
Supplementary Material: Optimal Cooperative Inference

This supplementary material presents the additional details and proofs associated with the main paper.

1 Details of Remark 2.6
Suppose that |H| is countably infinite. Let A = (Li,jTi,j)|D|×|H| be the matrix obtained from L and T by
element-wise multiplication. Denote the sum of elements in the j-th column of A by Cj . Then Sn =

∑n
j=1 Cj

is the sum of elements in the first n columns of A. Note that 0 ≤ Cj =

|D|∑
i=1

Li,jTi,j ≤
|D|∑
i=1

Ti,j = 1 and so

0 ≤ Sn ≤ n. Therefore, for any j, n, both Cj and Sn exist, and {Sn

n }
∞
n=1 is a well-defined sequence whose

limit is then called TI.
Regrading the existence of TI, there are two cases.
Case 1: The growth rate of Sn is strictly slower than any linear function. Thus, for any k > 0, there

exists an integer N(k) > 0 (depends on k) such that Sn < k · n for any n > N(k). Then for any k > 0, the
following holds:

0 ≤ TI = lim
n→∞

Sn
n
≤ lim
n→∞

k · n
n

= k.

Thus, TI = 0.
Case 2: If the growth rate of Sn is not strictly slower than linear functions, then TI exists if and only if

the sequence {Cj} converges as j →∞. Suppose that {Cj} converges to k. Then for any ε > 0, there exists
an integer N(ε) such that |Cm − k| < ε for any m > N(ε). Therefore, for n sufficiently large,

|Sn
n
− k| = |Sn − n · k

n
| = |SN −N · k

n
+

∑n
j=N Cj − k
n−N

| ≤ |SN −N · k
n

|+ ε ≤ ε′.

Thus, TI exists. Similarly the other direction also holds.
Moreover, when TI exists, Proposition 2.4 can also be generalized. 0 ≤ Sn ≤ n implies that the range of

TI is [0, 1], and TI = 1 if and only if Cj converges to 1.

2 Proof of Theorem 4.6
For convenience, we first write the fixed-point iteration of (2) explicitly in vector form. We denote the matrix
with elements PL(h|D) by L ∈ [0, 1]|D|×|H|, the matrix with elements PT(D|h) by T ∈ [0, 1]|D|×|H|, and the
matrix with elements P0(D|h) by M ∈ [0, 1]|D|×|H|. Further, denote the vectors consisting of PL0(h) and
PT(h) by a,d ∈ [0, 1]|H|×1, vectors consisting of PT0

(D) and PL(D) by b, c ∈ [0, 1]|D|×1, respectively. Given
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a, b, and M , the fixed-point iteration of the cooperative inference equations can be expressed as:

PL1
(h|D) =

P0(D|h)PL0
(h)

PL1(D)
⇐⇒ L(1) = Diag

(
1

Ma

)
MDiag(a) (1a)

PTk+1
(D|h) =

PLk+1
(h|D)PT0(D)

PTk+1
(h)

⇐⇒ T(k+1) = Diag(b)L(k+1)Diag

(
1

d(k+1)

)
(1b)

PTk+1
(h) =

∑
D∈D

PLk
(h|D)PT0

(D) ⇐⇒ d(k+1) = (L(k+1))T b (1c)

PLk+1
(h|D) =

PTk
(D|h)PL0

(h)

PLk+1
(D)

⇐⇒ L(k+1) = Diag

(
1

c(k+1)

)
T(k)Diag(a) (1d)

PLk+1
(D) =

∑
h∈H

PTk
(D|h)PL0

(h) ⇐⇒ c(k+1) = T(k)a, (1e)

where k denotes the iteration step; Diag(z) denotes the diagonal matrix with elements of the vector z on its
diagonal; and 1

z denotes element-wise inverse of vector z.
Note that (1b) and (1c) are the operations to column normalize Diag(b)L(k), and (1d) and (1e) are the

operations to row normalize T(k)Diag(a). Zero rows in L(k) and zero columns in T(k) are fixed throughout
the iteration of (1) if they exist. This is equivalent to removing the zero rows and zero columns of M for (1)
and inserting them back at convergence or when the iteration is stopped.

Now we provide a version of the proof using the notations introduced in the paper. The original proof can
be found in [2]. Remember that a and b are assumed to be uniform.

Proof. Let σ be a permutation of {1, · · · , n} that makes {M i,σ(i)}ni=1 a positive diagonal. Define

e(k) :=

n∏
i=1

L
(k)
i,σ(i); f (k) :=

n∏
i=1

T
(k)
i,σ(i).

