly in this figure, for the Mini-
Boone dataset, the larger subsampling ratio 0.75 yields
the best accuracy over any number of subsamples, but
the gap essentially disappears when enough subsamples
are used. We thus have the following prescription in
choosing m and I: while small values of I work gener-
ally well, large values of I can only improve accuracy;
on the other hand, subsampling ratios of 0.1 yield good
time-accuracy tradeoffs accross datasets.

- Benefits of denoising. In Figure 2, we compare subNN
with pure bagging of 1-NN models. As suggested by
theory, we see that the bagging approach does indeed
require considerably more subsamples to significantly
improve over the error of vanilla 1-NN. In contrast, the
accuracy of subNN quickly tends to that of k-NN, in
particular for TwitterBuzz where 1 or 3 subsamples
are sufficient to statistically close the gap, even for
small subsampling ratio. This could be due to hidden
but beneficial structural aspects of this data. In all
cases, the experiments further highlights the benefits
of our simple denoising step, as a variance reduction
technique. This is further supported by the error-bars
(std) over 5 repetitions as shown in Figure 2.

Conclusion. We propose a procedure with theoret-
ical guarantees, which is easy to implement over dis-
tributed computing resources, and which achieves good
time-accuracy tradeoffs for nearest neighbor methods.
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Table 2: Ratios Of Error Rates and Prediction Times Over Corresponding Errors And Times Of k-NN.
Relative Error Relative Time

Data 1NN subNN(0.1,10) subNN(0.75,10) 1NN subNN(0.1,10) subNN(0.75,10)
MiniBooNE 1.280 1.039 1.027 0.609 0.247 0.547
TwitterBuzz 1.405 1.000 1.005 0.550 0.185 0.522
LetterBNG 1.127 1.086 1.144 0.459 0.219 0.396

NewsGroups20 1.122 1.206 1.002 0.610 0.081 0.668
YearPredMSD 1.859 1.082 1.110 0.847 0.025 0.249
WineQuality 1.276 1.011 1.018 0.989 0.885 0.906
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Figure 1: Comparing the Effect Of Subsampling Ratios on Prediction And Time Performance Of SubNN. Shown
are SubNN estimates using subsampling ratios 0.1, 0.5, and 0.75.
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Figure 2: Bagged 1NN Compared With SubNN Using Subsampling Ratios 0.1 (Left) And 0.75 (Right).
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A PROOF OF MAIN RESULTS

In this section, we show the proof of Proposition 1
(uniform bound on kNN regression error). The proof is
done by decomposing the regression error into bias and
variance (Lemma 5) and bound each of them separately
in Lemma 4 and 5. Lemma 1 will be proved first as a
by-product.

The decomposition is the following. Define η̃(x) as:

η̃(x) = EY|Xη̂(x) =
1

k

∑
i∈kNN-I(x)

η(Xi).

Viewing η̃ as the expectation of η̂ conditioning sam-
ple X, we can have the following variance and bias
decomposition of error of η̂:

‖η̂(x)− η(x)‖∞ ≤ ‖η̂(x)− η̃(x)‖∞ + ‖η̃(x)− η(x)‖∞.
(5)

We start by introducing a known result on relative VC
bound in Lemma 3. Then in Lemma 1, we use it to
give a uniform bound on rk(x) - the distance between
query point x and its k-th nearest neighborhood in
data. After that we use Lemma 1 to bound bias and
variance separately in Lemma 4 and 5. Proposition 1
is concluded by combing the two bounds.

Lemma 3 (Relative VC Bound, Vapnik 1971). Let B
be a set of subsets of X . B has finite VC dimension V.
For n drawn sample X1, . . . , Xn, the empirical prob-
ability measure is defined as Pn(B) = 1

n

∑n
i=1 1Xi∈B.

Define αn = (V ln 2n + ln(8/δ))/n. Let 0 < δ < 1,
with probability at least 1− δ over the randomness in
X1, . . . , Xn, the following holds simultaneously for all
B ∈ B:

P(B) ≤ Pn(B) +
√

Pn(B)αn + αn.

Using the above result, we can prove Lemma 1 (bound
on rk).

Proof of Lemma 1. By Lemma 3, let αn =
(V ln 2n+ ln(8/δ)) /n, with probability at least 1 − δ
over the randomness in X and ε > 0, for any x ∈ X
and closed ball Bx(ε, k) = B(x, (1− ε)rk(x)), we have:

P(Bx(ε, k)) ≤ Pn(Bx(ε, k)) +
√
Pn(Bx(ε, k))αn + αn

≤ 3 max (Pn(Bx(ε, k)), αn)

< 3 max

(
k

n
,
V ln 2n+ ln 8

δ

n

)
.

By Assumption 1 (intrinsic dimension), for any x ∈ X
and any ε > 0, P (Bx(ε, k)) is lower-bounded as below.

P (Bx(ε, k)) = P (B (x, (1− ε) rk (x))) ≥ Cd(1−ε)drdk(x).

Therefore, with probability at least 1− δ, the following
holds simultaneously for all x ∈ X :

rk(x)

≤
(
P(Bx(ε, k))

Cd

) 1
d

≤
(

3

Cd

) 1
d

·max

(
k

n
,
V ln 2n+ ln 8

δ

n

) 1
d

· (1− ε)−1.

Let ε → 0 in the above inequality and conclude the
proof.

Using Lemma 1 (uniform rk(x) bound), we can get a
uniform bound on the bias of η̂:
Lemma 4 (Bias of η̂). Let V be the VC dimension
of the class of balls on X . For 0 < δ < 1 and k ≥
V ln 2n + ln 8

δ , with probability at least 1 − δ over the
randomness in the choice of X, the following inequality
holds simultaneously for all x ∈ X :

‖η̃(x)− η(x)‖∞ ≤ λ ·
(

3

Cd
· k
n

)α
d

.

