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Abstract

Subspace clustering partitions the data that
lie on a union of subspaces. `0-Sparse Sub-
space Clustering (`0-SSC), which belongs to
the subspace clustering methods with spar-
sity prior, guarantees the correctness of sub-
space clustering under less restrictive assump-
tions compared to its `1 counterpart such as
Sparse Subspace Clustering (SSC) [1] with
demonstrated effectiveness in practice. In this
paper, we present Dimensionality Reduced
`0-Sparse Subspace Clustering (DR-`0-SSC).
DR-`0-SSC first projects the data onto a lower
dimensional space by linear transformation,
then performs `0-SSC on the dimensionality
reduced data. The correctness of DR-`0-SSC
in terms of the subspace detection property
is proved, therefore DR-`0-SSC recovers the
underlying subspace structure in the original
data from the dimensionality reduced data.
Experimental results demonstrate the effec-
tiveness of DR-`0-SSC.

1 Introduction

Based on the observation that high dimensional data
often lie in low-dimensional subspaces in many cases,
subspace clustering algorithms [2] aim to partition the
data such that data belonging to the same subspace
are identified as one cluster. Among various subspace
clustering algorithms, the ones that employ sparsity
prior, such as Sparse Subspace Clustering (SSC) [1],
have been proven to be effective in separating the data
in accordance with the subspaces that the data lie in
under certain assumptions.

Sparse subspace clustering methods construct the
sparse similarity matrix by sparse representation of
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the data. The Subspace detection property defined in
Section 3 ensures that the similarity between data from
different subspaces vanishes in the sparse similarity
matrix, and applying spectral clustering [3] on such
sparse similarity matrix leads to compelling clustering
performance.

Elhamifar and Vidal [1] provides theoretical guarantee
on the subspace detection property for the case that
the subspaces are independent or disjoint under certain
conditions on the spectrum of the data matrix and the
principle angle between the subspaces. They obtain the
subspace-sparse representation by solving the canonical
sparse coding problem using the data as dictionary. In
addition to the sparsity based methods, low rank repre-
sentation is proposed in [4, 5] to recover the underlying
subspace structures under the independence assump-
tion on the subspaces. The Low-Rank Sparse Subspace
Clustering [6] and the Greedy Subspace Clustering [7]
achieve subspace detection property with high probabil-
ity and such methods consider overlapping subspaces.
The geometric analysis in [8] shows the theoretical re-
sults on subspace recovery by SSC. SSC has also been
successfully applied to a novel deep neural network
architecture, leading to the first deep sparse subspace
clustering method [9].

To relax the geometric conditions required by the sparse
subspace clustering methods with `1-norm induced
sparsity, `0-SSC is proposed in [10] which guarantees
the clustering correctness via subspace detection prop-
erty under much milder assumptions than its `1 coun-
terpart such as SSC. `0-SSC [10] solves the following
`0 sparse representation problem

min
Z
‖Z‖0 s.t.X = XZ, diag(Z) = 0 (1)

[10] proves that the subspace detection property holds
almost surely under randomized models and arbitrary
continuous data distribution in each subspace, with
the optimal solution to (1). To handle noisy data, [10]
resorts to solve the `0 regularized sparse approximation
problem below

min
Z∈IRn×n,diag(Z)=0

L(Z) = ‖X −XZ‖2F + λ‖Z‖0 (2)
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Albeit the theoretical guarantee and compelling em-
pirical performance of `0-SSC, it is computationally
inefficient in case of high dimensionality of the data. In
this paper, we propose Dimensionality Reduced `0-SSC
(DR-`0-SSC) which performs `0-SSC on dimensionality
reduced data. The theoretical guarantee on the correct-
ness of DR-`0-SSC as well as its empirical performance
are presented. Our analysis in Section 3 shows the
correctness of DR-`0-SSC under both the randomized
models and the deterministic model, and these models
are introduced in Section 2.3. Section 4 and Section 5
provides theoretical guarantee on the correctness of
DR-`0-SSC using two different randomized linear trans-
formation, i.e. the random projection by randomized
low-rank approximation of the data and the random
projection that approximately preserves the `2-norm.
This analysis is under the deterministic model wherein
the subspaces and the data in each subspace are non-
random, which is also the model employed by [1]. In
the following text, we use the term SSC or `1-SSC ex-
changeably to indicate the Sparse Subspace Clustering
method in [1].

We use bold letters for matrices and vectors, and regular
lower letter for scalars throughout this paper. The
bold letter with superscript indicates the corresponding
column of a matrix, i.e. Ai indicates the i-th column
of matrix A. The bold letter with subscript indicates
the corresponding element of a matrix or vector. ‖ · ‖F
denotes the Frobenius norm, ‖ · ‖p denotes the vector
`p-norm or the matrix p-norm, and diag(·) indicates
the diagonal elements of a matrix. HT ⊆ IRd indicates
the subspace spanned by T or its columns, and BI

denotes a submatrix of B whose columns correspond to
the nonzero elements of I. Let σt(·) be the t-th largest
singular value of a matrix, and σmin(·) indicates the
smallest singular value of a matrix.

