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Abstract

Cooperative transmission of data fosters
rapid accumulation of knowledge by effi-
ciently combining experiences across learners.
Although well studied in human learning
and increasingly in machine learning, we
lack formal frameworks through which we
may reason about the benefits and limita-
tions of cooperative inference. We present
such a framework. We introduce novel
indices for measuring the effectiveness of
probabilistic and cooperative information
transmission. We relate our indices to the
well-known Teaching Dimension in determin-
istic settings. We prove conditions under
which optimal cooperative inference can be
achieved, including a representation theorem
that constrains the form of inductive biases
for learners optimized for cooperative infer-
ence. We conclude by demonstrating how
these principles may inform the design of
machine learning algorithms and discuss impli-
cations for human and machine learning.

1 INTRODUCTION

Learning through cooperation is a foundational prin-
ciple underlying human-human, human-machine, and
(potentially) machine-machine interaction. In human-
human interaction, cooperative information sharing
has long been viewed as a foundation to human lan-
guage (Grice, 1975; Goodman and Stuhlmüller, 2013;
Kao et al., 2014), cognitive development (Csibra and
Gergely, 2009), and cultural evolution (Tomasello,
1999; Tomasello et al., 2005). Cooperative learning
has appeared in human-machine interaction (Crandall
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et al., 2017), social robotics (Thomaz and Breazeal,
2008; Knox et al., 2013; Chernova and Thomaz, 2014;
Thomaz et al., 2016; Laskey et al., 2017; Bestick et al.,
2016), machine teaching (Zhu, 2013, 2015; Patil et al.,
2014; Simard et al., 2017), cooperative reinforcement
learning (Hadfield-Menell et al., 2016; Ho et al., 2016),
and deep neural networks (Lowe et al., 2017). Despite
the importance of cooperative selection of, and learning
from, data, we are unaware of any theory of when or
why cooperation may be effective for increasing learning
and the transmission of knowledge.

In this paper we address this lack by introducing a
measure of communication effectiveness in the coop-
erative setting. The role that this measure plays in
cooperative knowledge accumulation is analogous to
the role that training and test errors play in tradi-
tional machine learning. As training and test errors
provide a framework for measuring how effectively a
model selects the best model and generalizes, our new
measure, Cooperative Index, provides a framework for
measuring how effectively a model can be explained by
way of examples from the data and for selecting mod-
els with inductive biases that are interpretable with
respect to the data. We also use the measure to extend
the Teaching Dimension (Goldman and Kearns, 1995;
Zilles et al., 2008)—a classical measure of communi-
cation efficiency1—from deterministic to probabilistic
settings. We show how analyzing this measure reveals
the conditions, in terms of constraints on the learning
model’s inductive biases, under which cooperation may
produce optimal communication.

The paper is organized as follows: In Section 2, we first
introduce a Transmission Index that quantifies com-
munication effectiveness for any pair of probabilistic
inference and data selection processes. In Section 3, we
make connection between this index and the Average
Teaching Dimension, thereby connecting our measure
of effectiveness with previous measures of efficiency. In
Sections 4, we introduce cooperative inference based on

1Effectiveness is a measure of the quality of communica-
tion; efficiency is the size of the data necessary to reach a
particularly effectiveness.
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previous research in human social learning (Shafto and
Goodman, 2008; Shafto et al., 2014), present a Coop-
erative Index by extending the Transmission index to
the cooperative setting, and identify the condition that
must be satisfied to achieve optimal communication.
In Section 6, we conclude with implications for human,
machine, and human-machine learning.

2 THE TRANSMISSION INDEX

In this section we define Transmission Index to quantify
communication effectiveness. Communication occurs
between two agents, which we call a teacher and a
learner. Here the teacher represents the process of
selecting data to convey a particular concept, and the
learner represents the inference process of interpreting
the received data. In a probabilistic setting, the effec-
tiveness of communication is related to the probability
that the learner’s interpretation matches the teacher’s
intended concept.
Definition 2.1. Let h be a concept in a concept space
H. A data set space, D, is a collection of subsets of
a given set of data points. D ∈ D is called a data
set. Further, let PT(D|h) be the teacher’s probability
of selecting a data set D for communicating a given
concept h and PL(h|D) be the learner’s posterior for h
given data set D. We denote the size of H and D by
|H| and |D|, respectively.

