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Abstract regret of a given strategy that outputs {z;}7_, is then

In this article, we develop and analyze a homotopy
continuation method, referred to as HONES , for
solving the sequential generalized projections in
Online Newton Step (Hazan et al., 2006b), as well
as the generalized problem known as sequential
standard quadratic programming. HONES is fast,
tuning-free, error-free (up to machine error) and
adaptive to the solution sparsity. This is confirmed
by both careful theoretical analysis and extensive
experiments on both synthetic and real data.

1 Introduction

Online convex optimization (OCO) is an appealing frame-
work that unifies online and sequential optimization prob-
lems in various areas. In OCO, a player sequentially makes
decisions by choosing a point in a convex set and a concave
payoff function is revealed after each decision. The player
aims to “maximize” her cumulative payoff, or formally
minimize the regret, which measures the gap between the
average payoff of her decision strategy and that of the best
fixed-action strategy from hindsight. One of the high-profile
motivation is the universal portfolio management problem
(Cover, 1991), where an investor seeks an online strategy to
allocate her wealth on a set of financial instruments with-
out making any assumption on the market behaviors. The
payoff can be quantified by logarithmic wealth growth ratio,
formulated as Y, log(zT~;) where z;(j) (j = 1,...,n)
is the share of the j-th stock in the portfolio and ~y,(j) is
the ratio of the closing price of stock 7 on time ¢ to that on
time ¢ — 1. In view of the prohibition of short sales in most
markets, the decision space is thus the (n — 1)-dimensional
simplex A,,_; = {z e R": Y  x; =1,z; > 0}. The
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A rich class of algorithms has been developed since Cover
(1991) which proposed an algorithm with regret O(nlogT)
but with exponential computation cost per period. Kalai &
Vempala (2002) gave a polynomial-time implementation of
this algorithm, though the order of polynomials is still high.
Helmbold et al. (1998) developed an algorithm that reduces
the computation cost to O(n) but incurs a sub-optimal regret
O(v/Tlog n) in terms of horizon dependence. In 2003, the
pioneering work by Zinkevich (2003) proposed the influen-
tial Online Gradient Method which achieves O(v/T) regret
for general OCO problems. The next milestone, among
others, is achieved by Hazan et al. (2006b), which proposed
Online Newton Step (ONS) that achieves O(nlogT') regret
under mild conditions, satisfied in universal portfolio man-
agement problems, with a practical computation cost per
period. Hazan et al. (2006b) also shows that Online Gradi-
ent Method is able to achieve O(log T') regret but requires
the loss functions to be strongly convex and, more strin-
gently, the player knowing the strong-convexity modulus
apriori. We refer the readers to Shalev-Shwartz (2011) for
the history and to Elad Hazan’s thesis (Hazan et al., 2006a)
for detailed description of Online Newton Step.

Despite the promising theoretical guarantee of Online New-
ton Step, the computation efficiency remains a considerable
concern for practitioners as the algorithm involves solving a
sequence of generalized projections. Specifically, at time ¢
one needs to solve
!

min §xTA(t)a: — Nz, st. zeN,1 ()
where A® (resp. 7)) is a sequence of matrices (resp.
vectors) such that

AGFD — 4@ 4 g(t)(g(t))T’ 3)

for some time-varying vectors ¢*). In the special case
A = 1, (2) can be solved quite efficiently in O(n) time
(Duchi et al., 2008) due to the explicit form of the solution.
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Unfortunately, in Online Newton Step, A® is never a scaled
identity matrix and such benefits disappear for general matri-
ces. Hazan et al. (2006b) suggests using iterative algorithms
such as interior-point method (Wright, 1997). However, it
is known that interior-point method has O(n?) computation
cost per iteration, which could be prohibitive for large prob-
lems or high-frequency online problems. Luo et al. (2016)
utilizes the sketching approximation to improve the com-
putational efficiency of the second-order online learning.
Nonetheless, it targets at the constraint of bounded \xT’yt s
which does not address the simplex constraint in (2). For
these reasons, the sub-problem (2) remains a bottleneck of
Online Newton Step, which motivates our work.

