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Abstract

Finding a set of statistically significant fea-
tures from complex data (e.g., nonlinear
and /or multi-dimensional output data) is im-
portant for scientific discovery and has a
number of practical applications including
biomarker discovery. In this paper, we pro-
pose a kernel-based post-selection inference
(PSI) algorithm that can find a set of statisti-
cally significant features from non-linearly re-
lated data. Specifically, our PSI algorithm is
based on independence measures, and we call
it the Hilbert-Schmidt Independence Crite-
rion (HSIC)-based PSI algorithm (hsicInf).
The novelty of hsicInf is that it can han-
dle non-linearity and/or multi-variate/multi-
class outputs through kernels. Through syn-
thetic experiments, we show that hsicInf
can find a set of statistically significant fea-
tures for both regression and classification
problems. We applied hsicInf to real-world
datasets and show that it can successfully
identify important features.

1 Introduction

Finding a set of features in high-dimensional data
is important with many real-world applications such
as biomarker discovery (Xing et al., 2001), document
categorization (Forman, 2008), and prosthesis control
(Shenoy et al., 2008). In particular, finding a set of
statistically significant features is crucial for scientific
discovery, and linear methods including the least abso-
lute shrinkage and selection operator (LASSO) (Tib-
shirani, 1996) are extensively used. However, LASSO
is focused on finding a set of linearly related features.
Thus, if an input and output pair has a non-linear re-
lationship, it is difficult to select a set of important
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features.

To select non-linearly related features, a feature-
screening approach, which is based on ranking fea-
tures with respect to the association score between
each feature and its output, is widely used (Fan &
Lv, 2008). Typically, the correlation coefficient (lin-
ear) and mutual information (non-linear) are used as
an association measure (Cover & Thomas, 2006). Re-
cently, kernel-based independence measures such as
the Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005) and its normalized variant
(NOCCO) were proposed and have started being used
as surrogates of mutual information (Song et al., 2012;
Balasubramanian et al., 2013; Fukumizu et al., 2008).
The key advantage of kernel-based approaches is that
they can deal with non-linearity and/or multi-variate
and multi-class data through kernels. Besides asso-
ciation approaches, kernel- and sparse-regularization-
based approaches including the sparse additive model
(SpAM) (Ravikumar et al., 2009) and HSIC LASSO
(Yamada et al., 2014) are extensively used in feature-
selection communities. While these kernel-based ap-
proaches select a set of nonlinear related features, it
is not clear whether the selected features are statisti-
cally significant. We may consider a naive two-step
approach that involves first selecting features then
testing the selected features without any adjustment.
However, since the selection event needs to be taken
into account for statistical inference, a naive two-step
approach cannot control the desired false positive rates
(FPRs).

The problem of testing the significance of the selected
features is known as selective inference (Taylor & Tib-
shirani, 2015; Hastie et al., 2015). A basic approach
to selective inference is data splitting. The key idea is
to divide a training dataset into two disjoint sets: one
of the sets is used for feature selection and the other
for statistical inference. Since the selection event and
statistical inference are independent due to splitting,
we can avoid the issue of uncontrolled FPRs in select-
ing statistically important features. A drawback is the
degraded detection power since the latter inference is
based on only the half of the data.
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Recently, selective inference algorithms called post-
selection inference (PSI) have been proposed (Hastie
et al., 2015; Lockhart et al., 2014; Lee et al., 2016).
Since PSI uses an entire dataset for both feature selec-
tion and statistical inference, PSI algorithms tend to
have higher detection power than the data-splitting al-
gorithms. However, current PSI algorithms are limited
to linear approaches built upon LASSO or other sim-
ilar linear feature-selection methods. Since real-world
datasets often have a non-linear relationship, the cur-
rent linear approaches may fail to find a set of im-
portant features; this is a critical problem in practice.
Moreover, current PSI algorithms are only applicable
to the case of uni-variate output, which significantly
limit applications.