2 Problem Setup

2.1 Notations

We hereby introduce the notations for subspace clus-
tering. Suppose the data X = [x1, . . . ,xn] ∈ IRd×n

lie in a union of K distinct subspaces {Sk}Kk=1 of di-
mensions {dk}Kk=1, where d is the dimensionality, n
is the size of the data, and Sk 6= Sk′ for k 6= k′.
All the data are normalized so that maxi ‖xi‖2 ≤ 1.
Let X(k) ∈ IRd×nk denote the data belonging to sub-

space Sk, with
K∑
k=1

nk = n. In the following text we

slightly abuse the notations and X also denotes the
set of all data points as columns of the data matrix
X, and we also use the matrix P ∈ IRp×d (p ≤ d)
to represent its associated linear transformation, and
P(−1) denotes its inverse transformation. The image

and the pre-image of a set under the linear transfor-
mation P is denoted as P(A) = {Px : x ∈ A} and
P(−1)(B) = {x ∈ IRd : Px ∈ B}.

2.2 Method

DR-`0-SSC performs subspace clustering by the fol-
lowing two steps: 1) obtain the dimension reduced

data X̃ = PX with a linear transformation P ∈ IRp×d

(p < d). 2) perform `0-SSC on the compressed data X̃:

min
Z
‖Z‖0 s.t. X̃ = X̃Z, diag(Z) = 0 (3)

If p < d, `0-SSC on the compressed data X̃ rather
than on the original data, so that the efficiency and
computational feasibility of `0-SSC are improved.

2.3 Models

Similar to [8], we introduce the deterministic, semi-
random and fully-random models for the analysis of
DR-`0-SSC.

• Deterministic Model: the subspaces and the data
in each subspace are fixed.

• Semi-Random Model: the subspaces are fixed but
the data are independent and identically distributed
in each of the subspaces.

• Fully-Random Model: both the subspaces and
the data of each subspace are independent and iden-
tically distributed.

We refer to the semi-random model and the fully-
random model as the randomized models in this paper.
All the three models are extensively employed to ana-
lyze the subspace detection property in the subspace
learning literature [8, 6, 11, 12].

3 Theoretical Analysis for DR-`0-SSC

The theoretical results on the subspace detection prop-
erty for DR-`0-SSC are presented in this section un-
der both the randomized models and the determinis-
tic model, In addition, our deterministic analysis for
DR-`0-SSC supplements the results in [10] which only
analyze `0-SSC under the randomized models.

The definition of the subspace detection property is
below.

Definition 1. (Subspace detection property for DR-
`0-SSC) Let Z∗ be the optimal solution to (3). The
subspaces {Sk}Kk=1 and the data X satisfy subspace
detection property for DR-`0-SSC if Z∗i is a nonzero
vector, and nonzero elements of Z∗i correspond to the
columns of X from the same subspace as xi for all
1 ≤ i ≤ n.
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It can be verified that the linear transformation P ∈
IRp×d transforms each subspace Sk ⊆ IRd into a sub-
space S̃k = P(Sk) ⊆ IRp. The dimension of S̃k is
denoted by d̃k. DR-`0-SSC only observes the trans-
formed data X̃. In order to analyze its clustering
correctness on the original data, it is natural to require
that the linear transformation does not confuse the
data from different original subspaces, i.e. data from
different subspaces do not be projected onto the same
transformed subspace by P. To this end, the subspace
preserving transformation is defined as follows.

Definition 2. (Subspace preserving transformation) A
linear transformation P ∈ IRp×d (p < d) is a subspace
preserving transformation if it does not confuse the data
from different subspaces. Namely, for any 1 ≤ k1, k2 ≤
K and k1 6= k2, if x ∈ Sk1 \ Sk2 , then P(x) /∈ S̃k2 .

Remark 1. Here we show an an example of subspace
preserving transformation. Let P ∈ IRp×d be a linear
transformation with the singular value decomposition
P = UPΣV>P, where UP ∈ IRp×r and VP ∈ IRd×r are
the left and right singular vectors, Σ is a r×r diagonal
matrix with nonzero diagonal elements, rank(P) = r.
Then P is a subspace preserving transformation if all
the subspaces lie in the column space of VP comprised

of right singular vectors, i.e.
K⋃
k=1

Sk ⊆ col(VP). This

fact can be verified by noting that when x,y ∈ col(VP),
P(x) = P(y) if and only if x = y.

If P is a subspace preserving transformation, then DR-
`0-SSC guarantees the subspace detection property on
the original data X under the same condition required
by `0-SSC under the randomized models, and the re-
lated theoretical results are presented in Theorem 1.
Moreover, Theorem 2 presents the correctness of DR-
`0-SSC under the deterministic model.