Without the rank-one update structure (3), we should not
expect significant improvement over interior-point method
as (2) leads to multiple unrelated quadratic programming
problems. Nevertheless, (3) is a “huge bonus” that connects
the consecutive problems: In fact A is perturbed in only
one direction at each step and hence the optimal solutions in
consecutive steps should be close. A widely used strategy
to exploit the minor change is warm-start, i.e. initializing
the iterate as the optimal solution in the last step. Spectral
projected gradient (SPG) method (Birgin et al., 2000) is a
typical algorithm falling into this category, which combines
projected gradient method with smart line search. How-
ever, a warm-start is not always allowed. For example, the
interior-point method (Wright, 1997) requires the initializer
to be an interior point of the constraint set, but as shown
in various settings and applications, including our experi-
ments in section 3, the solution in each step often lies on
the boundary of the simplex. Another potential algorithm
is Exponentiated Gradient Descent (Kivinen & Warmuth,
1997) or Mirror Descent (Beck & Teboulle, 2003). However,
it also requires the initializer to be an interior point in that
any zero entry will stay zero. Furthermore, it is lack of
an efficient stopping rule, which might not be essential for
solving a single problem but is quite important for solving
thousands of problems.

On the other hand, it has been proved that the minimizer
of a standard quadratic programming problem tends to be
sparse under fairly general structural assumptions (Chen
et al., 2013; Chen & Peng, 2015). We also observed the
sparsity in both synthetic and real datasets; see section 3 for
details. However, none of the existing algorithms take the
solution sparsity into account. !

In summary, to the best of our knowledge, existing methods
are neither tailored for the sequential problem with structure
(3) nor designed to adapt to the solution sparsity. To exploit
the structure (3), we resort to the homotopy method, which
was proposed decades ago and widely used in optimizing
highly non-convex problems such as polynomial systems

"Here “sparsity” is a “phenomenon” instead of an “assump-
tion”, observed in both theory and practice, that the solution of the
optimization problem tends to be sparse.

(Chow et al., 1979; Li, 1983). The basic idea is to construct
a bivariate function H (z, w) on R™ x [0, 1] with H(z,0) =
g(z) and H(xz,1) = f(x). In order to optimize f(x) one
can start from the optimizer of g(x) and move towards f(x)
by gradually increasing w. Given sufficient smoothness of
H along with the non-singularity of the Hessian matrix of H
w.I.t , one can obtain a smooth trajectory, or a solution path
penetrating the optimizers of H (z,w) forall w € [0, 1] with
the optimizer of f(z) being the ending point. Homotopy
methods for quadratic programming problems have been
studied and applied for decades (Frank & Wolfe, 1956; Bank
et al., 1982; Ritter, 1981; Murty & Yu, 1988; Best, 1996;
Efron et al., 2004). However, all these methods are designed
for a specific problem. Recently, the homotopy methods
have been applied to sequential problems. For example,
Garrigues & Ghaoui (2009) proposed a homotopy method
to solve the online LASSO regression problem where the
objectives are updated in a similar fashion as (3).

For our problem (2), we define the homotopy func-
tion in a zigzag fashion which moves (A~ r(t=1) to
(A® (=1 and to (A®, +(M)) then; See Section 2.2.1 for
the explicit construction. We show that the solution path
can be calculated efficiently and exactly using the Karush-
Kuhn-Tucker (KKT) conditions. By carefully analyzing the
evolution of solutions, we propose an algorithm, referred to
as Homotopy Online NEwton Step (HONES), which is fast,
tuning-free, error-free (up to machine error) and adaptive to
solution sparsity. In fact, HONES can be extended to a gen-
eral box constraint, the discussion of which is deferred to
the appendix. We focus on the simplex case for two reasons.
First, it is one of the most common constraint in practice.
Besides ONS, (2) is also the generic problem in other ar-
eas such as Markowitz’s portfolio management (Markowitz,
1952) and resource allocation (Ibaraki & Katoh, 1988). This
is referred to as standard quadratic optimization dating back
to 1950s (Bomze, 1998). Secondly, the theory, derivation
and implementation are more clear in this special case, in
which the derivation is already non-trivial and sophisticated.

We compute the number of atomic operations exactly, up
to an additive constant, in Theorem 3. As almost all other
homotopy continuation methods, the theoretical complexity
of our algorithm is in general incomparable to other iterative
algorithms like SPG and interior-point method because the
former is proportional to the number of turning points on the
trajectory (see Section 2.4) while the latter is proportional to
the number of iterations to achieve an accurate solution (see
Section 2.3). For this reason, we compare the algorithms
by the running time on both synthetic and real datasets.
To conclude, HONES has a superior performance to SPG
and interior-point method and the gain of computational
efficiency of HONES is more significant when the solutions
are sparser.