When H and D are both discrete, in matrix nota-
tion, we can form the row-stochastic learner’s infer-
ence matrix, L ∈ [0, 1]|D|×|H|, having elements PL(h|D),
and the column-stochastic teacher’s selection matrix,
T ∈ [0, 1]|D|×|H|, having elements PT(D|h). As it is
possible that there exist data sets (or concepts) whose
probability of being selected is zero, here we allow a
row (or column) stochastic matrix to have zero rows
(or zero columns).
Definition 2.2. The Transmission Index (TI) is de-
fined as

TI(L,T) =
1

|H|

|H|∑
j=1

|D|∑
i=1

Li,jTi,j .

Note that in the above definition, both |H| and |D|
can either be finite or countably infinite. TI is
well-defined when |D| is countably infinite because
Cj :=

∑|D|
i=1 Li,jTi,j still converges in this case. (Cj ≤∑|D|

i=1 Ti,j = 1 and is thus bounded above, and each
Li,jTi,j is non-negative.) When |H| is countably infi-
nite, TI should be interpreted as a limit. See remark
2.6 for more detail.

In connection to channel coding in information theory,
the learner’s inference process is analogous to the de-

coding process, and the teacher’s data selection process
can be thought of as the combination of choosing the
code words and passing them through a noisy channel,
which makes the transmitted signals stochastic. There-
fore, the Transmission Index can be related to channel
capacity and the mutual information between the code
words and the observations. These relationships de-
serve a full treatment that is outside the scope of this
paper.

Now we give a few examples to show that TI captures
how well on average a concept in a given concept space
can be communicated with a given data set space. Also,
note that in the case where H and D are clear from
the context, we represent TI(L,T) simply by TI.

Example 2.3. Let |D| = |H| = 2. Consider this

teacher’s selection matrix, T =

(
1 0
0 1

)
, and these

three learner’s inference matrices, L(a) =

(
1 0
0 1

)
,

L(b) =

(
0 1
1 0

)
, and L(c) =

(
1/2 1/2
1/2 1/2

)
.

In the first case (a), TI(L(a),T) = 1, because the
concept that the teacher intends to teach through a
certain data set matches perfectly what the learner
would infer given that data set. In the second case (b),
TI(L(b),T) = 0, because the concept that the teacher
intends to teach through a certain data set leads the
learner to infer the other concept with certainty. In
the last case (c), TI(L(c),T) = 1

2 . Here the learner’s
inference is ambiguous, and TI captures that. In sum-
mary, TI captures the expected probability that the
learner will interpret the teacher’s intention correctly.

Proposition 2.4. Suppose that |H| is finite and |D|
is finite or countably infinite 2, then the range of the
Transmission Index is 0 ≤ TI ≤ 1, and TI = 1 if and
only if two conditions hold: (i) Li,j = 1 if Ti,j > 0
for all i, j, and (ii) there is no zero column in L and
T. Also, TI = 1 implies that |D| ≥ |H|, with equality
achieved when L and T are the same permutation
matrix.

Proof. TI ≥ 0 because T and L are stochastic matrices,
and TI = 0 if and only if for any i, j, either Li,j = 0 or
Ti,j = 0.

We show TI ≤ 1:

2Similar conclusion also holds when |H| is countable
infinite. See remark 2.6 for more detail.
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TI(L,T) =
1

|H|

|H|∑
j=1

|D|∑
i=1

Li,jTi,j

≤
(a)

1

|H|

|H|∑
j=1

 |D|∑
i=1

Ti,j

 ≤
(b)

1

|H|

|H|∑
j=1

1 = 1. (1)

Inequality (a) in (1) becomes an equality if and only
if condition (i) is satisfied. This is because in order
for Li,jTi,j = Ti,j , we need (Li,j − 1)Ti,j = 0, and
this implies that Li,j = 1 or Ti,j = 0, for any i, j.
Inequality (b) in (1) follows from T being a column-
stochastic matrix, and it becomes an equality if and
only if condition (ii) is satisfied.