Applying (1a), L(1) is a row-stochastic matrix, and {L(1)
i,σ(i)}

n
i=1 is a positive diagonal, hence e(1) is positive.

Also, by applying (1b),

f (1) =

n∏
i=1

T
(1)
i,σ(i) =

n∏
i=1

bi
L

(1)
i,σ(i)

d
(1)
σ(i)

 =
e(1)

nn
∏n
i=1 d

(1)
σ(i)

=
e(1)

nn
∏n
i=1 d

(1)
i

. (2)

By the inequality of arithmetic and geometric means,
(∏n

i=1 d
(1)
i

) 1
n ≤ 1

n

∑n
i=1 d

(1)
i . Also, L(1) is a row-

stochastic matrix and we assumed uniform prior on data set space, and hence, by (1c)

nn
n∏
j=1

d
(1)
j ≤

 n∑
j=1

d
(1)
j

n

=

 n∑
i=1

n∑
j=1

bjL
(1)
i,j

n

=

 1

n

n∑
i=1

n∑
j=1

L
(1)
i,j

n

= 1. (3)

The equality in (3) is achieved if and only if d =
(

1
n , . . . ,

1
n

)
, or equivalently, L(1) being a doubly stochastic

matrix. Because f (1) is the product of n values between 0 and 1,

0 < e(1) ≤
(a)

f (1) ≤
(b)

1, (4)

with equality in (a) if and only if L(1) is a doubly stochastic matrix, and equality in (b) if and only if L(1) is
a permutation matrix. Applying the same logic to equations (1d) and (1e), we have

0 < f (1) ≤
(c)
e(2) ≤

(d)
1,

with equality in (c) if and only if T(1) is a doubly stochastic matrix, and equality in (d) if and only if T(1) is
a permutation matrix. Repeating this argument, we get the increasing sequence

0 < e(1) ≤ f (1) ≤ e(2) ≤ f (2) ≤ · · · ≤ 1.
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Monotone convergence theorem of real numbers guarantees that this sequence converges to its supremum

lim
k→∞

e(k) = lim
k→∞

f (k) = sup{e, f}.

Asymptotically, e(k) = f (k) = e(k+1); therefore, L(k) and T(k) are both doubly stochastic matrices. Because
doubly stochastic matrices are stable under row and column normalization, L and T converge to the same
doubly stochastic matrix,

M(∞) := lim
k→∞

L(k) = lim
k→∞

T(k).

3 Proof of Theorem 4.10
Proof. (1) (a) ⇐⇒ (b): We first prove that (a) CI(M ) = 1, and (b) M has exactly one positive diagonal,
are equivalent. Since M is an n× n nonnegative matrix with at least one positive diagonal, Theorem 4.6
guarantees that the iteration of equation set (1) converges to a doubly stochastic matrix, M(∞). According to
Birkhoff–von Neumann theorem [1, 3], there exist θ1, . . . , θk ∈ (0, 1] with

∑
i θi = 1 and distinct permutation

matrices P1, . . . , Pk such that M(∞) = θ1P1 + · · ·+ θkPk. To simplify, we adopt the inner product notation
between matrices: A · B =

∑
i,j Ai,jBi,j , for any two n× n square matrices A and B. Then the following

holds:

CI = TI(M(∞),M(∞)) =
(I)

1

n
M(∞) ·M(∞) =

(II)

1

n
(
∑
i

θiPi) · (
∑
j

θjPj) =
(III)

1

n

∑
i,j

θiθjPi · Pj .

Equality (I) comes from rewriting TI in the inner product notation. Equality (II) comes from substituting
M(∞) by its Birkhoff–von Neumann decomposition. Equality (III) comes from distribution.

Further, as permutation matrices, Pi · Pj ≤ n, and the equality holds if and only if Pi = Pj . So we have

CI(M ) =
1

n

∑
i,j

θiθjPi · Pj ≤
(IV )

1

n

∑
i,j

θiθjn =
∑
i,j

θiθj = (
∑
i

θi)× (
∑
j

θj) = 1.

The equality in (IV) holds if and only if Pi = Pj for any i, j. Note that P1, . . . , Pk are distinct, i.e., Pi 6= Pj
when i 6= j. So the equality in (IV) is achieved precisely when k = 1 and M(∞) = P1. Hence, CI(M ) is
maximized if and only if M(∞) is a permutation matrix.

We then prove that M(∞) is a permutation matrix if and only if M has exactly one positive diagonal.
This follows from this claim, Claim (1): elements of M that lie in a positive diagonal do not tend to zero
during the cooperative inference iteration [2] (i.e., if M i,j 6= 0 lies in a positive diagonal, then M

(∞)
i,j 6= 0).