In this paper, we propose a kernel-based PSI algorithm
that can find statistically significant features from non-
linear and/or multi-dimensional output. Specifically,
our PSI algorithm is based on the independence mea-
sure HSIC, and we call it hsicInf. A clear advan-
tage of hsicInf over current algorithms is that it can
easily handle non-linearity and multi-dimensional out-
put through kernels. Namely, it can be used for a
wider range of applications including multi-class clas-
sification and multi-variate regression. Through syn-
thetic and real-world experiments, we show that the
proposed algorithm finds a set of statistically signif-
icant features for both regression and classification
problems.

2 Proposed algorithm

In this section, we give details of our PSI algorithm
with kernels.

2.1 Problem Formulation

Let an input vector be denoted as x* =
[z, ..., z@]T € R? and the corresponding tar-
get vector as y € R%. iid. samples {(z;,v;)}",
have been drawn from a joint probability density
p(x,y). The final goal of this study was to first screen
k < d features of input vector x then test whether
the selected features are of statistically significant
association to its output y.

2.2 Marginal screening and post-selection
inference with independence measure

~

We use an estimate I(X,,,Y) of the independence
measure I(X,,,Y), which measures the discrepancy
from the independence between the m-th random vari-
able X, and its output variable Y. The vector of the
estimates is denoted as z = [[(X1,Y),..., (X4, Y)]".
In this subsection, we assume that z follows a multi-

variate normal distribution with mean g € R? and
covariance matrix 3 € R4*4;

z~N(p,X).

Under this normality assumption, we exploit the post-
selection inference approach developed recently by Lee
et al. (2016) (see Theorem 1). In this approach, the
selection event is expressed in a form of linear inequal-
ity on the input variables: this includes LASSO as a
selection procedure.

Theorem 1 (Lee et al., 2016). Consider a stochastic
data-generating process z ~ N(u,X). If a feature-
selection event is characterized by Az < b for a matriz
A and vector b that do not depend on z, then, for any
fized vector n € RY,

V= (A,b),VT(Ab T .
Y[Fufvfz)ln (4.0)] (n'z) | Az<b ~ Unif(0,1),
where Ft[j;’w](-) is the cumulative distribution function
of the uni-variate truncated normal distribution with
the mean t, variance u, and lower and upper truncation
points v and w, respectively. Furthermore, using ¢ :=

nEg'n’ the lower and upper truncation points are given
as
_ b, — (Az);
V7(A,b) := max H}—i— Tz, 1
(4.8) j:<Ac)j<o{ (Ac); K o
. b, — (Az);
V*(A,b):= min {H}—i— Tz 2
( ) j:(Ac); >0 (Ac); n (2)

Note that a random variable W has a cumulative
distribution function F' if and only if F(W) follows
Unif(0,1). Thus, Theorem 1 roughly states that, given
the selection event, the variable i "z distributes as a
truncated normal.

Our aim was to develop a PSI algorithm based on the
independence measure vector z. In applying Theorem
1, we need to confirm that the problem of selecting
top k features in the decreasing order of I(X.,Y) can
be represented as a linear selection event in the form
of Az < b. Let S and S denote the index set of
the selected k features and the unselected k = d — k
features, respectively. The fact that k features in S

are selected and k features in S are not selected is
rephrased by

~ ~

(X, Y) > 1(Xy,Y), forall (m{)eSxS. (3)

This is in fact a set of linear inequalities with respect
to z, consisting of kk constraints in total. The trunca-
tion points in Theorem 1 can be also derived, and the
truncated normal distribution in Theorem 1 for the
marginal screening with z can be stated as follows.
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Theorem 2 Let 6 € [kk] be the index of the first kk
affine constraints in Eq. (3) and C = {1,... kk}.
Moreover, for notational simplicity, assume that first
k features are selected and remaining k = d—k features
are unselected. Then, the marginal screening event in
Eq. (3) is written as

(Az)p = (Xe(e)’ Y) - T(Xm(eyY) <0
m(6) == [0/k] ,£(8) := k + (§ mod k) 6 € C.