Given that L is a row-stochastic matrix, if Li,j = 1,
then there is no other non-zero elements in row i. This
means that there are at most |D| elements with value
one in L; hence, by condition (i) the number of non-
zero elements in T is at most |D|. Also, condition (ii)
requires that the number of non-zero elements in T
be at least |H|. Therefore, |D| ≥ |H|, with equality
achieved if and only if T has only one positive element
for each column. Together with condition (i), this
implies that L has at least one element with value
one in each column. Because L is row-stochastic, this
implies L is a permutation matrix. Condition (i) also
implies that if Li,j < 1, then Ti,j = 0. Together with
condition (ii), T is the same permutation matrix.

Remark 2.5. It is clear that when |H| is finite, TI is
invariant under joint row and column permutations of
L and T. When |H| = |D| and TI = 1, row and column
exchangeability implies that L and T can always be
arranged into an identity matrix of order |H|.
Remark 2.6. When |H| is countably infinite and |D|
is either finite or countably infinite, the Transmission
Index is generalized to:

TI(L,T) := lim
n→|H|

1

n

n∑
j=1

|D|∑
i=1

Li,jTi,j ,

This can be interpreted as the following. Let Sn =
n∑
j=1

|D|∑
i=1

Li,jTi,j , then TI(L,T) = lim
n→∞

Sn
n

. Intuitively,

columns of T provide an enumeration of concepts in
H and Sn

n measures how well on average the first n
concepts can be communicated. Further, as all terms
are non-negative, if the limit of {Sn

n } exists, it does
not depend on this particular enumeration. Therefore,
naturally TI(L,T) is defined to be the limit of {Sn

n }.

Regrading the existence of TI, there are two cases. The
proof of Proposition 2.4 implies that 0 ≤ Sn ≤ n. One

case is that the growth rate of Sn is strictly slower than
any linear function, then TI = 0. Otherwise, TI exists
if and only if the sequence {Cj} converges as j →∞,
where Cj =

∑|D|
i=1 Li,jTi,j . These results provide a

guideline on constructing L and T to guarantee the
existence of TI when |H| is countably infinite. See
Supplementary Material for full detail.

In the rest of this paper, we assume that both |H| and
|D| are finite. Adopting the limit notations, similar
analysis can be made when |H| and |D| are countably
infinite.

3 CONNECTION TO AVERAGE
TEACHING DIMENSION

In this section we make the connection between the
Transmission Index and the Average Teaching Dimen-
sion. The Average Teaching Dimension is a variant of
Teaching Dimension, a classic measure for quantifying
the efficiency of teaching. The Teaching Dimension is
well-studied; it has formal connections with the VC
Dimension (Goldman and Kearns, 1995) and has been
analyzed for certain models in continuous concept space
(Liu and Zhu, 2016) and in cooperative settings (Zilles
et al., 2008; Doliwa et al., 2014). However, Teaching
Dimension and these analyses assume a determinis-
tic learning model and focus on efficiency rather than
effectiveness. To make connection to the analysis of
Teaching Dimension, we first extend the Transmis-
sion Index, a measure of effectiveness, to the Expected
Teaching Dimension, a measure of efficiency. Then we
show that the Expected Teaching Dimension, which is
well-defined for probabilistic knowledge transmission,
is the same as the Average Teaching Dimension when
knowledge transmission becomes deterministic.

The analyses of Teaching Dimension are typically
couched in the concept learning framework. In this
framework, a concept, h, is a function that maps an
instance, x, to a label, y. By observing examples, pairs
of (x, y), the learner can rule out concepts that are not
consistent with the examples. With this notation, we
can define the Average Teaching Dimension:

Definition 3.1 (Average Teaching Dimension). A con-
cept h ∈ H is consistent with a data set D if and only
if for every data point (x, y) ∈ D, h(x) = y. D ∈ D
is a teaching set for concept h ∈ H if h, but no other
concept in H, is consistent with D. Let D∗(h) ⊂ D
be the collection of teaching sets in D for concept h.
The classical version of Average Teaching Dimension
(Doliwa et al., 2014) is defined as follows: First, for any
h ∈ H, let
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TD(h) =

{
∞ if D∗(h) is empty
minD∈D∗(h)|D| otherwise

,

where |D| is the size of the data set D. Then, the
Average Teaching Dimension (ATD) for the concept
space H is

ATD(H) =
1

|H|
∑
h∈H

TD(h).