Theorem 1. (Subspace detection property holds al-
most surely for DR-`0-SSC under the randomized mod-
els) Under either the semi-random model or the fully-
random model, if nk ≥ dk + 1 and P is a subspace
preserving transformation, then the subspace detection
property for DR-`0-SSC holds with probability 1 with
the optimal solution Z∗ to (3).

We introduce the definition of general position and
external subspace before stating Theorem 2.

Definition 3. (General position) For any 1 ≤ k ≤ K,
the data X(k) are in general position if any subset of
L ≤ dk data points (columns) of X(k) are linearly
independent. X are in general position if X(k) are in
general position for 1 ≤ k ≤ K.

The assumption of general condition is rather mild.
In fact, if the data points in X(k) are independently
distributed according to any continuous distribution,
then they almost surely in general position.

Let the distance between a point x ∈ IRd and a subspace
S ⊆ IRd be defined as d(x,S) = infy∈S ‖x − y‖2, the
definition of external subspaces are below.

Definition 4. (External subspace) For a point x ∈
X(k), a subspace H{xij

}Lj=1
spanned by a set of linear

independent points {xij}Lj=1 ⊆ X is defined to be an

external subspace if {xij}Lj=1 6⊆X(k) and x /∈ {xij}Lj=1.
The point x is said to be away from the external sub-
spaces if minH∈Hx,d̃k

d(x,H) > 0. The point x is said

to be away from the external subspaces under the linear
transformation P if minH∈P(−1)◦P(Hx,d̃k

) d(x,H) > 0,

where Hx,d are the set of all external subspaces of di-
mension no greater than d for x, i.e. Hx,d = {H : H =
H{xij

}Lj=1
,dim[H] = L,L ≤ d, {xij}Lj=1 6⊆ X(k),x /∈

{xij}Lj=1}. (P(−1) ◦P)(·) = P(−1)(P(·)) is the compos-

ite mapping. All the data points in X(k) are said to
be away from the external subspaces (under the linear
transformation P) if each of them is away from the its
associated external spaces (under P).

According to the above definition, a point x ∈ Sk
is away from the external subspaces under the linear
transformation P if it does not lie in the image of any
external subspace under the mapping P(−1) ◦ P. In-
tuitively, low-dimensional external subspaces are the
confusion area such that the subspace detection prop-
erty may not hold for the data lying in it, since external
subspaces are spanned by data not belonging to sub-
space Sk that x lies in. In fact, the essence of Theorem 1
is that the probability measure of such low-dimensional
external subspaces are zero, therefore, the subspace
detection property holds almost surely. Figure 1(a)
illustrates an example of external subspace.

Under the deterministic model, Theorem 2 shows that
the subspace detection property holds if the data in
each subspace are all away from the low-dimensional
external subspaces under the linear transformation P.

Theorem 2. (Subspace detection property holds for
DR-`0-SSC under the deterministic model) Under the
deterministic model, suppose nk ≥ dk + 1, X(k) is in
general position. If all the data points in X(k) are away
from the external subspaces under the linear transfor-
mation P ∈ IRp×d for any 1 ≤ k ≤ K, then the sub-
space detection property for DR-`0-SSC holds with the
optimal solution Z∗ to (3).

Remark 2. If P is the identity matrix, then P(−1) ◦
P is the identity mapping, and d̃k = dk. We then
immediately recover the condition for the correctness
of `0-SSC under the deterministic model: the subspace
detection property holds with the optimal solution Z∗ if
all the data points in X(k) are away from the external
subspaces of dimension no greater than dk.

Remark 3. It can be verified that Theorem 1 in [10],



Dimensionality Reduced `0-Sparse Subspace Clustering

1
S

2
S

1
x

2
x 3

x

(a)

ɶ
1x

ɶ
2x

ɶ
3x

°
1S

°
2S

(b)

Figure 1: (a) Illustration of an external subspace. All the data X have unit norm so they lie on the surface of
the sphere. S1 and S2 are two subspaces in the three-dimensional ambient space. The subspace spanned by two
linearly independent points x1 ∈ S1 and x2 ∈ S2 is an external subspace, and the intersection of this external
subspace and S1 is the dashed line x1Ox3 in red. (b) The subspace spanned by two linearly independent points
x̃1 ∈ S̃1 and x̃2 ∈ S̃2 is an external subspace in the transformed space by the linear transformation P. Note that
the transformed data X̃ are also normalized to have unit norm. The intersection of this external subspace and S̃1

is the dashed line x̃1Ox̃3 in red, and the subspace detection property does not hold for the points in S1 other
than x1 which are transformed onto the red line by P. In this case, the subspace detection property does hold for
x3 ∈ S1, since x̃3 lies in the red line.

