Supplementary Material: Optimal Cooperative Inference

This supplementary material presents the additional details and proofs associated with the main paper.

1 Details of Remark 2.6

Suppose that [#| is countably infinite. Let A = (L; ;T; ;)p|x|%| be the matrix obtained from L and T by
element-wise multiplication. Denote the sum of elements in the j-th column of A by C;. Then S,, = Z?Zl C;
|D| |D|
is the sum of elements in the first n columns of A. Note that 0 < C; = Z L, ;T;; < Z T;; =1 and so
i=1 i=1
0 < S, < n. Therefore, for any j,n, both C; and S, exist, and { %}j’;’:l is a well-defined sequence whose
limit is then called TI.
Regrading the existence of TI, there are two cases.
Case 1: The growth rate of S, is strictly slower than any linear function. Thus, for any k£ > 0, there
exists an integer N (k) > 0 (depends on k) such that S,, < k- n for any n > N(k). Then for any k > 0, the

following holds:
0<TI= lim 2" < lim © " — ¢

n—oo N n—oo N
Thus, TI = 0.
Case 2: If the growth rate of .S, is not strictly slower than linear functions, then TI exists if and only if
the sequence {C}} converges as j — co. Suppose that {C;} converges to k. Then for any e > 0, there exists
an integer N (¢) such that |C,, — k| < € for any m > N(¢). Therefore, for n sufficiently large,

= < <¢.
— =] - — | = - |+e<e

n

Thus, TT exists. Similarly the other direction also holds.
Moreover, when TT exists, Proposition can also be generalized. 0 < S,, < n implies that the range of
TI is [0,1], and TI =1 if and only if C; converges to 1.

2 Proof of Theorem [4.6

For convenience, we first write the fixed-point iteration of explicitly in vector form. We denote the matrix
with elements Pr(h|D) by L € [0, 1]/PIXI*| the matrix with elements Pr(D|h) by T € [0,1]PI*I*l and the
matrix with elements Py(D|h) by M € [0, 1]/P*I%]. Further, denote the vectors consisting of Py, (h) and
Pr(h) by a,d € [0,1)"1*1, vectors consisting of Pr(D) and Pr(D) by b,c € [0,1]/P1*! respectively. Given



a, b, and M, the fixed-point iteration of the cooperative inference equations can be expressed as:

Pr,(h|D) = W — LW = Diag(Mla> M Diag(a) (1a)

Pr, . (D|h) = PL“}(DZK )(:)TO(D ) e - Diag(b)L(’”l)Diag( d(klﬂ)) (1b)

Pr(h) = Y Pp(h|D)Pp(D) = d**) = @L*)Tp (1c)
DeD

Pr,.,(h|D) = W — LG+ = Diag(c(;m> T* Diag(a) (1d)

Pu,. (D)= Pp(Dlh) Pr(h) <= c*) =THaq, (1e)
heH

where k denotes the iteration step; Diag(z) denotes the diagonal matrix with elements of the vector z on its
diagonal; and % denotes element-wise inverse of vector z.

Note that and are the operations to column normalize Diag(b) L(*), and and are the
operations to row normalize T(k)Diag(a). Zero rows in L*) and zero columns in T*) are fixed throughout
the iteration of if they exist. This is equivalent to removing the zero rows and zero columns of M for
and inserting them back at convergence or when the iteration is stopped.

Now we provide a version of the proof using the notations introduced in the paper. The original proof can
be found in [2]. Remember that a and b are assumed to be uniform.

Proof. Let o be a permutation of {1,---,n} that makes {M; ,(; }j-, a positive diagonal. Define
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Applying (Tal), L™ is a row-stochastic matrix, and {L is a positive diagonal, hence e

Also, by applying ,

is positive.
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By the inequality of arithmetic and geometric means, (H?Zl dgl)) "< I dgl). Also, LW is a row-
stochastic matrix and we assumed uniform prior on data set space, and hence, by
Ta® < [5q® ) — (S5 10 — (IS o) —
eI () = (Syey) = [Lysey) -1 ®
j=1 j=1 i=1 j=1 i=1 j=1
The equality in (3) is achieved if and only if d = (£,..., 1), or equivalently, L) being a doubly stochastic
matrix. Because f(1) is the product of n values between 0 and 1,
0<e < fM <, (4)
(a) (b)
with equality in (a) if and only if L(") is a doubly stochastic matrix, and equality in (b) if and only if L) is
a permutation matrix. Applying the same logic to equations ([Ld) and , we have
0< f(l) <e? < 1,
() (d)
with equality in (c) if and only if T(}) is a doubly stochastic matrix, and equality in (d) if and only if T is
a permutation matrix. Repeating this argument, we get the increasing sequence