Expected Teaching Dimension extends the Transmis-
sion Index to incorporate data set size as follows:

Definition 3.2. The Expected Teaching Dimension
(ETD) is defined as

ETD(H) =

∑
h∈H

∑
D∈D |D|PL(h|D)PT(D|h)∑

h∈H
∑
D∈D PL(h|D)PT(D|h)

.

Definition 3.3. Let M ∈ [0, 1]|D|×|H| be a matrix,
where the element M i,j represents the probability that
hi is consistent with Dj . We define C ∈ {0, 1}|D|×|H|
to be a consistency matrix, where Ci,j = 1 if hi is
consistent with Dj and Ci,j = 0 otherwise. C can be
sampled from M by treating Ci,j as the outcome of a
Bernoulli trial with parameter M i,j .

Probabilistic consistency is an extension of determin-
istic consistency in the face of uncertainty. There are
at least two cases where uncertainty can arise. The
first case is when there are multiple possible learning
scenarios but the learner is uncertain about which sce-
nario is active. In this context, the probability of being
consistent is the proportion of scenarios in which the
concept is consistent with the data. The second case
is when there is measurement noise. In this context,
the learner has uncertainty about the true value of the
data and therefore is also uncertain about whether the
data is consistent with the concept.

Proposition 3.4. Let |H| = |D| = N , and C be a
consistency matrix of size N ×N . Let L and T be the
the row-normalized and column-normalized matrices
of C, respectively. Then, ATD(H) is finite if and only
if TI(L,T) = 1.

Proof. ATD(H) is finite if and only if TD(h) is finite
for all h ∈ H. Finite TD(h) means that there is at least
one teaching set D ∈ D for h. Let αi ⊂ {1, 2, . . . , N}
be the index set for the teaching sets of hi. Because
every D can only belong to at most one D∗(hi), so
αi ⊂ {1, · · · , N}\ ∪j 6=i αj for every i ∈ {1, 2, . . . , N}.
Further, because |D| = |H|, this construction of αi
implies that if |αi| > 1 for some i, then there must
exist at least one j 6= i with the property that |αj | = 0.

However, because TD(hi) is finite, αi cannot be an
empty set for any i. Hence, |αi| = 1 for all i. In
particular, this implies that C is a permutation matrix.
Thus, ATD(H) is finite if and only if C is a permutation
matrix. C being a permutation matrix implies that
C = L = T, which by Proposition 2.4 is equivalent to
TI(L,T) = 1.

Example 3.5. If L = T and is a permutation matrix,
C = T. As we proved in Proposition 3.4, ETD is the
same as ATD.

Example 3.6. We give an example when ETD is fi-
nite but ATD is infinite in the probabilistic setting.

Let |H| = |D| = 2, M =

(
1 1/2
0 1/2

)
. There are four

possible consistency matrices that can be sampled from

M : C(a) =

(
1 0
0 0

)
, C(b) =

(
1 0
0 1

)
, C(c) =

(
1 1
0 0

)
,

C(d) =

(
1 1
0 1

)
. For C(a), C(c) and C(d), the corre-

sponding ATD(H) is ∞, and for C(b) it is |D1|+|D2|
2 .

Let L(∗) and T(∗) be the row-normalized and column-
normalized matrices of C(∗), respectively, for ∗ ∈
{a, b, c, d}. Then, TI(L(a),T(a)) = 1

2 , TI(L(b),T(b)) =

1, TI(L(c),T(c)) = 1
2 , and TI(L(d),T(d)) = 5

8 , with
ETD(H) = |D1|, |D1|+|D2|

2 , |D1|, 3|D1|+2|D2|
5 , respec-

tively. Thus, ETD can be seen as an generalization of
ATD from scenarios of perfect transmission (TI = 1)
to those of imperfect transmission (0 ≤ TI ≤ 1) as well.

In addition to uncertain learning scenarios and mea-
surement noise, another way probabilistic transmission
can enter is that M represents the degree of consis-
tency between data and hypotheses. In this case, a
deterministic learner would need to make a decision on
what the underlying true consistency matrix is. Con-

sider M =

(
1 1/2
0 1/2

)
again. A simple decision rule is

to round M i,j up to 1 if it exceeds a threshold and
down to 0 otherwise. This decision rule would result
in either C(a) or C(d), both of which correspond to
ATD =∞.