which shows the almost surely correctness of `0-SSC
under the randomized models with far less restrictive
assumptions than `1-SSC, follows from Theorem 2 if P
is the identity matrix. In fact, Theorem 1 in [10] proves
that the probability measure of the external subspaces
of dimension no greater than dk is zero, therefore, the
subspace detection property holds almost surely. This
indirectly demonstrates the merit of Theorem 2

Remark 4. If a point x ∈ X(k) is not away from
the external subspaces under the linear transformation
P, then there exists H ∈ Hx,d such that x ∈ P(−1) ◦
P(H), and H is spanned by a set of independent points
{xij} not belonging to X(k) according to Definition 4.
It follows that x̃ ∈ P(H{xij

}), or equivalently, x̃ ∈
H{x̃ij

}. In this case, the subspace detection property

does not hold for x. If {x̃ij} are linearly independent,
then x̃ lies in an external subspace spanned by {x̃ij}
in the transformed space. An example of such case is
illustrated in Figure 1(b).

It is should be emphasized that, similar to `0-SSC [10],
the assumptions required by DR-`0-SSC for the clus-
tering correctness are much milder than that required
by several other subspace clustering methods including
`1-SSC, on both subspaces and random data generation
under the randomized models. Theorem 2 requires the
data in each subspace to be away from the external
subspaces under the linear transformation, which is
much easier to check (given fixed d̃k ) than the condi-
tions involving inradius and incoherence required by
`1-SSC in its geometric analysis [8].

Previous dimensionality reduced `1-SSC work [14] also
employs linear transformation to reduce the data di-
mension. While [14] requires that the linear transforma-
tion approximately preserves the norm, i.e. ‖Px‖2 ∈
(1±ε)‖x‖ for a relatively small positive ε, the subspace
preserving transformation, or the linear transformation
under which a point is separated from the external
spaces as in Theorem 2, can arbitrary scale the norm
by virtue of the `0-norm. Also, note that the correct-
ness of DR-`0-SSC is nontrivial in the sense that the
results cannot not be obtained by directly applying
`0-SSC on the transformed data. This is mainly due
to the difficulty incurred by the linear transformation,
especially for the case of deterministic model wherein
external subspaces that intersect with multiple original
subspaces {Skj}.

It remains an interesting question that which linear
transformation P keeps a point x away from the ex-
ternal subspaces under P, if x is already away from
the external subspaces. Based on the linear transfor-
mation in Remark 1, we have the following corollary
for Theorem 2.

Corollary 1. Let the singular value decomposition of
the linear projection P ∈ IRp×d be P = UPΣV>P as in
Remark 1, and X ⊆ col(VP). Under the deterministic
model, suppose nk ≥ dk+1, X(k) is in general position.
If all the data points in X(k) are away from the external
subspaces of dimension no greater than d̃k for any
1 ≤ k ≤ K, then the subspace detection property for
DR-`0-SSC holds with the optimal solution Z∗ to (3).
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Table 1: Assumptions on the subspaces and random data generation (under the randomized models) for different
subspace clustering methods. D1 means the data in each subspace are generated i.i.d. uniformly on the unit
sphere in that subspace, and D2 means the data in each subspace are generated i.i.d. from arbitrary continuous
distribution supported on that subspace. Note that S1 < S2 < S3 < S4, D1 < D2, where the assumption on the
right hand side of < is milder than that on the left hand side. The methods that are based on these assumptions
are listed as follows. S1: [4, 5]; S2:[1]; S3:[7, 6, 11, 8]; S4: `0-SSC [10], DR-`0-SSC; D1: [7, 6, 8, 13]; D2: `0-SSC
[10], DR-`0-SSC

Assumption on Subspaces Explanation
S1:Independent Subspaces Dim[S1 ⊕ S2 . . .SK ] =

∑
k

Dim[Sk]

S2:Disjoint Subspaces Sk ∩ Sk′ = 0 for k 6= k′

S3:Overlapping Subspaces 1 ≤ Dim[Sk ∩ Sk′ ] < min{Dim[Sk],Dim[Sk′ ]} for k 6= k′

S4:Distinct Subspaces (`0-SSC, DR-`0-SSC) Sk 6= Sk′ for k 6= k′

Assumption on Random Data Generation Explanation
D1:Semi-Random Model or Fully-Random Model i.i.d. uniformly on the unit sphere.

D2:IID (`0-SSC, DR-`0-SSC) i.i.d. from arbitrary continuous distribution.

Sketch of the proof: For a point x ∈X(k), if d(x,H) =
0 for some H ∈ P(−1) ◦ P(Hx,d̃k

), then there ex-

ist L ≤ d̃k independent points {xij}Lj=1 ⊆ X such

that {xij}Lj=1 6⊆ X(k) and x /∈ {xij}Lj=1, x̃ ∈
P(H{xij

}Lj=1
) = H{x̃ij

}Lj=1
. This indicates that P(x−∑

j λjxij ) = 0 where {λj} are the coefficients. Since
X ⊆ col(V), x−

∑
j λjxij can not be in the null space

of P, so x−
∑
j λjxij = 0⇒ x ∈ H{xij

}Lj=1
. However,

H{xij
}Lj=1

is an external space of dimension L ≤ d̃k.