The lower and upper truncation points for the m-th
feature are written as

V=(A,0)
[E]m,m(f(Xm(O)aY)_T(Xf(e)vy)) X Y)
=max my 9
) (Zlecoy,m — [Zlmo),m
V+(A,0)
. [E]m,m(f(Xm(e),Y)*T(Xe(epy)) X ¥)
:=min JY),
9eD [X]e0),m — [Zlm(0),m "
where
D={0 | [Z]eo)m < [Zlm@)m}s

D= {0 | [2]5(9),1% > [2}77L(9),77L}'

Proof: For deriving the lower and upper bounds, we
simply need to plug n = e, (the unit vector whose
m-th element is one, and zero otherwise), b = 0,

—(A2)g = I(Xpn(e),Y) — I(X(4).Y), and (Ac)y =
[[E]e(e)""_[z]m“’)’m} into Egs. (1) and (2). O

m,m

2.3 HSIC-based Post-Selection Inference

Our PSI algorithm is based on the HSIC, which is
a previously proposed independence criterion Gretton
et al. (2005) and has been used successfully in various
problems such as feature selection (Song et al., 2012)
and causal inference (Mooij et al., 2009). We aimed to
use HSIC for I, as stated in the previous subsection.
As detailed below, the most standard estimator of the
HSIC does not satisfy asymptotic normality required
in the development, as mentioned in Section 2.2; thus,
we need a more recent version of the HSIC.

Hilbert-Schmidt Independence Criterion: The
HSIC is defined by the Hilbert-Schmidt norm of the
covariance operator and known to have an explicit in-
tegral form (Gretton et al., 2005) as:

=Ez a g,y [K(:E, :B/)L(y, y/)]
+ Eo o [K (@, 2")|Ey o [L(y, y)]  (4)
28, , [Eu [K(w,2') By (L(y.9/)]

HSIC(X,Y)

where K(xz,z’) and L(y,y’) are positive definite ker-
nels, and Eg, 5/ 4 4 denotes the expectation over inde-
pendent pairs (x,y) and («’,y’) drawn from p(x,y).
With the use of characteristic kernels (Fukumizu et al.,
2004; Sriperumbudur et al., 2011), the HSIC serves as
an independence criterion: it takes zero if X and Y are
independent and takes positive values otherwise. We
can thus expect to select important features by ranking
HSIC scores {HSIC(X,,,Y)}<,_; in descending order,
where X, is the random variable of the m-th feature,
as done in a previous study (Song et al., 2012)

Based on the expression 4, the standard estimators of
HSIC are given by a V-statistic or U-statistic (Gret-
ton et al., 2005; Song et al., 2012). Note, however,
that those estimators are degenerate (i.e., under the
independence between X and Y, HSIC has the asymp-
totic order 1/n, not 1/4/n, as in the usual asymptotic
theory), and do not satisfy the asymptotic normality.
We therefore propose to use the block HSIC estimator,
which has been introduced by Zhang et al. (2017).

Empirical Block HSIC: Assume that n samples can
be disjointly divided into 5 blocks, where B is the
number of samples in each block. The samples are
accordingly denoted as {{(mz(»b), yl(b)) - Zé?.

An empirical estimate of the unbiased block HSIC
(Zhang et al., 2017) is given by

n/B
HSIC(X,Y) an,
1 _ 1LK®151L L1
e tr(K® L® B BB B
= B g Y ETOB oY
-5 lTK(b)L(b)lg]

where K(® ¢ RBXB s the input Gram matrix,

L® ¢ RBXB ig the output Gram matrix, [K(®)];; =
[K(b)]w — 83 [K®);j and [L®)]; = [L®)];;—055[L®)],5,
di; takes 1 when ¢ = j, and 0 otherwise, and 1z € RE
is the vector whose elements are all one. The 7
is known to be an unbiased estimator of the HSIC
with the samples in the b-th block. Note that 7,
(b=1,...,n/B) are i.i.d. random variables, as they
are disjointly computed with a partition of i.i.d. sam-
ples.