Claim (1) implies that M(∞) and M have the same number of positive diagonals. Further, note that a
doubly stochastic matrix has exactly one diagonal if and only it is a permutation matrix. So as a doubly
stochastic matrix, M(∞) is a permutation matrix if and only if M has exactly one positive diagonal. Thus,
CI is maximized if and only if M has exactly one positive diagonal.

To complete the proof for (a)⇐⇒ (b), we only need to justify Claim (1). Note that the product of any
positive diagonal converges to a positive number sup{e, f} (shown in the proof for Theorem 4.6) and all
elements on the positive diagonal is upper-bounded by 1 and lower-bounded by sup{e, f}. , elements on a
diagonal of M cannot converge to 0.

(2) (b) ⇐⇒ (c): This follows immediately from a slightly more general claim below, where positive
diagonals are generalized to non-zero diagonals (can have negative values).

Claim (2): Let A be an n×n-square matrix (elements can be any real number). Then A has exactly one
non-zero diagonal (i.e., a diagonal with no zero element) if and only if A is a permutation of an upper-triangular
matrix.

We now prove Claim (2). The if direction is clear since an upper-triangular matrix always has exactly one
non-zero diagonal, which is its main diagonal. The only if direction is proved by induction on the dimension
n of A.
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Step 1—Induction basis: When n = 2, it is easy to check that any 2 × 2 matrix with exactly one

diagonal is either of the form
(
a b
0 c

)
or
(
a 0
b c

)
, where a, c 6= 0. So it is a permutation of an upper-triangular

matrix.

Step 2—Inductive step: Suppose that the claim—an n× n-square matrix A has exactly one non-zero
diagonal if and only if it is a permutation of an upper-triangular matrix—holds for any n < N . We need to
show that the claim also holds when n = N .

The following notation will be used. Let A be an n× n-square matrix. Ai,j denotes the element of A at
row i and column j. Ãi,j denotes the (n− 1)× (n− 1) sub-matrix obtained from A by crossing out row i and
column j.

First, we will prove three handy observations.
Observation 1: If A has exactly one non-zero diagonal and Ai,j 6= 0, then Ãi,j has at most one non-zero

diagonal. In particular, if Ai,j is on that non-zero diagonal, then Ãi,j has exactly one non-zero diagonal.
Proof of Observation 1 : Suppose that Ãi,j has more than one diagonal. Then these diagonals for Ãi,j

along with Ai,j form different diagonals for A, which is a contradiction.
Observation 2: If A has exactly one non-zero diagonal and A has a row or a column with exactly one

non-zero element, then A is a permutation of an upper-triangular matrix.
Proof of Observation 2 : Suppose that A has a column with exactly one non-zero element. Then by

permutation, we may assume that it is the first column of A and the only non-zero element in column 1 is A1,1.
A1,1 must be on the non-zero diagonal of A. Hence, according to observation 1, Ã1,1 is a (N−1×N−1)-square
matrix with exactly one non-zero diagonal. Then by the inductive assumption, we may permute Ã1,1 into an
upper-triangular matrix. Note that each permutation of Ã1,1 induces a permutation of A. So there exist
permutations that convert A into A′ such that A′i,j = 0 when j > 1 and i > j. Moreover, permutations that
convert A to A′ never switch column 1 (row 1) of A with any other columns (rows). So A′i,1 = 0 for i 6= 1, as
A1,1 is the only non-zero element in the first column of A. Thus, we have A′i,j = 0 when i > j, which implies
that A′ is an upper-triangular matrix.

If A has a row with exactly one non-zero element, then up to permutation, we may assume it is the last
row of A and the only non-zero element is AN,N . Following similar argument as above, we may show that
ÃN,N can be arranged into an upper-triangular matrix by permutations. The corresponding permutations of
A will also convert A into an upper triangular matrix. So observation 2 holds.

Observation 3: If the main diagonal ofA is the only non-zero diagonal ofA, thenAt1,t2At2,t3 · · ·Atk−1,tkAtk,t1 =
0 for any distinct t1, t2, . . . , tk.

Proof of Observation 3 : Suppose that At1,t2At2,t3 · · ·Atk−1,tkAtk,t1 6= 0. Then a different non-zero diagonal
for A other than the main diagonal is form by {Ai,i|i 6= t1, . . . , tk} and At1,t2 , At2,t3 , · · · , Atk−1,tk , Atk,t1 .