Proof. First, for a fixed sample X, by Assumption 2
(Smoothness of η) we have:

‖η̃(x)− η(x)‖∞

=
∥∥∥1

k

∑
i∈kNN-I(x)

η(Xi)− η(x)
∥∥∥
∞

≤ 1

k

∑
i∈kNN-I(x)

‖η(Xi)− η(x)‖∞

≤ 1

k

∑
i∈kNN-I(x)

λ‖Xi − x‖α

≤ 1

k

∑
i∈kNN-I(x)

λrαk (x) = λrαk (x).

It follows by Lemma 1, that, with high probability at
least 1− δ over X, the following holds simultaneously
for all x ∈ X .

‖η̃(x)− η(x)‖∞ ≤ λrαk (x) ≤ λ ·
(

3

Cd
· k
n

)α
d

.

Lemma 5 (Variance of η̂). Let V be the VC dimension
of balls on X . For 0 < δ < 1, with probability at least
1 − δ over the randomness in (X,Y), the following
inequality holds simultaneously for all x ∈ X :
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‖η̂(x)− η̃(x)‖∞ <
√
V
√

1

k
ln
nL

δ
.

Proof. Consider the l-th value of η̂(x)− η̃(x):

(η̂(x)− η̃(x))l =
1

k

∑
i∈kNN-I(x)

(
1 {Yi = l} − ηl(Xi)

)
.

Fix x, X and consider the randomness in Y condi-
tioned on X. Use Hoeffding’s Inequality. There are
k independent terms in the above summation and
E(1 {Yi = l} |Xi) = ηl(Xi). So the following holds
with probability at least 1− δ0 over the randomness in
Y:

(η̂(x)− η̃(x))l ≤
√

1

2k
ln

2

δ0
.

Apply the above analysis to l = 1, . . . , L and combine
them by union bound. So the following inequality holds
with probability at least 1−L · δ0 over the randomness
in Y:

‖η̂(x)− η̃(x)‖∞ ≤
√

1

2k
ln

2

δ0
.

Then consider variations in x. Given X fixed, the left
hand side of the above inequality can be seen as a
function of kNN-I(x). This is a subset of X covered
by ball B(x, rk(x)). By Sauer’s Lemma, the number of
such subsets ofX covered by a ball is bounded by

(
en
V
)V .

So there are at most
(
en
V
)V many different variations

of the above inequality when x varies. We combine the
variations by union bound. Let δ = δ0 · L ·

(
en
V
)V , the

following happens with probability at least 1− δ over
the randomness in Y:

sup
x∈X
‖η̂(x)− η̃(x)‖∞ ≤

√
1

2k
ln

2

δ0

≤
√
V
2k

ln
en

V
+

1

2k
ln

2L

δ

≤
√
V
√

1

k
ln
nL

δ
.

The above inequality holds for any fixed sample X
and the right hand side do not depend on X. So it
continue to hold for any drawn X. Thus we conclude
the proof.

Combining the bias and variance of η̂, we have the
bound on uniform kNN regression error.

Proof of Proposition 1. Apply Lemma 4 (bias) and
5 (variance) to inequality 5, with probability at least

1− 2δ:

‖η̂(x)−η(x)‖∞ ≤ λ
(

3

Cd

)α/d
·
(
k

n

)α/d
+
√
V·
√

1

k
ln
nL

δ
.

The above is minimized at k =
C ′(V ln nL

δ )
d

2α+d (nCd)
2α

2α+d , where C ′ depend only on
α and λ. Plug in this value of k into the statement
above, we obtain ‖η̂(x)−η(x)‖∞ = C ′′(V ln(nL/δ)

nCd
)

α
2α+d ,

where C ′′ depend solely on α and λ.

B ADDITIONAL TABLES AND
PLOTS

In this section we present supplemental plots and tables.

Table 3 shows the same experiment as in Table 2, but
reports average prediction time (over the I subsam-
ples), rather than the maximum prediction times, plus
the aggregation time. Comparing the two tables, one
can see that the differences between average and maxi-
mum times are small. In other words, prediction time
is rather stable over the subsamples, which is to be
expected as these times are mostly controlled by sub-
sample size and computing resource.

Figure 3 presents the same experiments as in Figure 1,
for an additional dataset (TwitterBuzz). It compares
the error and prediction time of subNN models as a
function of the number I of subsamples used. Again,
as we can see, subNN yields error rates similar to those
of kNN, even for a small number of subsamples. As
expected, the best prediction times are achieved with
the smaller subsample ratio of 0.1.
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Table 3: Ratios Of Error Rates and Average Prediction Times Over Corresponding Errors And Times Of k-NN.
Relative Error Relative Average Time

Data 1NN subNN(0.1,10) subNN(0.75,10) 1NN subNN(0.1,10) subNN(0.75,10)
MiniBooNE 1.280 1.039 1.027 0.609 0.216 0.492
TwitterBuzz 1.405 1.000 1.005 0.550 0.179 0.480
LetterBNG 1.127 1.086 1.144 0.459 0.218 0.390

NewsGroups20 1.122 1.206 1.002 0.610 0.076 0.659
YearPredMSD 1.859 1.082 1.110 0.847 0.025 0.248
WineQuality 1.276 1.011 1.018 0.989 0.826 0.878
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Figure 3: Comparing the Effect Of Subsampling Ratio And Number Of Models (TwitterBuzz). We find that all
the subNN predictors reach error similar to that of k-NN even when using only a few subsamples (1 or 3). As
expected, subNN with a subsampling ratio of 0.1 results in the best prediction times.
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