As discussed in Zhang et al. (2017), from the stan-
dard asymptotic theory on i.i.d. variables, the empir-
ical block HSIC score asymptotically follows normal
distribution when B is finite and n goes to infinity. We
can use the block HSIC for PSI based on Theorem 2 in
the asymptotic regime. Note that, to ensure Gaussian
assumption, we need to have a relatively large number
of samples n with a finite block size B.



Post Selection Inference with Kernels

Bagging Block HSIC: The block HSIC heavily de-
pends on a partition of {{(z\”,y")}B, ”/B To
mitigate this problem, we propose the Baggmg Block

HSIC:

n/B
S

b=1

HSIC X, Y)

B\U:J

g2

where 7y is computed usmg the blocked sample
{(z; (&), yz(e b)) 2, ac(é ") and yi ) are samples of the
b- th block with ¢-th random permutation, and L is
the number of permutations. We can easily show that
E[HSIC(X,Y)] = HSIC(X,Y).

™~ \

Variance of the Bagging Block HSIC: We will
derive the variance of the bagging block HSIC and re-
late it with that of the full U-statistics and (unbagged)
single block HSIC.

Let Z; = (xi,v;) (¢ = 1,2,...,n) be ii.d. samples.
The HSIC can be expressed in the form of U-statistics
of 4th degree:

where h(z1, 22, 23, 24) is the U-statistic kernel corre-
sponding to the HSIC (see Song et al. (2012)), &,
is the set of all k-tuples (in this case k = 4) of
{1,...,n}, and Zg is an abbreviation of (Z;,,...,Z;,)
for § = (il, cee ,ik).

Consider the block HSIC with block size B. For sim-
plicity, let M := n/B denote the number of blocks
for a single block HSIC estimator and assume that n
is taken so that M in an integer. The block HSIC is
then defined by

1 M
b
WB:M;U;% (5)

where Ug)) is the U-statistics corresponding to the em-
pirical HSIC computed from only the B samples in the
b-the block, namely,

U = S h(zs),
(1) 5

where the sum is taken for all the quadruplets from
the b-th block. Note that Wp converges in law to a
normal distribution as n — oo with B fixed since U g)

(b=1,...,M) are i.i.d. samples.

Recall that the bagging block HSIC with L random
permutations is defined by

1 L
=1 > Wi, (6)
(=1

where W, p is defined similarly to Wg in Eq. (5), but
with a random permutation of Z;,...,Z,. We gener-
ate L independent uniform random permutations of
{1,...,n} and make copies of Wg. Note that, by
the independence of the random permutations, given
Z, = (Zi,...,2Zy,), Wy g and Wy p are independent
for £ # ¢’ but can be dependent unconditionally. The
bagging block HSIC is simply the average over these
L copies.

We rewrite £1, p with the indicator of index. Let J; be
the index set of the b-th block in the ¢-th permutation.
For an arbitrary quadruplet S = (i1, i2,43,14), define

1 if SeTp
00,6(5) by 0e,5(S) = 0 otherwise

Then, we have

M
Oop(S)h(Zs).  (7)

1 L
B = LM(B) ZZ

4) 4=1b=18€6,4

Since E[h(S)] = HSIC(X,Y), it is obvious that

E[¢L,B]

thus, {1, p is an unbiased estimator of the HSIC.

= HSIC(X,Y);

It is not difficult to see that, as estimators of the HSIC,
the standard U-statistics U,, has less variance than the
block HSIC &; p, which is regarded as a special type
of incomplete U-statistic. The next proposition asserts
that the variance of £y g, under the assumption of in-
dependence X 1LY, interpolates the variances of these
two estimators.