4 OPTIMAL COOPERATIVE
INFERENCE

The Transmission Index introduced in Section 2 as-
sumes that the learner and teacher, or more abstractly,
the inference process and the data selection process,
are independent. However, communication for the
transmission of knowledge is often cooperative (e.g.,
in pedagogy (Eaves and Shafto, 2016) and conversa-
tions (Kao et al., 2014)). Here, cooperation implies
that the teacher’s selection of data depends on what
the learner is likely to infer and vice versa. In this
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section, we formalize cooperative inference, which cap-
tures this inter-dependency between the two processes
of inference and selection and has been proposed as
a model of human language and teaching (Kao et al.,
2014; Shafto and Goodman, 2008; Shafto et al., 2014).
It can be seen as a way to map one common convention
to another one that is more effective at transmitting
knowledge without a priori agreement on the encoding
of data-concept pairs (Zilles et al., 2008). We define
Cooperative Index as a measure of communication ef-
fectiveness in the cooperative setting by applying the
Transmission Index to cooperative inference. Then,
we provide proofs regarding the form of the shared
likelihood matrix required to maximize the cooperative
index and hence optimize cooperative inference.
Definition 4.1 (Cooperative inference). Let D ∈ D
and h ∈ H. We define cooperative inference as a system
of two equations:

PL(h|D) =
PT(D|h)PL0

(h)

PL(D)
(2a)

PT(D|h) =
PL(h|D)PT0(D)

PT(h)
, (2b)

where PL(h|D) and PT(D|h) are defined in Defini-
tion 2.1; PL0(h) is the learner’s prior of h; PT0(D)
is the teacher’s prior of selecting D; PL(D) =∑
h∈H PT(D|h)PL0

(h) is the normalizing constant for
PL(h|D); and PT(h) =

∑
D∈D PL(h|D)PT0

(D) is nor-
malizing constant for PT(D|h).

The cooperative inference equations in (2) can be solved
using fixed-point iteration (Shafto and Goodman, 2008;
Shafto et al., 2014): First, define an initial likelihood3,
PT(D|h) = P0(D|h), for the first evaluation of (2a).
Then, given PL0(h) and PT0(D), one can evaluate (2a),
use the resulting PL(h|D) to evaluate (2b), use the
resulting PT(D|h) to evaluate (2a), and iterate this
process until convergence. By symmetry, the iteration
can also begin with (2b). This symmetry implies that
the initial likelihood matrix, M ∈ [0, 1]|D|×|H| with
elements P0(D|h), can be an arbitrary non-negative
matrix because it always gets appropriately normalized
in the first iteration.

For the remainder of the paper, we assume that PL0

and PT0 are uniform distributions over H and D, re-
spectively. In this case, the the fixed-point iteration
of (2) depends only on M and is simply the repetition
of column and row normalization of M . Without loss
of generality, we also assume that the iteration begins
with (2a).
Definition 4.2. Let L(k) and T(k) be the matrices
with elements PL(h|D) and PT(D|h), respectively, at

3This is the shared likelihood and common convention
mentioned in the beginning of this section.

the kth iteration of (2). If the iteration of (2) con-
verges, we define L(∞) := limk→∞ L(k) and T(∞) :=
limk→∞T(k).

Definition 4.3 (Cooperative Index, CI). Given M
and assuming that the fixed-point iteration of (2) con-
verges, we define the cooperative index as

CI(M ) = TI(L(∞),T(∞)) =
1

|H|

|H|∑
j=1

|D|∑
i=1

L
(∞)
i,j T

(∞)
i,j .

Remark 4.4. Similarly to TI, CI is also well-defined
as a limit when both |H| and |D| are countably infinite,
provided that the fixed-point iteration of (2) converges.

We further assume that M is a square matrix unless
otherwise stated. Then, the iteration of (2) becomes
the well-known Sinkhorn-Knopp algorithm, which prov-
ably converges under certain conditions by Sinkhorn’s
theorem (Sinkhorn and Knopp, 1967). With this con-
nection, we provide conditions under which optimal
cooperative inference is achievable.