The rest of the paper is organized as follows: HONES al-
gorithm is detailed in Section 2, followed by the theory
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and complexity analysis. The practical implementation is
deferred to the Supplementary Material. In Section 3, we
apply HONES to NYSE and NASDAQ data using ONS
for universal portfolio management. We also conduct ex-
periments on synthetic data and for Markowitz’s portfolio
management on real data. Section 4 concludes the article.

2 Proposed Algorithm

A generic framework to solve problem (2) with matrix
flow (3) is summarized in Algorithm 1 where ALGO1 and
ALGO?2 could be arbitrary sub-routines producing the solu-
tion of (2) in step 0 and the following steps.

Algorithm 1 Framework to solve (2)

Inputs:  Initial matrix A, vectors {g®,+®) ¢t =
1,2,...}
Procedure:

1 Initialize: (¥ «— ALGO1(A©®,+(0));

2: fort=1,2,---.do

30 2 ALGO2(A=D g 7)), (t=1),

4: end for

Output: {z®) :t=0,1,...}.

In this article, we will focus on the online part, namely
ALGO2. The complexity of ALGO1 will be increasingly
less important as ¢ increases. ALGOI1 can be simply cho-
sen as any state-of-the-art algorithm such as the interior-
point method. We follow the initialization approach used
in Online Newton Step (Hazan et al., 2006b), that is, set
A©) = €I, where € is a small positive number, and hence
20 = 11

2.1 KKT Condition Within A Step

We first consider the problem for a given ¢. The aim is

to minimize %ITAI — rTx over A,,_1, where A and r
are abbreviation of A(*) and r(*). By strong duality, it is

equivalent to minimizing the Lagrangian form
1
L(x; po, p) = §$TA$ —rT a4 po(1=1"2) — "z (4)

where 1o and p are Lagrangian multipliers with constraint
w; > 0fori = 1,...,n. Denote S, by the support of
vector . To be concise, the subscript x is suppressed in
the following context. KKT condition together with Slater’s
condition implies that (x, 11, ) is the solution of (4) if and
only if

Ax — pol — p—1r =0; (5
172 =1; (6)
,u,»xy;:O,,uiEO,xiEO,Vizl,...,n. (7)

Here (7) is dubbed complementary slackness condition. The
definition of S = supp(x) entails that zg-> = 0, and (7)
further implies that ;g = 0. Then the condition (5) can be

reformulated as
Ass  Asse T3
ASC S ASCSC O

N 1s 0 rs
o (1) )+ (72)

By separating .S and S¢, we have the following equations
for xg and pge.

zs = poAgsls + Agars; ®)
pse = Agesxs — piolge — rge

= _MO(ISC — ASCSA_;%'IS) — (T‘Sc — ASCSA;%'TS)-

©))

The other parameter p can be solved from (6) and (8). In
fact,

1= ITCE = l:giﬂs = ,LL()lgAgélS + lgAgéTS
which implies that

1— lgAgéTS

10
114,01 1o

Ho =

In summary, the quadruple (S, zg, s, f1p) Which solves
(8)-(10) produces the unique solution of (4). Moreover,
given the correct support .S, we can uniquely solve the other
three parameters. Thus, determining S is the key part in this
problem.

2.2 HONES Algorithm
2.2.1 Construction of Homotopy Continuation

Based on the above argument, the problem is reduced to
updating support S with A replaced with A + gg”', and r
replaced by r + ¢, where g, £ are shorthand notations of g(*)
and () — »(*=1) Heuristically, S will not be significantly
disturbed when g, £ are small perturbations. However, in real
problems, there is usually no such constraints on g. Instead,
we can consider a homotopy from (A4, 7) to (A+gg”,r+4).
The most natural one is (A+Agg”, r+A¢) with A\, A € [0, 1].
In other words, if we denote x (A, A) be the solution of (4)
with (A, r) replaced by (A + Agg®, 7 + \f), then x(0,0)
is the solution in the last step and x(1, 1) is the solution
after the update. The idea of homotopy continuation method
is to calculate z(\, ) over a path linking (0,0) to (1, 1).
Theoretically, any path suffices and the goal is to find a
path which leads to a simple computation. In this article

’The notation Ag, s, is referred to the submatrix that consists
of the S1-indexed rows and S2-indexed columns in A, and z g is
referred to the subvector that consists of S-indexed entries in .
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we will consider the Manhattan path from (0, 0) to (1,1),
namely the union of two segments: {(z,0) : z € [0, 1]} and
{(1,%) : z € [0,1]}. In other words we first minimize

1
HY(\) 2 ixT(A + gD — 1Tz
for each A € [0, 1] and then minimize
1
H®Q) £ SaT(A+gg")a — (r+ 207

for each A € [0, 1].