0<€(1)§f(1)§€(2)§f(2)§"'§1-



Monotone convergence theorem of real numbers guarantees that this sequence converges to its supremum

lim e® = lim f* = sup{e, f}.
k—o0 k—o0

Asymptotically, e®) = f() = ¢(k+1). therefore, L(*) and T(*) are both doubly stochastic matrices. Because
doubly stochastic matrices are stable under row and column normalization, L and T converge to the same

doubly stochastic matrix,
M) = lim L® = lim T®),

k—o0 k—o0

3 Proof of Theorem [4.10]

Proof. (1) (a) <= (b): We first prove that (a) CI(M ) = 1, and (b) M has ezactly one positive diagonal,
are equivalent. Since M is an n X n nonnegative matrix with at least one positive diagonal, Theorem [£.6]
guarantees that the iteration of equation set converges to a doubly stochastic matrix, M(>). According to
Birkhoff-von Neumann theorem [T}, [3], there exist 61, ...,0; € (0,1] with ), 6; =1 and distinct permutation
matrices Py, ..., Py such that M(®) =, P, + - -- + 6, P,. To simplify, we adopt the inner product notation
between matrices: A+ B = Z” A; ;B; ;, for any two n x n square matrices A and B. Then the following
holds:

I =T M) :7M<°°> 0,P;) 0;P;)) = = 00,P; P
C ( ’ ) )y n (11 nZ Z (111 Z

—

Equality (I) comes from rewriting TT in the inner product notation. Equality (II) comes from substituting
M(>) by its Birkhoff-von Neumann decomposition. Equality (III) comes from distribution.
Further, as permutation matrices, P; - P; < n, and the equality holds if and only if P; = P;. So we have

CI(M) = Zeep - P; < ZGQn-ZGG-ZQ < (Y 0;) =

5,

The equality in (IV) holds if and only if P, = P; for any ¢, j. Note that P,..., P are distinct, i.e., P; # P;
when i # j. So the equality in (IV) is achieved precisely when k = 1 and M(*) = P;. Hence, CI(M ) is
maximized if and only if M(°) is a permutation matrix.

We then prove that M(>) is a permutation matrix if and only if M has exactly one positive diagonal.
This follows from this claim, Claim (1): elements of M that lie in a positive diagonal do not tend to zero
during the cooperative inference iteration [2] (i.e., if M; ; # 0 lies in a positive diagonal, then MEOJO) #0).
Claim (1) implies that M(*) and M have the same number of positive diagonals. Further, note that a
doubly stochastic matrix has exactly one diagonal if and only it is a permutation matrix. So as a doubly
stochastic matrix, M(°) is a permutation matrix if and only if M has exactly one positive diagonal. Thus,
CI is maximized if and only if M has exactly one positive diagonal.

To complete the proof for (a) <= (b), we only need to justify Claim (1). Note that the product of any
positive diagonal converges to a positive number sup{e,f} (shown in the proof for Theorem and all
elements on the positive diagonal is upper-bounded by 1 and lower-bounded by sup{e,f}. , elements on a
diagonal of M cannot converge to 0.

(2) (b) <= (c): This follows immediately from a slightly more general claim below, where positive
diagonals are generalized to non-zero diagonals (can have negative values).

Claim (2): Let A be an n x n-square matrix (elements can be any real number). Then A has exactly one
non-zero diagonal (i.e., a diagonal with no zero element) if and only if A is a permutation of an upper-triangular
matrix.

We now prove Claim (2). The if direction is clear since an upper-triangular matrix always has exactly one
non-zero diagonal, which is its main diagonal. The only if direction is proved by induction on the dimension
n of A.



Step 1—Induction basis: When n = 2, it is easy to check that any 2 x 2 matrix with exactly one

diagonal is either of the form <g i) or (Z 2) , where a, ¢ # 0. So it is a permutation of an upper-triangular

matrix.

Step 2—Inductive step: Suppose that the claim—an n X n-square matrix A has exactly one non-zero
diagonal if and only if it is a permutation of an upper-triangular matrix—holds for any n < N. We need to
show that the claim also holds when n = N.

The following notation will be used. Let A be an n x n-square matrix. A;; denotes the element of A at
row ¢ and column j. ﬁ” denotes the (n — 1) x (n — 1) sub-matrix obtained from A by crossing out row ¢ and
column j.

First, we will prove three handy observations. _

Observation 1: If A has exactly one non-zero diagonal and A; ; # 0, then A, ; has at most one non-zero
diagonal. In particular, if A; ; is on that non-zero diagonal, then E” has exactly one non-zero diagonal.

Proof of Observation 1: Suppose that g” has more than one diagonal. Then these diagonals for Ai,j
along with A; ; form different diagonals for A, which is a contradiction.

Observation 2: If A has exactly one non-zero diagonal and A has a row or a column with exactly one
non-zero element, then A is a permutation of an upper-triangular matrix.

Proof of Observation 2: Suppose that A has a column with exactly one non-zero element. Then by
permutation, we may assume that it is the first column of A and the only non-zero element in column 1 is Aj ;.
A1 1 must be on the non-zero diagonal of A. Hence, according to observation 1, gl,l isa (N—1xN —1)-square
matrix with exactly one non-zero diagonal. Then by the inductive assumption, we may permute gl,l into an
upper-triangular matrix. Note that each permutation of gl,l induces a permutation of A. So there exist
permutations that convert A into A’ such that A;;,j =0 when j > 1 and ¢ > j. Moreover, permutations that
convert A to A’ never switch column 1 (row 1) of A with any other columns (rows). So A} ; =0 for i # 1, as
Ay 1 is the only non-zero element in the first column of A. Thus, we have A} ; =0 when ¢ > j, which implies
that A’ is an upper-triangular matrix.