Definition 4.5 (Positive diagonal). If M is an n× n
square matrix and σ is a permutation of {1, · · · , n},
then a sequence of positive elements {M i,σ(i)}ni=1 is
called a positive diagonal. If σ is the identity permuta-
tion, the diagonal is called the main diagonal.

Theorem 4.6 (A simpler version of Sinkhorn’s the-
orem (Sinkhorn and Knopp, 1967)). Given any non-
negative square matrix M with at least one positive
diagonal, L(k) and T(k) in the fixed-point iteration of
(2) converges to the same doubly stochastic matrix,
M(∞), which contains neither zero columns nor zero
rows, as k →∞.

Proof. Here we provide a sketch of the proof (see Sup-
plementary Material for full detail). We pick one posi-
tive diagonal. First we show the product of all elements
on that diagonal is positive and upper-bounded by 1
throughout the fixed-point iteration of (2). Given uni-
form priors on both hypothesis and data set space, we
then use the inequality of arithmetic and geometric
means to prove that the product either stays the same
or increase throughout the iteration. Finally, monotone
convergence theorem of real numbers guarantees that
the product will converge to its supremum, at which
point L and T must have converged to the same doubly
stochastic matrix.

As is for TI, if M is clear from the context, we denote
CI(M ) simply by CI for brevity. Now, we give two
simple examples: The first demonstrates the fixed-point
iteration of (2); the second compares full cooperative
inference with a special case known as machine teaching
(Zhu, 2015).
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Example 4.7. Let M =

(
1 1
0 1

)
, then L(k) =(

1− 1
2k

1
2k

0 1

)
and T(k) =

(
1 1

2k+1

0 1− 1
2k+1

)
. Notice

that zero elements remain zero throughout the iter-
ation process, but non-zero elements may converge
to zero. Since L(∞) and T(∞) are both the iden-
tity matrix, CI = 1. In contrast, after one itera-

tion of (2), L(1) =

(
1/2 1/2
0 1

)
, T(1) =

(
1 1/3
0 2/3

)
,

and TI(L(1),T(1)) is only 2
3 . Similarly, for any k,

TI(L(k),T(k)) < 1. Thus, cooperative inference in-
creases the effectiveness of communication.
Example 4.8. In this example we apply TI and CI
to machine teaching in a simple setting. Following Liu
and Zhu (2016), consider a version-space learner who
is trying to learn a threshold classifier hθ, θ ∈ {1, 2, 3}.
For x ∈ {0, 1, 2, 3}, hθ returns y = − if x < θ and
y = + if x ≥ θ. Assume a teacher provides training
set D = {(x1, y1), (x2, y2)} and the learner assigns the
same likelihood to all concepts that are consistent with
the data; then, the learner’s inference matrix is:

L =

{x1, y1, x2, y2}\hθ h1 h2 h3
{0,−, 1,+} 1 0 0
{0,−, 2,+} 1/2 1/2 0
{0,−, 3,+} 1/3 1/3 1/3
{1,−, 2,+} 0 1 0
{1,−, 3,+} 0 1/2 1/2
{2,−, 3,+} 0 0 1

.

Following Liu and Zhu (2016), machine teaching
chooses data that maximize the likelihood for the
learner to infer the correct hypothesis. Note that this
way of teaching can be considered as a special case
of cooperative inference: The teacher selects data by
maximizing PL(h|D) rather than sampling in propor-
tion to the probability, and the learner does not reason
about the teacher’s selection and thus only the first
step of the recursive cooperative inference is executed
(see 2a and 2b). Machine teaching will choose data sets
{0,−, 1,+}, {1,−, 2,+}, and {2,−, 3,+} for h1, h2,
and h3, respectively, with probability 1. Let machine
teaching’s data selection matrix be T(mt). The effec-
tiveness of machine teaching can then be quantified by
TI(L,T(mt)), which is 1 in this case. Depending on the
concept space and data set space, machine teaching’s
effectiveness is not always perfect. For example, if the
learner’s inference matrix consists of only the first three
rows of L, TI for machine teaching becomes 0.611.