Proposition 3 Assume X and Y are independent.
Then, we have

Var[¢, g] = (1 - E)Var[Un] + %Var[fLB].

Proof: See the supplementary material.

Choice of Kernel: For regression problems, we use
the Gaussian kernel or the Laplacian kernel for both
input and output as K ¢ RE*B and L(®) ¢ RE*B:

b o —$") 13 » I =813
(K] =exp | ——t 12 gy , [L®]ij=exp —— =
x Yy

b) _(b) (b) . (b)
;") == 1o l{® —u$ 112
[K<b>1n=exp<‘ S >,[L<b>]m=exp<‘ T >

where 7, > 0 and 7, > 0 are kernel parameters.
For K-class classification problems, we use the delta
kernel (Song et al., 2012).

estimation:
of the

Mean and covariance matrix

Suppose that the mean and variance
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within-block estimator 7, are pu and &, respec-
tively. Then, the vector of empirical HSICs
[H/SE(Xl, Y),... ,H/SE(XCI,Y)]T € R converges in
distribution to a multi-variate normal by the central
limit theorem, where the mean and covariance ma-
trices are given by i and B/no, respectively. In es-
timating [%],,.m/, the standard covariance estimator
is applied to the (n/B) within-block estimators for
m and m’. Note that, when n/B is too small, we
can use a high-dimensional covariance-estimation al-
gorithm such as POET (Fan et al., 2013).

Sure Independence Screening: For a high-
dimensional setting, since the hsicInf algorithm de-
pends on the covariance matrix ¥ € R?*? and the co-
variance matrix needs to be estimated from data sam-
ples, detection performance can be degraded when d
is large. To address this issue, we incorporate the sure
independence screening (SIS) (Fan & Lv, 2008) into
hsicInf. More specifically, we use the HSIC variant
of the SIS algorithm (Balasubramanian et al., 2013).

The key property of SIS is that the selected r fea-
tures (k < r < d) by marginal screening include true
features with high probability (Fan & Lv, 2008; Bal-
asubramanian et al., 2013). This indicates that, once
we select r features with an HSIC-based SIS, we can
ignore the non-selected features. That is, under SIS
setup, we need to run hsicInf from the r < d features;
we only need to estimate 3 € R"*" which can be
easily estimated.

Post-Selection Inference: As a post selection infer-
ence, we consider the following hypothesis tests:

o Hy . HSIC(X,,,Y) =0 | S was selected,
o Hy,: HSIC(X,,,Y) #0| S was selected.

Then, the p-value of the m-th feature is estimated us-
ing Theorem 2.

3 Related Work

In this section, we briefly review related work. It has
long been recognized that selection bias must be cor-
rected for statistical inference after feature selection.
One of the most basic approaches to dealing with se-
lection bias is data splitting, in which the dataset is
divided into two disjoint sets: one is used for feature
selection and the other for statistical inference. Since
the inference phase is made independently of feature
selection, we do not have to be concerned about the
selection bias. An obvious drawback of data splitting
is that the powers become lower both in feature selec-
tion and inference phases. Since only half the data are

used in each of the two procedures, the risk of failing
to select truly important features would increase, and
the power of statistical inference (i.e., the probability
of true positive finding) would decrease. In addition,
different features might be selected if the dataset is
divided differently. It is important to note that data
splitting is also regarded as selective inference because
the inference is made for the selected features, and the
other unselected features are ignored.

In statistics, simultaneous inference has been stud-
ied traditionally for selection bias correction, where
all possible subsets of features are considered. Let S
represent the set of selected features and 7}(S) be a
test statistic for the j** feature, which is within S. In
simultaneous inference, critical points [ and u at level
« are determined to satisfy

-~

P(T;(S) ¢ [, u] for any subset S of the features) <o

This probability is also written as

P(Tj(8) ¢ [I,u] for any subset S of the features)
=Y PTES) ¢ llul | S=S)PE =),
S

where the summation of the right-hand side runs over
all possible subsets of features. Unfortunately, unless
the number of original features is fairly small, it is com-
putationally challenging to consider all possible sub-
sets of features S (Berk et al., 2013).