This contradictions indicates that all the data points
in X(k) are away from the external subspaces under
the linear transformation P, and the conclusion of this
corollary holds by applying Theorem 2.

4 Linear Transformation as Random
Projection by Randomized
Low-Rank Approximation

While certain linear transformation P leads to the
theoretical guarantee on the correctness of DR-`0-SSC
shown in Section 3, the dimension of the transformed
data X may still be large if the rank of the original
data is large. To see this, Corollary 1 guarantees the
clustering correctness when p ≥ rank(P) ≥ rank(X).
While we can enjoy the linear transformation with small
p in the case that the data has low rank, it remains an
interesting and important question that to what extent
such benefit is still present when the rank of the data
is not small.

In this section, we present the probabilistic result on
the correctness of DR-`0-SSC under the deterministic
model by choosing P as a random projection induced
by randomized low-rank approximation of the data.
The key idea is to obtain an approximate low-rank de-
composition of the data. Using the random projection
induced by such low-rank approximation as the linear

transformation P, the clustering correctness hold for
DR-`0-SSC with a high probability.

The literature has extensively employed randomized al-
gorithms for accelerating the numerical computation of
different kinds of matrix optimization problems includ-
ing low rank approximation and matrix decomposition
[15, 16, 17, 18, 19, 20, 21, 22]. We first introduce
randomized low-rank matrix approximation as follows.
A random matrix Ω ∈ IRn×p is generated and each
element Ωij is sampled independently from the Gaus-
sian distribution N (0, 1). Let the QR decomposition
of XΩ, named the sample matrix, be XΩ = QR
where Q ∈ IRd×p is an orthogonal matrix of rank p
and R ∈ IRp×p is an upper triangle matrix. With the
columns of Q being the orthogonal basis for the sample
matrix XΩ, X is now approximated by projecting X
onto the column space of XΩ: QQ>X = QW = X̄
where W = Q>X ∈ IRp×n. In this way, we obtain the
low-rank approximation of X by

X̄ = QW (4)

[23] proved that the low rank approximation X̄ is close
to X in terms of the spectral norm:

Lemma 1. (Corollary 10.9 in [23]) Let p0 ≥ 2 and
p′ = p− p0 ≥ 4, then with probability at least 1− 6e−p,
then the spectral norm of X − X̂ is bounded by

‖X − X̂‖2 ≤ Cp,p0 (5)

where

Cp,p0 =
(
1 + 17

√
1 +

p0

p′
)
σp0+1 +

8
√
p

p′ + 1
(
∑
j>p0

σ2
j )

1
2 (6)

and σ1 ≥ σ2 ≥ . . . are the singular values of X.
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Before presenting the main result in this section, we
define the margin of external subspaces and the mini-
mum restricted singular value in Definition 5 and Defi-
nition 6.

Definition 5. (Margin of external subspace) A point
x ∈ X(k) is said to be γk-away from the an external
subspaces of dimension no greater than d̃k for γk > 0,
if minH∈Hx,d̃k

d(x,H) ≥ γk, where Hx,d are the set of

all external subspaces of dimension no greater than d
as defined in Definition 4.

Definition 6. The minimum restricted singular value
of the data X is defined as

σr , min
β:0<‖β‖0≤r,rank(Xβ)=‖β‖0

σmin(Xβ) (7)

for 1 ≤ r ≤ d.

We have the following lemma on the perturbation
bound for the distance to the column spaces of two
matrices.

Lemma 2. (Perturbation of distance to subspaces)
Let A, B ∈ IRm×n are two matrices and rank(A) = r,
rank(B) = s. Also, E = A−B and ‖E‖2 ≤ C, where
‖ · ‖2 is the spectral norm. Then for any point x ∈ IRm,
the difference of the distance of x to the column space
of A and B, i.e. |d(x,HA)− d(x,HB)|, is bounded by

|d(x,HA)− d(x,HB)| ≤ C‖x‖2
min{σr(A), σs(B)} (8)

We have Theorem 3 showing the probabilistic correct-
ness of DR-`0-SSC if for any 1 ≤ k ≤ K, σd̃k , the
minimum restricted singular value with respect to the
dimension of the transformed subspace S̃k, is larger
than the approximation error Cp,p0 and the data in
each subspace are away from the external subspaces
with large enough margin γk. Before stating Theorem 3,
we have general position with margin defined in Defi-
nition 7, which guarantees that data in each subspace
are still in general position after linear transformation
if they are in general position before.

Definition 7. (General position with margin) For any
1 ≤ k ≤ K, the data X(k) are in general position with
margin τk if for any L ≤ d̃k data points {xij}Lj=1 ⊆
X(k), min1≤t≤L d(xit ,H{xij

}Lj=1\{xit}) ≥ τk.