Given the cooperative index, which quantifies the effec-
tiveness of transmission for cooperative inference, we
can prove conditions under which M maximizes CI:
Definition 4.9. A square matrix is triangular if it
has a positive main diagonal, and has only zeros below

(upper-triangular) or above (lower-triangular) the main
diagonal.

Theorem 4.10 (Representation theorem for coopera-
tive inference). Let M be a nonnegative square matrix
with at least one positive diagonal, then the following
statements are equivalent:

(a) The cooperative index is optimal, i.e., CI(M ) = 1;

(b) M has exactly one positive diagonal;

(c) M is a permutation of an upper-triangular matrix.

Proof. From Proposition 2.4 we know that CI(M ) =
TI(M(∞),M(∞)) = 1 if and only if M(∞) is a permuta-
tion matrix. Since elements of M that lie in a positive
diagonal do not tend to zero during cooperative infer-
ence (Sinkhorn and Knopp, 1967) (i.e., if M i,j 6= 0

lies in a positive diagonal, then M
(∞)
i,j 6= 0), M(∞) is a

permutation matrix if and only if M has exactly one
positive diagonal. So we have (a)⇐⇒ (b). (b)⇐⇒ (c)
is a fact of linear algebra which can be proved by in-
duction on the dimension n of M (see Supplementary
Material for full detail).

Remark 4.11. Let C be a consistency matrix of size
N ×N as in Definition 3.3. Suppose that C is a perme-
ation of an upper-triangular matrix, then CI(C) = 1.
Together with Proposition 3.4, we have that the Aver-
age Teaching Dimension of the corresponding concept
space H is finite at the convergence of the cooperative
inference iteration, but is infinite before that (unless
C is a permutation matrix).

Theorem 4.10 shows that in order to achieve optimal
cooperative inference and thereby effective knowledge
accumulation, the shared inductive bias should be one
that constraints the form of M to be upper triangular
(or a permutation thereof). This in turn constraints the
learner’s likelihood function such that it applies zero
probability to particular data-concept relationships.
Below, we show an example of using CI to investi-
gate the form of the likelihood that leads to optimal
transmission effectiveness.

Example 4.12. Consider polynomial regression. In
order to have a triangular M , the likelihood must have
finite support. We explore the behavior of CI under
different likelihood functions, ranging from fat-tailed
to compact. In particular, we explore the conditions
under which the different distributions lead to optimal
CI.

Let {xi}6i=1 = {−1,−1, 0, 0, 1, 1} and {yi}6i=1 =
{a,−a,∆ + a,∆ − a, a,−a}. The quantity ∆/a
can be viewed as the signal-to-noise ratio for a
second-order polynomial. Let D = {D1, D2},
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Figure 1: Comparison of CI across three different error likelihood functions (based on q-Gaussian distributions
with different values of q) in polynomial regression. Each of the plots illustrates how CI varies as a function of
the parameters a and ∆ that specify different data set spaces (see main text and Supplementary Material for
detail). We find that only having a compact error distribution, i.e., q = 0, results in optimal CI for all settings of
∆, which corresponds to the signal strength in the data.

where D1 = {x1, . . . , x4, y1, . . . , y4} and D2 =
{x1, . . . , x6, y1, . . . , y6}. Let H = {h1, h2}, where hi
is a polynomial of order i with a likelihood function
that defines the assumed noise distribution. The like-
lihood function is a q-Gaussian Nq(z;µ) with unit
variance (Tsallis et al., 2009). We construct the M
via maximum likelihood as a function of ∆ and a for
q = {0, 1, 1.5}. For each value of q, we first find the
maximum-likelihood estimate of hi to Dj , then assign
M i,j the likelihood produced by that estimate (see
Supplementary Material for more details). Having ob-
tained these M matrices, we iterate them according to
(2) to explore the behavior of CI.