In selective inference, we only consider the case in
which a certain S is selected, and we determine the
critical points [ and u so that selective type I error is
controlled, i.e.,

-~

P(Ty(8) ¢ [l,u] | S=S) < a. (8)

The selective inference framework in the form of (8)
has been increasingly popular after the seminal work
by Lee et al. (2016), in which the authors studied selec-
tive inference after feature selection with LASSO (Tib-
shirani, 1996). Their novel finding is that, in linear
regression models with Gaussian noise, if the selection
event can be represented by a set of linear inequalities
with respect to the response variables (as in LASSO
case), then any linear combination of the responses
conditioned on the selection event is distributed ac-
cording to a truncated normal distribution, as stated
in Theorem 1. This result is known as a polyhedral
lemma and very useful for deriving a null distribution
of a test statistic in the context of selective inference.
Following this work, the selective inference framework
has been studied for several problems where the as-
sumptions of polyhedral lemma are satisfied (see, e.g.,
(Lee & Taylor, 2014)).
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The polyhedral lemma in Lee et al. (2016), however,
can be used only when the responses are normally dis-
tributed. It is thus difficult to generalize the selective
inference framework to other important problems such
as classification and multi-task learning. To the best of
our knowledge, there have only been a few attempts of
selective inference in those generalized settings (Tay-
lor & Tibshirani, 2016). The idea in those studies is
to use asymptotic theory, but the underlying assump-
tion used was somewhat restrictive: they required that
at least one truncation point is bounded in probabil-
ity tending to 1. This may not be natural because
the truncation points are not bounded in the case of
classical inference without feature selection.

The proposed algorithm hsicinf avoids such a restric-
tion because we only use an asymptotic normality of
ﬁSI\C(Xj,Y). By virtue of kernel methods, hsicinf
enables us to apply selective inference for a variety
of response types including classification and multi-
variate response.

4 Experiment

In this section, we discuss the experiments we con-
ducted to determine the effectiveness of hsicinf in
regression and classification problems.

4.1 Setup

We compared the performance of hsicinf with that
of the linear PSI algorithm (Lee et al., 2016; Efron
et al., 2004). Specifically, we used the larInf func-
tion in the R package selectiveInference. We ad-
ditionally compared hsicinf with the data-splitting
algorithm split with the block HSIC!. For both the
proposed and current algorithms, we set the number
of selected features to k = 10 and the significance level
to a = 0.05. For the HSIC-based approaches, we used
the block parameter B = {5,10}. Note that, the bag-
ging block HSIC and SIS have not been theoretically
guaranteed yet; thus, we mainly validated the original
block HSIC 4+ Theorem 1. Then, we empirically eval-
uated the bagging block HSIC and SIS (r = 20) for
high-dimensional data and showed its effectiveness for
selective inference. Giving the theoretical guarantee of
asymptotic normality for the bagging block HSIC and
SIS is important future work.

In the PSI frameworks, the covariance matrix X is
assumed to be known. However, since the true covari-
ance matrix is not available in practice, we need to es-
timate the covariance matrix from data. To this end,

'To the best of our knowledge, the combination of the
block HSIC and data splitting has not been proposed, and
that combination is also our contribution.

for hsicInf, we divided the samples into two disjoint
sets; we used % samples for estimating 3 and the rest
of the %" samples for selecting features and computing
the HSIC. In this study, we used the POET algorithm
for the covariance matrix estimation (Fan et al., 2013).
For split, we divided the samples into three disjoint
sets with sample size §. Then, we used each one for
estimating 3, selecting and testing features, and com-
puting the HSIC, respectively. Since the block HSIC
is asymptotically normal and we need to test each fea-
ture independently, the p-value of the k-th feature is
given by the 1 - cumulative distribution of N(0,s3),
where s? is estimated from data.