Theorem 3. Under the deterministic model, suppose
nk ≥ dk+1, X(k) is in general position, σd̃k > Cp,p0 for
any 1 ≤ k ≤ K, and Cp,p0 is defined by (6) with p0 ≥ 2.
Suppose that data X(k) are in general position with

margin τk such that τk > 1 +
Cp,p0

σd̃k
−Cp,p0

. Moreover, all

the data points in X(k) are γk-away from the external
subspaces of dimension no greater than d̃k for any

1 ≤ k ≤ K with γk > 1 +
Cp,p0

σd̃k
−Cp,p0

. Then with

probability at least 1 − 6e−p, the subspace detection
property for DR-`0-SSC holds with the optimal solution
Z∗ to (3), using the linear projection P = Q>.

Remark 5. Note that the minimum restricted singu-
lar value σr increases when r decreases, so a smaller
dimension of the transformed subspace S̃k suggests a

better chance that σd̃k > Cp,p0 and γk > 1 +
Cp,p0

σd̃k
−Cp,p0

for a given Cp,p0 . Due to the fact that d̃k ≤ dk, this
observation is consistent with the theoretical finding in
the geometric analysis of `1-SSC [8] that low dimen-
sionality of the subspaces makes subspace clustering
easier.

5 Linear Transformation as More
General Random Projection

Rather than random projection via randomized low-
rank approximation in the previous section, we further
exploit the case when more general random projection
is used as the linear projection P in this section. Such
general random projections have been employed for
improving the efficiency of various optimization models.
The literature [24, 25, 26] extensively considers the
random projection that satisfies the following `2-norm
preserving property, which is closed related to the proof
of the Johnson-Lindenstrauss lemma [27].

Definition 8. Let P ∈ IRp×d satisfies the `2-norm
preserving property if there exists constant c > 0 such
that

Pr
[
(1− ε)‖v‖2 ≤ ‖Pv‖2 ≤ (1 + ε)‖v‖2

]
≥ 1− 2e−

pε2

c

(9)

holds for any fixed v ∈ IRd and 0 < ε ≤ 1
2 .

The linear operator P satisfying the `2-norm preserving
property can be generated according to uncomplicated
distributions. With P

′
=
√
pP, it is proved in [28, 29]

that P satisfies the `2-norm preserving property, if all
the elements of P

′
are sampled independently from the

Gaussian distribution N (0, 1), or uniform distribution
over ±1, or the database-friendly distribution described
by

P
′
ij =


√

3 : with probability 1
6√

0 : withh probability 2
3

−
√

3 : withh probability 1
6

, 1 ≤ i ≤ p, 1 ≤ j ≤ d

We present the probabilistic result on the correctness of
DR-`0-SSC using the linear transformation satisfying
the `2-norm preserving in Theorem 4. Before that, we
have the following lemma showing that the mapping
P> ◦P also approximately preserves the `2-norm.

Lemma 3. Suppose P satisfies the `2-norm preserving
property in Definition 8. If 0 < ε ≤ 1

2 , then for any

vector v ∈ IRd, with probability at least 1− 4de−
pε2

c ,

|v̄ − v|2 ≤
√
d‖v‖2ε (10)

where v̄ = P>Pv.
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Remark 6. c can be chosen as any constant in (4, 8]
such that Lemma 3 and (9) in Definition 8 hold, when
the elements of P

′
=
√
pP are i.i.d. samples from the

standard Gaussian distribution N (0, 1). Please refer to
[28] for more details.

Theorem 4. Let P satisfy the `2-norm preserving
property. Under the deterministic model, suppose nk ≥
dk + 1, σd̃k >

√
dd̃kε for 0 < ε ≤ 1

2 . Suppose that

data X(k) are in general position with margin τk such

that τk >
√
dε(1 +

√
d̃k

σd̃k
−
√
dd̃kε

). Moreover, all the data

points in X(k) are γk-away from the external subspaces
of dimension no greater than d̃k for any 1 ≤ k ≤ K

with γk >
√
dε(1 +

√
d̃k

σd̃k
−
√
dd̃kε

). Then with probability

at least 1− 4nde−
pε2

c , the subspace detection property
for DR-`0-SSC holds with the optimal solution Z∗ to
(3).

6 Experimental Results

We demonstrate the performance of DR-`0-SSC for
data clustering in this section. As mentioned in Sec-
tion 2.2, we first obtain the dimensionality reduced data
X̃ = PX with the linear transformation P ∈ IRp×d

(p < d), then perform `0-SSC on X̃ to have the clus-
tering result. Considering the presence of noise in the
data, the following `0 regularized sparse approximation
problem is optimized as suggested by the original `0-
SSC work [10], instead of the exact `0-SSC problem
3.

min
Z∈IRn×n,diag(Z)=0

L(Z) = ‖X̃ − X̃Z‖2F + λ‖Z‖0 (11)

Problem (11) is optimized by the proximal gradient
descent (PGD) method with details described in [10].
After the optimization with the resultant Z∗ ∈ IRn×n,
a sparse similarity matrix W is constructed by W∗ =
|Z∗|+|Z∗>|

2 , and spectral clustering is performed on W∗

to obtain the clustering results. Two measures are
used to evaluate the performance of different clustering
methods, i.e. the Accuracy (AC) and the Normalized
Mutual Information (NMI) [30].