Now back to the inductive step. Suppose that A is an N ×N -square matrix with exactly one non-zero
diagonal. By permutation, we may assume that the main diagonal of A is the only non-zero diagonal. In
particular, A1,1 6= 0. According to Observation 1, Ã1,1 has exactly one non-zero diagonal and so can be
arranged into an upper-triangular matrix by permutations. The corresponding permutations convert A into a
new form, denoted by A1, with the property that A1

i,j = 0 when j > 1 and i > j. In particular, A1
Nj = 0

when j 6= 1 and j 6= N . Ã1
1,1 is an upper-triangular matrix implies that A1

N,N 6= 0. If A1
N,1 = 0, then the last

row of A1 contains only one non-zero element A1
N,N . So by Observation 2, we are done.

Otherwise, according to Observation 1, Ã1
N,N can be arranged into an upper-triangular matrix by

permutation. Hence, after the corresponding permutations, we may convert A1 into a new form, denoted by
A2 with the property that A2

i,j = 0 when i > j and i 6= N . Moreover, permutations that convert A1 to A2

never switch row N (column N) of A1 with any other rows (columns). So only one of {A2
N,j |j 6= N} is not

zero. If A2
N,1 = 0, along with A2

i,1 = 0 for N > i > 1, we have that the first column of A2 contains exactly
one non-zero element, A2

1,1. So by Observation 2, we are done.
Otherwise, A2

N,1 6= 0. According to Observation 3, A2
N,1A

2
1,kA

2
k,N = 0, for k = 2, . . . , N − 1. So we have

that A2
1,kA

2
k,N = 0, for k = 2, . . . , N − 1. We will proceed by analyzing cases from k = 2 to k = N − 1.
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When k = 2, if A2
1,2 = 0, then column 2 of A2 contains only one non-zero element A2

2,2, and we are done
by Observation 2. Otherwise, we may assume that A2

1,2 6= 0 and A2
2,N = 0.

When k = 3, if A2
3,N 6= 0, then A2

1,3 = 0. According to Observation 3, A2
N,1A

2
1,2A

2
2,3A

2
3,N = 0, and this

implies that A2
2,3 = 0. Hence, column 3 of A2 contains only one non-zero element, A2

3,3, and again we are
done by Observation 2. Otherwise, we may assume that A2

3,N = 0, and one of {A2
1,3, A

2
2,3} is not zero.

When k = k, if A2
4,N 6= 0, then A2

1,4 = 0. Similarly, as in the case where k = 3 (by Observa-
tion 3), A2

N,1A
2
1,2A

2
2,4A

2
3,N = 0, and this implies that A2

2,4 = 0. One of {A2
1,3, A

2
2,3} is not zero =⇒

either A2
N,1A

2
1,3A

2
3,4A

2
3,N = 0 or A2

N,1A
2
1,2A

2
2,3A

2
3,4A

2
3,N = 0 =⇒ A2

3,4 = 0. Hence, column 4 of A2 contains
only one non-zero element, A2

4,4, and again we are done by Observation 2. Otherwise, we may assume that
A2

4,N = 0, and at least one of {A2
1,4, A

2
2,4, A

2
3,4} is not zero.

Inductively, either one of column k’s of A2 contains only one non-zero element, or A2
k,N = 0 for all

k = 2, . . . , N − 1. Note that the latter case implies that column N of A2 contains only one non-zero element,
A2
N,N , as A2

N,1 6= 0 =⇒ A2
1,N = 0. Either way, the proof is then completed by Observation 2.

4 Details to Example 4.11
To construct M , first notice that if maximum likelihood is achieved, M 1,1 = M 1,2 under all settings of ∆, a,
and q. This is because a first- and second-order polynomial give the same fit to D1.

For M 2,1, by symmetry arguments we know that the maximum-likelihood fit of a first-order polynomial
to D2 is a horizontal line (f(x) = b). We can find this value of b through a grid search. Given this b,

M 2,1 = Nq(a; b)2Nq(−a; b)2Nq(∆ + a; b)Nq(∆− a; b),

where

Nq(z; b) =

√
β

Cq
eq(−β(xi − µ)2).

Here, β = 1
5−3q so that the variance is 1; eq(x) is the q-exponential function defined by [1 + (1 − q)x]

1
1−q

when q 6= 1, and exp(x) when q = 1. The normalizing constant Cq is given by:

Cq =


2
√
πΓ( 1

1−q )

(3−q)
√

1−qΓ( 3−q
2(1−q)

)
for −∞ < q < 1

√
π for q = 1
√
πΓ( 3−q

2(q−1)√
q−1Γ 1

q−1

for 1 < q < 3.

For M 2,2, again by symmetry arguments we know that the maximum-likelihood fit of a second order
polynomial to D2 is a parabola that passes through the middle of each of the three pairs of data points. Thus,
M 2,2 = Nq(a; 0)6.
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