In the regression setup, we used the Gaussian/Laplace
kernel in which the kernel parameters are experimen-
tally set to (75,7y) = (1.0,1.0) for uni-variate setup
and (7, 7,) = (1.0,med({|ly; — y;ll2}7 ;=) for multi-
variate output, respectively. Each feature was normal-
ized to have mean zero and standard deviation 1. In
the classification setup, we used the Gaussian/Laplace
kernel for input and the delta kernel for output. We
reported the true positive rate (TPR) ,’j—l, where £/ is
the number of truly relevant features that are reported
to be positive, while k* is the number of truly relevant
features. We further computed the FPR ’%/, where
k" is the number of truly irrelevant features that are
falsely reported to be positive. For synthetic datasets,
we ran experiments 500 times with different random
seeds and reported the average TPR and average FPR.

4.2 Synthetic Data

Uni-variate Regression: For this experiment, we
first generated the input matrix X = [x1,...,x,] €
R4 where ¢ ~ N(0,%), [X];; = 0.955;;+0.05,1,5 €
{1,2,3,4,5},[Z)ii = &ij,4,5 € {6,...,d}, &;; = 1 if
i = j, and 0 otherwise, d = {20,500}, and n =
{300, 600, . ..,3000}.

We generated the corresponding output variable as

e Linear: Y =Y°_ X, +0.1E,

e Non-linear: Y = X;exp(X2)Xsexp(X4)Xs +
0.1E,

where E ~ N(0,1) is an independent random noise.

Figures 1 (a)-(b) show the TPRs of all the algorithms
(d = 20). As we expected, hsicInf had higher TPRs
compared to split since hsicinf can use a larger
number of samples than split for selecting features.
Figures 1 (c)-(d) show the FPRs of all the algorithms
(d = 20). All the HSIC-based algorithms had larger
FPRs than the significance level when the number of
samples were small. This may be due to the violation
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Figure 1: Results for uni-variate regression setups (d = 20). We used B = 10 and L = 1 for HSIC-based
approaches. (a)(b): TPRs. (c)(d): FPRs.
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Figure 2: Comparison between block HSIC (L = 1) and bagging block HSIC (L = 5) for low-dimensional data
d =20. We used B = 10. (a)(b): TPRs. (c)(d): FPRs.
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Figure 3: Comparison between hsicInfs and split for high-dimensional setting (d = 500). For hsicInfs, we used
SIS algorithm in addition to bagging HSIC. We used B = 10 and L = 5 for all algorithms. (a)(b): TPRs. (c)(d):
FPRs.
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Figure 4: Results for multi-variate regression and multi-class classification datasets for low-dimensional setting
(d =20). (a)(b): TPRs. (c)(d): FPRs.

in the Gaussian assumption or insufficient accuracy plementary material for comparisons of block size B.

f i imation. hsicInf with 11 . .
of covariance estimation. Our hsicInf with a sma Figure 2 shows the comparison between the block

number of samples is important future work. HSIC (L = 1) and bagging block HSIC (L = 5). The
The linear algorithm larInf can select features for bagging block HSIC had high TPRs with low FPRs.
only linear setups and fails for non-linear counterparts. Thus, it would be highly useful.

In contrast, hsicinfcan successfully detect statisti-

cally significant features for all setups. See the sup- Figure 3 shows the TPRs and FPRs for high-
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Table 1: p-values computed using hsicInf from Turkey Student Evaluation dataset

[ Feature description | p-value |
Q28: The Instructor treated all students in a right and objective manner. < 0.001
Q17: The Instructor arrived on time for classes. 0.033
Q13: The Instructor’s knowledge was relevant and up to date. 0.018
Q22: The Instructor was open and respectful of the views of students about the course. 0.042
Q21: The Instructor demonstrated a positive approach to students. 0.033
Q18: The Instructor has a smooth and easy to follow delivery/speech. 0.186
Q23: The Instructor encouraged participation in the course. 0.037
Q26: The Instructor’s evaluation system effectively measured the course objectives. 0.176
Q2: The course aims and objectives were clearly stated at the beginning of the period. 0.452
Q20: The Instructor explained the course and was eager to be helpful to students. 0.463

dimensional d = 500 cases. By combining the bagging
block HSIC and SIS algorithm with hsicInf, hsicInf
could outperform split in terms of the TPR. Note
that, to compare fairly, we also used the bagging block
HSIC with split.