We demonstrate the performance of DR-`0-SSC with
comparison to other competing clustering methods
including K-means (KM), Spectral Clustering (SC),
noisy SSC, Sparse Manifold Clustering and Embedding
(SMCE) [31] and SSC-OMP [32]. We also compare to
the dimensionality reduced `1-SSC [14], named DR-`1-
SSC in this paper. We use two settings for choosing
the random linear transformation: the first setting is

the using the random projection by randomized low-
rank approximation as the linear transformation in
Section 4; the second setting is using Gaussian random
projection as the linear transformation in Section 5.
For each setting, the projected dimension p is chosen
from

⌈
d
3

⌉
,
⌈
d
5

⌉
, and

⌈
d
10

⌉
. We conduct the experiments

on several image data sets with the comparative re-
sults between DR-`0-SSC and DR-`1-SSC shown in
Table 2. DR-`0-SSC-RD indicates DR-`0-SSC using
random projection via randomized low-rank approxi-
mation as the linear projection, and DR-`0-SSC-RP
indicates DR-`0-SSC using Gaussian random projec-
tion, and the three columns within DR-`0-SSC-RD or
DR-`0-SSC-RP are the clustering results by setting
p =

⌈
d
3

⌉
, p =

⌈
d
5

⌉
, and p =

⌈
d
10

⌉
respectively. The

performance of other baseline clustering methods is
shown in Table 3. Throughout all the experiments we
use fixed λ = 0.5 for both DR-`1-SSC and DR-`0-SSC.

It can be observed that DR-`0-SSC-RD or DR-`0-SSC-
RP always achieve better performance than its `1 coun-
terpart, due to the theoretical guarantee on the sub-
space detection property presented in Section 4 and Sec-
tion 5. We run all the randomized algorithms, namely
DR-`0-SSC-RD, DR-`0-SSC-RP, DR-`1-SSC-RD and
DR-`1-SSC-RP, for 10 times for each p setting. We
then use two-sample unpaired t-test to confirm that
DR-`0-SSC-RD is statistically better than DR-`1-SSC-
RD with p-value less than 0.05, and DR-`0-SSC-RP is
statistically better than DR-`1-SSC-RP with p-value
less than 0.05, throughout all the data sets, perfor-
mance measures and p settings. Given a particular
linear transformation P, the computational complexity
of DR-`0-SSC by optimizing (11) is O(Mn2p) where
M is the number of iterations (or maximum number
of iterations) for PGD. Compared to the complexity
O(Mn2d) of `0-SSC with p < d, considerable speedup
is achieved.

7 Discussion on Limitations

While we present the correctness of DR-`0-SSC under
both the deterministic and the randomized models,
our analysis is based on the assumption that the data
are not corrupted, i.e. they exactly lie in a union of
subspaces. On the other hand, real data always suffer
from noise and the data may lie close to subspaces. It is
still an open problem that whether similar theoretical
results can be obtained for DR-`0-SSC with noisy data.
While the analysis in this paper may not be directly
applicable to the noisy case, we are working on this
open problem now.
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Table 2: Clustering results on various image data sets, where the top two records are marked in bold.
Data Set Measure `0-SSC DR-`1-SSC-RD DR-`1-SSC-RP DR-`0-SSC-RD DR-`0-SSC-RP

COIL-20
AC 0.8472 0.7889 0.7743 0.7764 0.7771 0.7785 0.7773 0.8479 0.8479 0.8479 0.8472 0.8472 0.8479
NMI 0.9428 0.9164 0.9169 0.9219 0.8913 0.8907 0.8020 0.9433 0.9433 0.9433 0.9428 0.9428 0.9433

Ext. Yale-B
AC 0.8480 0.7603 0.7570 0.7255 0.7446 0.7330 0.6808 0.8248 0.8231 0.8227 0.8505 0.8302 0.8252
NMI 0.8612 0.7662 0.7631 0.7311 0.7503 0.7383 0.6987 0.8551 0.8535 0.8529 0.8543 0.8559 0.8569

UMIST Face
AC 0.6730 0.5252 0.5113 0.5009 0.5374 0.5009 0.5391 0.6957 0.6939 0.6957 0.6957 0.7026 0.6939
NMI 0.7924 0.7120 0.7055 0.7128 0.7248 0.7141 0.7192 0.8049 0.8022 0.8029 0.8029 0.8134 0.8021