If A has a row with exactly one non-zero element, then up to permutation, we may assume it is the last
row of A and the only non-zero element is Ay . Following similar argument as above, we may show that
A ~,~ can be arranged into an upper-triangular matrix by permutations. The corresponding permutations of
A will also convert A into an upper triangular matrix. So observation 2 holds.

Observation 3: If the main diagonal of A is the only non-zero diagonal of A, then A;, 4, Aty 1y -+ Aty 1 tx Aty ty =

0 for any distinct t1,ts, ..., tg.
Proof of Observation 3: Suppose that A, +, At, ts - - Aty 1 tr At ts 7 0. Then a different non-zero diagonal
for A other than the main diagonal is form by {A4;;|¢ # t1,..., ¢k} and Ay, 4y, Aty ts, -+ 5 Aty 1 otns Aty oty -

Now back to the inductive step. Suppose that A is an N x N-square matrix with exactly one non-zero
diagonal. By permutation, we may assume that the main diagonal of A is the only non-zero diagonal. In
particular, A;; # 0. According to Observation 1, Zl)l has exactly one non-zero diagonal and so can be
arranged into an upper-triangular matrix by permutations. The corresponding permutations convert A into a
new form, denoted by A', with the property that Aj; =0 when j > 1 and 7 > j. In particular, A}; =0
when j # 1 and j # N. g}l is an upper-triangular matrix implies that A}\LN #0. If A}VJ = 0, then the last
row of A' contains only one non-zero element A} y. So by Observation 2, we are done.

Otherwise, according to Observation 1, K}v N can be arranged into an upper-triangular matrix by
permutation. Hence, after the corresponding permutations, we may convert A' into a new form, denoted by
A? with the property that Azz,j =0 when ¢ > j and i # N. Moreover, permutations that convert A' to A2
never switch row N (column N) of A with any other rows (columns). So only one of {A?V ;13 # N} is not
zero. If A%\m =0, along with A7, =0 for N >4 > 1, we have that the first column of A? contains exactly
one non-zero element, A? ;. So by Observation 2, we are done.

Otherwise, A% ; # 0. According to Observation 3, A%V,lA%,kAi,N =0,fork=2,...,N —1. So we have
that AikA%)N =0, for k=2,..., N — 1. We will proceed by analyzing cases from k =2 to k = N — 1.



When k = 2, if A}, =0, then column 2 of A% contains only one non-zero element A3 ,, and we are done
by Observation 2. Otherwise, we may assume that A7, # 0 and A3 y = 0.

When k = 3, if A3 y # 0, then A7 3 = 0. According to Observation 3, A% ;AT ;A3 343 v = 0, and this
implies that A%,?, = 0. Hence, column 3 of A2 contains only one non-zero element, Ag’g, and again we are
done by Observation 2. Otherwise, we may assume that A3 v = 0, and one of {A7 3, A3 3} is not zero.

When k = k, if A7 v # 0, then A}, = 0. Similarly, as in the case where k = 3 (by Observa-
tion 3), A% A7 .45 ,4A435 v = 0, and this implies that A5, = 0. One of {A?;, A3 ,} is not zero =
either A?VJA%?)A%AA%W =0or A%V,lA%QA%SA%AAg,N =0= A?’)A = 0. Hence, column 4 of A2 contains
only one non-zero element, Ai 4, and again we are done by Observation 2. Otherwise, we may assume that
A3 y =0, and at least one of {A7 4, A3 ;, A3 ,} is not zero.

Inductively, either one of column k’s of A* contains only one non-zero element, or A3 y = 0 for all
k=2,...,N — 1. Note that the latter case implies that column N of A? contains only one non-zero element,
A% N> as AR # 0= A} y = 0. Either way, the proof is then completed by Observation 2.

O

4 Details to Example

To construct M, first notice that if maximum likelihood is achieved, M 11 = M ; 5 under all settings of A, a,
and ¢. This is because a first- and second-order polynomial give the same fit to D;.

For M 5 1, by symmetry arguments we know that the maximum-likelihood fit of a first-order polynomial
to Ds is a horizontal line (f(z) = b). We can find this value of b through a grid search. Given this b,

Mo = Ny(a;b)*Ny(—a;b)*Ny(A + a;b) Ny (A — a;b),

where

VB
Ny(z3) = Loyl — 1))
q
Here, g = ﬁ so that the variance is 1; eq(x) is the g-exponential function defined by [1 + (1 — q)x]ﬁ
when ¢ # 1, and exp(x) when ¢ = 1. The normalizing constant Cy is given by:

2val(1;) B
Vi () for —oco<g<1
Co=4Vm forg=1
VAL (55
\/qfli?(q%l) for 1 < q < 3.

For M, 5, again by symmetry arguments we know that the maximum-likelihood fit of a second order
polynomial to D5 is a parabola that passes through the middle of each of the three pairs of data points. Thus,
M272 = N,I(a; 0)6
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