In Figure 1 we show the phase diagrams of CI for the
three q-Gaussian distributions, which correspond to
a compact (q = 0), normal (q = 1), and fat-tailed
(q = 1.5) distribution. This result shows that when
the error likelihood is a compact distribution, there
exists at least one setting of a such that CI = 1 for all
∆ > 0. This is not the case when the error likelihood
has infinite support, i.e., q = 1 or q = 1.5. As sug-
gested by Theorem 4.10, modeling choices that yield
M ’s that are closer to triangular, such as compact
likelihood functions, can produce optimal cooperative
inference. This illustrates a simple modeling choice
that allows a small set of examples to uniquely identify
different parameterizations of the model. It is in this
sense that optimization of the Cooperative Index may

foster explainability and interpretability—by allowing
small sets of examples to uniquely map to underlying
parameterizations of the model, without requiring that
the maps between hypotheses and data be bijective.

5 RELATED WORK

As briefly discussed in Example 4.8, machine teaching
is a close cousin of cooperative inference in that both
aim to choose good data to convey a target concept.
Machine teaching can be thought of as performing
only one step of the cooperative inference iteration and
choosing deterministically the best choice available. In
this setting, Liu and Zhu (2016) has derived the Teach-
ing Dimension for linear learning models and discussed
the connections to VC Dimension. For simpler version-
space learner models, Doliwa et al. (2014) has made
formal connections between the Teaching Dimension,
VC Dimension, and sample compression in the itera-
tive setting, and Searcy and Shafto (2016) investigated
the representational implications of deterministic co-
operation. These differ from CI in that they assume
deterministic, rather than probabilistic, inference.

Furthermore, since cooperative inference is imple-
mented via the Sinkhorn-Knopp algorithm, many con-
nections stem from the body of work relating to Sin-
knorn’s scaling (see Idel (2016) for review). To give a
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few examples, on the theoretical front, Sinkhorn’s the-
orem has been analyzed with geometric interpretation
(Dykstra, 1985), in a convex programming formulation
(Macgill, 1977; Krupp, 1979), and as an entropy mini-
mization problem with linear constraint (Brown et al.,
1993). On the application side, Sinkhorn’s theorem has
been applied to modelling transportation (de Dios Or-
tuzar et al., 1994), designing condition numbers (Benzi,
2002), and ranking webpages (Knight, 2008).

6 DISCUSSION

Cooperative inference is central to human and machine
learning. Previous work has introduced numerous ac-
counts of the role of cooperation in learning and applied
these across a host of problems in human and machine
learning; however, to date, there has been no account
of when or why we should expect cooperative infer-
ence to outperform simple learning. Building on prior
models of cooperation from cognitive science of lan-
guage and learning and demonstrating connections to
models of machine teaching, we investigate this ques-
tion. We introduced the Transmission and Cooperative
Indices, which are metrics for the effectiveness of in-
ference in standard learning and cooperative learning
settings, respectively. We connect the Transmission
Index with prior measures of efficiency in deterministic
settings, namely, Teaching Dimension, and prove a rep-
resentation theorem stating the conditions under which
cooperation can yield optimally effective inference. We
demonstrate how this model informs modification of a
standard model of learning to ensure optimal coopera-
tive transmission of the model class via a small subset
of the data.

Beyond human learning, where this work provides foun-
dational theory to inform accounts of human cognitive
development, language, and cultural evolution, this
work has strong implications for development of ma-
chine learning models that are designed for explain-
ability and interpretability. Implicit in these is the
existence of a shared goal, and cooperation is the natu-
ral formalization of this. Whereas models necessarily
encode inferences about data in an internal language,
and those internal languages may take many different
forms depending on the task or domain, data provide
a general purpose language in which inferences can be
encoded to and decoded from. The promise of this
work is that it provides an overarching framework for
thinking about how to engineer models that are not
only predictively accurate, but also understood well
enough to be deployed correctly.

There are a number of practical and theoretical rea-
sons to be concerned with the explanability of machine
learning and AI algorithms. Practical reasons are re-

lated to algorithms’ use in industry, for example, to
decide who will get loans or determine prison sentences.
Human intelligibility to ensure the algorithms are not
simply propagating race, gender or other biases as well
as to satisfy recent legal standards is necessary (see
recent EU laws related to a right to an explanation;
Goodman and Flaxman (2016)). Theoretical reasons
are highlighted by the adversarial images that illustrate
how little we understand the workings of deep learning
(and probably other classes of) models. Our paper
presents theoretical results upon which we may develop
systems that are designed to be explainable by building
models that adopt the structural constraints necessary
to ensure optimal cooperative inference.
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