AR Face
AC 0.6086 0.5607 0.5421 0.4993 0.5564 0.5557 0.5357 0.5879 0.5871 0.5707 0.5771 0.5836 0.5786
NMI 0.8117 0.7722 0.7662 0.7414 0.7731 0.7796 0.7589 0.8155 0.8126 0.8089 0.8103 0.8121 0.8146

Georgia Face
AC 0.6187 0.5680 0.5733 0.5613 0.5680 0.5533 0.5667 0.6200 0.5987 0.6200 0.6013 0.6133 0.6013
NMI 0.7400 0.7088 0.7075 0.7046 0.6992 0.6871 0.6963 0.7439 0.7361 0.7477 0.7339 0.7432 0.7357

Table 3: Clustering results of other clustering methods on the same data sets as in Table 2
Data Set Measure KM SC SSC SMCE SSC-OMP `0-SSC

COIL-20
AC 0.6554 0.4278 0.7854 0.7549 0.3389 0.8472

NMI 0.7630 0.6217 0.9148 0.8754 0.4853 0.9428

Extended Yale-B
AC 0.0954 0.1077 0.7850 0.3293 0.6529 0.8480

NMI 0.1258 0.1485 0.7760 0.3812 0.7024 0.8612

UMIST Face
AC 0.4275 0.4052 0.4904 0.4487 0.4835 0.6730

NMI 0.6426 0.6159 0.6885 0.6696 0.6310 0.7924

AR Face
AC 0.2752 0.2957 0.5914 0.3543 0.4229 0.6086

NMI 0.5941 0.6248 0.8060 0.6573 0.6835 0.8117

Georgia Face
AC 0.4987 0.5187 0.5413 0.6053 0.4733 0.6187

NMI 0.6856 0.7014 0.6968 0.7394 0.6622 0.7400

8 Conclusion

We present Dimensionality-Reduced `0-Sparse Sub-
space Clustering (DR-`0-SSC). DR-`0-SSC first reduces
the dimensionality of the data by a linear transforma-
tion, then performs `0 sparse subspace clustering on the
dimensionality reduced data. We present the theoreti-
cal guarantee on the correctness of DR-`0-SSC under
both deterministic and randomized models. Experimen-
tal results demonstrate the that DR-`0-SSC is effective
in data clustering, compared to other clustering meth-
ods including DR-`1-SSC which is the dimensionality
reduced version of `1-SSC.

Appendix

Sketch of proof of Theorem 3: Suppose there is 1 ≤
k ≤ K and a point x ∈ X(k) such that d(x,H) = 0
for some H ∈ P(−1) ◦ P(Hx,d̃k

), then there exist

L ≤ d̃k independent points {xij}Lj=1 ⊆ X such that

{xij}Lj=1 6⊆ X(k) and x /∈ {xij}Lj=1. It follows that
x̃ ∈ P(H{xij

}Lj=1
) = H{x̃ij

}Lj=1
. Now we define t̄ =

P>t̃ = QQ>t for any t ∈ IRd. Since the rows of P are
linearly independent, x̃ ∈ H{x̃ij

}Lj=1
⇔ x̄ ∈ H{x̄ij

}Lj=1

Let A ∈ IRd×L = [xi1 , . . . ,xiL ] be the matrix with
{xij}Lj=1 as it columns, and Ā ∈ IRd×L = [x̄i1 , . . . , x̄iL ]

be the matrix with {x̄ij}Lj=1 as it columns. Note that

‖A− Ā‖2 ≤ Cp,p0

Therefore, according to Lemma 2,

|d(x,HA)− d(x,HĀ)| ≤ Cp,p0‖x‖2
min{σL(A), σL(Ā)}

≤ Cp,p0

σd̃k
− Cp,p0

(12)

Moreover, we have

|d(x̄,HĀ)− d(x,HĀ)| ≤ ‖x̄− x‖2
= ‖QQ>x− x‖2 ≤ ‖x‖2 ≤ 1 (13)

where ex ∈ IRn, (ex)i = 1 for the index i such that
xi = x, and (ex)j = 0 for all j 6= i.

Combining (12) and (13), we have

|d(x̄,HĀ)− d(x,HA)| ≤ 1 +
Cp,p0

σd̃k
− Cp,p0

(14)

Since x ∈ X(k) is γk-away from the an external
subspaces of dimension no greater than d̃k, we have
d(x,HA) ≥ γk. Therefore, d(x̄,HĀ) ≥ γk − 1 −

Cp,p0

σd̃k
−Cp,p0

> 0. It follows that x̄ /∈ HĀ, and x̃ /∈
H{x̃ij

}Lj=1
. This contradiction indicates that all the

data points in X(k) are away from the external sub-
spaces under the linear transformation P for any
1 ≤ k ≤ K. It can also be verified that data X̃(k)

are in generation position by similar argument and
the definition of general position with margin. There-
fore, the conclusion of this theorem follows by applying
Theorem 2.
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