Multi-variate Regression: We used the zero-mean
multi-variate Gaussian input matrix with [X]; =
0.958;; + 0.05,4,5 € {1,2,3,4},[E];; = &;,i,j €
{5,...,20}. For the output variable, we generated the
three dimensional output variables as Y; = X1 4+2X5+
0.1E, Yo = 2X; + X3 + 0.1E, Y3 = Xzexp(2Xy) +
0.1E.. Note that, since current PSI algorithms cannot
be used for multi-variate outputs, we only reported on
the HSIC-based algorithms.

Figures 4(a)(c) show that hsicInf can successfully se-
lect statistically significant features.

Multi-class classification: In this experiment, we
evaluated the algorithm/hsicInf using a three-class
classification dataset (see the supplementary material
for details). Again, there is no multi-class PSI algo-
rithm; thus, we simply report on the performance of
the HSIC-based algorithms. Figures 4(b)(d) show that
hsicInf can perfectly detect the important features.

4.3 Real-world data

Turkey Student Dataset: The Turkey dataset con-
sists of 5820 samples with 28 features, where variables
take integers and are non-Gaussian. We used the
"Level of difficulty of the course as perceived by the
student ({1,2,...,5})” as the output variable and se-
lected features that significantly affected the difficulty
of the course. In this experiment, we set the number
of selected features k to 10 and block size B to 10, and
used the Gaussian kernel for output. Note that, since
the output variable takes integers and is non-Gaussian,
larInf cannot be used for these data.

Table 1 lists the selected features from hsicInf. The
difficulties of class are highly related to the attitude
of teachers and teacher’s support to students, and this
result is reasonable.

Table 2: p-values computed with hsicInf from QSAR
biodegradation dataset

[ Symbol [ Descriptor type | p-value |

SpMax_L 2D-matrix-based 0.009
SpPosA_B (p) 2D-matrix-based 0.004
SM6_B (m) 2D-matrix-based 0.002

SpMax_B (m) 2D-matrix-based < 0.001
SpMax_A 2D-matrix-based 0.011
HyWi B (m) 2D-matrix-based 0.018
C-026 atom centered fragments 0.086
SM6_L 2D-matrix-based 0.239
nN constitutional indices 0.351
F04[C-N] 2D atom pairs 0.346

Quantitative Structure-Activity Relationship
(QSAR) biodegradation dataset: This dataset
consists of 1055 samples with 41 features, where each
feature is a molecule descriptor. The task with this
dataset is to classify the samples into two classes:
”ready biodegradable” and "not ready biodegradable”
(see Mansouri et al. (2013) for details). In this exper-
iment, we set the number of selected features k£ to 10
and the block size B to 10.

Table 2 lists the selected features from hsicInf. The
2D matrix-based descriptors, which were previously re-
ported as important Mansouri et al. (2013), were also
selected with hsicInf as significant features. Thus,
hsicinf successfully found important descriptors.

5 Conclusion

We proposed the post-selection inference (PSI) algo-
rithm hsicInf. The key advantage of hsicinf is that
it can select statistically significant features from non-
linear and/or multi-variate data and has high detec-
tion power. To the best of our knowledge, this is the
first work to address a PSI algorithm for both nonlin-
ear and multi-variate regression problems. Through
several experiments, we showed that hsicinf over-
comes the limitations of the state-of-the-art linear PSI
algorithm and outperforms the splitting algorithm in
large sample cases.
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