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Variance of bagging block HSIC

We will derive the variance of bagging block HSIC, and relate it with that of the full U -statistics and (unbagged)
single block HSIC.

Let Zi = (Xi, Yi) (i = 1, 2, . . . , n) be i.i.d. samples. HSIC can be expressed in the form of U -statistics of 4th
degree:

Un =
1(
n
4

) ∑
S∈Sn,4

h(ZS),

where h(z1, z2, z3, z4) is the U -statistic kernel corresponding to HSIC (see [1]), Sn,k is the set of all k-tuples (in
this case k = 4) of {1, . . . , n}, and ZS is an abbreviation of (Zi1 , . . . , Zik) for S = (i1, . . . , ik).

Consider the block HSIC with block size B. For simplicity, let M := n/B denote the number of blocks for
a single block HSIC estimator, and assume that n is taken so that M in an integer. The block HSIC is then
defined by

WB =
1

M

M∑
b=1

U
(b)
B , (1)

where U
(b)
B is the U -statistics corresponding to the empirical HSIC computed from only the B samples in the

b-the block, namely,

U
(b)
B =

1(
B
4

) ∑
S

h(ZS),

where the sum is taken for all the quadruplets from b-th block. Note that WB converges in law to a normal

distribution as n→∞ with B fixed, since U
(b)
B (b = 1, . . . ,M) are i.i.d. samples.

Recall that the bagging block HSIC with L random permutations is defined by

ξL,B :=
1

L

L∑
`=1

W`,B , (2)

where W`,B is defined similarly to WB in Eq. (1), but with a random permutation of Z1, . . . , Zn. We generate L
independent uniform random permutations of {1, . . . , n}, and make copies of WB . Note that, by the independence
of the random permutations, given Zn = (Z1, . . . , Zn), W`,B and W`′,B are independent for ` 6= `′, but can be
dependent unconditionally. The bagging block HSIC is simply the average over these L copies.

We rewrite ξL,B with the indicator of index. Let I`,b be the index set of the b-th block in the `-th permutation.
For an arbitrary quadruplet S = (i1, i2, i3, i4), define θ`,b(S) by

θ`,b(S) =

{
1 if S ∈ I`,b

0 otherwise.
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Then, we have

ξL,B =
1

LM
(
B
4

) L∑
`=1

M∑
b=1

∑
S∈Sn,4

θ`,b(S)h(ZS). (3)

Since E[h(S)] = HSIC(X,Y ), it is obvious that

E[ξL,B ] = HSIC(X,Y ),

and thus ξL,B is an unbiased estimator of HSIC.
It is not difficult to see that, as estimators of HSIC, the standard U -statistics Un has less variance than the

block HSIC ξ1,B , which is regarded as a special type of incomplete U -statistic. The next proposition asserts
that the variance of ξL,B , under the assumption of independence X ⊥⊥Y , interpolates the variances of these two
estimators.

Proposition 1 Assume Xi and Yi are independent. Then, we have

Var[ξL,B ] =
(

1− 1

L

)
Var[Un] +

1

L
Var[ξ1,B ].

(Proof) For notational simplicity, we use hS for h(ZS). It follows from the expression Eq. (3) that

Var[ξL,B ] =
1

(LM
(
B
4

)
)2

L∑
`=1

M∑
b=1

L∑
`′=1

M∑
b′=1

∑
S

∑
T

E[θ`,b(S)θ`′,b′(T )hShT ]

=
1

(LM
(
B
4

)
)2

L∑
`=1

∑
`′ 6=`

M∑
b=1

M∑
b′=1

∑
S

∑
T

E[θ`,b(S)θ`′,b′(T )hShT ]

+
1

(LM
(
B
4

)
)2

L∑
`=1

M∑
b=1

M∑
b′=1

∑
S

∑
T

E[θ`,b(S)θ`,b′(T )hShT ]

=: I + II.

Let p be the probability that θ`,b(S) takes 1, i.e., p = P (θ`,b(S) = 1). We have

p =

(
n−4
B−4

)(
n
4

) =

(
B
4

)(
n
4

) .
This can be confirmed as follows. p is the probability that S is included in a B-tuple of {1, . . . , n} when we
uniformly take it. This is equal to the proportion of B-tuples including S among all the B-tuples, and thus the
first equality. The second equality is simple computation.

From the independence of permutations, θ`,b(S) and θ`′,b′(T ) are independent if ` 6= `′. Since hS is a constant
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given Zn, we have

I =
1

(LM
(
B
4

)
)2

∑
(`,`′):` 6=`′

∑
S,T

∑
b,b′

E
[
E[θ`,b(S)θ`′,b′(T ) | Zn]E[hShT | Zn]

]
=

1

(LM
(
B
4

)
)2

∑
(`,`′):` 6=`′

∑
S,T

∑
b,b′

p2E[hShT ]

=
1

(LM
(
B
4

)
)2
L(L− 1)M2

(
B
4

)2(
n
4

)2 ∑
S,T

E[hShT ]

=
L− 1

L

1(
n
4

)2 ∑
S,T

E[hShT ]

=
L− 1

L
E
[( 1(

n
4

) ∑
S∈Sn,4

hS

)2]
=
L− 1

L
Var[Un].

The second term is given by

II =
1

(LM
(
B
4

)
)2

L∑
`=1

∑
b,b′

∑
S,T

E[θ`,b(S)θ`,b′(T )hShT ]

=
1

L2

L∑
`=1

E
[( 1

M

∑
b

1(
B
4

)2 ∑
S

θ`,b(S)hS

)2]
.

In the last line, the value in the squared bracket is exactly the same as a single block HSIC for the `-th sequence.
Therefore,

II =
1

L
Var[ξ1,B ].

This completes the proof.

False positive rate control

To check whether the methods can properly control the desired FPR, we run hsicInf using a dataset that has
no relationship between input and output. Specifically, we generated the input output pairs as {(xi, yi)}ni=1,
where x ∼ N(0, I20), 0 ∈ R is the vector whose elements are all zero, I ∈ R20×20 is the identity matrix, and
y ∼ N(0, 1).

Figure 1 shows the FPRs of hsicInf, hsic, and split algorithms. The both the proposed method and
split successfully control FPR, while hsic fails to control FPR. We see that the adjustment of the sampling
distribution is crucial for estimating proper p-values. It shows that all FPRs tend to be high when the number
of samples are small, and gradually converging to the significance level when the number of samples increases.
Since hsic cannot control the FPR at the desired level, we do not compare the TPR of hsic in the following
section.

3



1000 2000 3000

The number of samples

0
0.05

0.1

0.2

0.3

0.4

0.5

F
P

R

hsicInf (Gauss)

hsicInf (Laplace)

hsic (Gauss)

hsic (Laplace)

split (Gauss)

split (Laplace)

Figure 1: False positive rates at significant level α = 0.05 of the proposed methods. Comparison of hsicInf,
hsic, split, and larInf. We used B = 10 and L = 1 for the HSIC based approaches. The hsic computes
p-values without adjusting the sampling distribution by Theorem 1.

Classification data

p(x(1,2)|y = 1) = N

([
−3
0

]
,

[
1 0
0 1

])
p(x(1,2)|y = 2) = N

([
3
0

]
,

[
1 0
0 1

])
p(x(1,2)|y = 3) = 0.5N

([
0
3

]
,

[
1 0
0 2.25

])
+ 0.5N

([
0
−3

]
,

[
1 0
0 2.25

])
.

Then, we generated the final feature x = [(x(1,2))> x̃>]> where x̃ ∈ R18 and x̃ ∼ N(0, I).

-10 0 10

X
1

-10

-5

0

5

10

X
2

Class1

Class2

Class3

Figure 2: The multi-class classification dataset.
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Block parameter comparison L = 1

For this experiment, we first generated the input matrix X = [x1, . . . ,xn] ∈ Rd×n where x ∼ N(0, Σ̄), [Σ̄]ij =
0.95δij + 0.05, i, j ∈ {1, 2, 3, 4, 5}, [Σ̄]ii = δij , i, j ∈ {6, . . . , d}, δij = 1 if i = j and 0 otherwise, and d = {20, 500}
and n = {300, 600, . . . , 3000}.

Then, we generated the corresponding output variable as

• Linear: Y =
∑5

i=1Xi + 0.1E,

• Additive Non-linear: Y =
∑5

i=1X
2
i + 0.1E,

• Non-additive Non-linear:
Y = X1 exp(X2)X3 exp(X4)X5 + 0.1E,

where E ∼ N(0, 1) is an independent random noise.
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(a)

Figure 3: False positive rates at significant level α = 0.05 of the proposed methods. FPRs for hsicInf with
different block parameter B.
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(c) Non-additive Non-linear.
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(e) Additive Non-linear.

1000 2000 3000

The number of samples

0

0.05

0.1

0.2

0.3

0.4

F
P

R

(f) Non-additive Non-linear.

Figure 4: The results for hsicInf in uni-variate setups with different block parameter B. (a)-(c): TPR for the
three datasets. (d)-(f): FPR for the three datasets.
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Figure 5: The average AUC scores.
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(a) hsicInf (TPR).
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Figure 6: The results for the multi-variate regression dataset. TPRs and FPRs of hsicInf with different block
size B.
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Figure 7: The results for the multi-class classification dataset. TPRs and FPRs of hsicInf with different block
size B.
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