Although the problem is augmented, the update is efficient
since the support S is shown to be a piecewise constant set
on the path and explicit formulas, namely (8) - (10), can
be used to compute (g, s, to) directly when S is fixed.
Specifically, given the solution x (A, \) and its associated
support S = Sy (x,z) the triple (zg, fise, f10) is a simple
function of (A, )) as shown in the following theorem. And
S remains unchanged as A in (11) or A in (12) increases,
until one entry of (g, jse, 1) touches zero.

Theorem 1

1. For a given ), there exists vectors uy, us € R+ and
scalars D1, Dy € R, which only depend on S, such

that
zs(A) Up — Ug\
—use(N) | = p—p5 D
Mo()\) ! 2

2. For given ), there exists vectors w1, us € R L, which
only depend on S, such that

r5(3)
—5e ()
to(2)

12)

= u1 — U2

Proof

1. The proof is quite involved and we relegate it into The-
orem B-4 in Appendix B. The theorem also gives the
exact formula of uq, us, D1, Ds.

2. By (10), we have

_ 1 15A55(rs + Ms)
15A551s

15 Agsts

po(2) = 110(0)

Then it follows from (8) that

zs(N) = po(M) Agsls + Ags(rs + Ms)

1LAc e _
=25(0) = | F52 Ak — Aghes | M.
ISASSIS

T A
lsAséIS

Similarly, by (9), we obtain that

15 A58

1742115 (1ge—AgesAgals)
55

) = s (0)~

—(lge — ASCSAgéés))A.

2.2.2 Update of Support

Once S = S()\) is obtained for all )\, the solution path
can be efficiently solved by Theorem 1. Heuristically, S
is piecewise constant and the task is reduced to find the
next ) that S()) changes. We consider the update of S in
optimizing H")(\). The update of S in optimizing H(?)()})
can be obtained in the same way.

For a given \g € [0, 1], if z5(Ag) > 0 and pge(Ag) > 0,
then (11) implies that there exists n > 0, such that for any
A€ (Mo —m, 0+ 7),both xg(\) and pge () remains pos-
itive by setting S(A) = S(\g). Since (8)-(10) are sufficient
and necessary, we conclude that S(\) = S(Ag). This argu-
ment remains valid until an entry of either g or pge hits
zero. Denote j by the index of this entry. In the former case,
j leaves S and S is updated to S\ {j}. In the latter case, j
enters into S and S is updated to S U {j}. The other three
parameters are then updated correspondingly by Theorem 1.
Theorem 2 formalizes the above claim. The proof is omitted
since it is a direct consequence of sufficiency and necessity
of KKT conditions (8)-(10).

Theorem 2 For any given Ao > 0, let \"*V be the next
smallest X such that one entry of either xg or pge hits 0, i.e.

. Ui .

e . j—

)\nW_Inln+{u .1—1,2,...,77,}7
21

where uy and uy are defined in (11) and min evaluates
the minimum positive number in the set and defined to be
oo if all elements are non-positive. Then S(X) = S(Xo) for
A € [Ao, A"®V). Further, let

I = {Z €S uy = UQi/\nCW},

Iy = {i € 5wy = ug A"V},
then S(A™°Y) is updated by

SAY) = (5(Xo) \ 1) U L.

Remark 1 According to our experience, I, U Iy at most
contains one element. In other words, S is updated by one
element at each iteration.

In summary, the algorithm starts from A = 0 and searches
for the next smallest A such that one entry of xg or
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wse hits zero, then updates A as well as the quadruple
(S, zg, pge, po). The procedure is repeated until A crosses
1. In other words, there exist a sequence 0 = A\g < A\ <

. < A = 1, which we call turning points, such that
2(A) has the same support between any two consecutive
turning points and the value can be calculated by Theorem
1. A counterpart of Theorem 2 can be established for \.
The whole task reduces to finding all turning points and
we call this procedure HONES algorithm. The complexity
of HONES algorithm is determined by both the number of
turning points and the complexity of the update between
two consecutive turning points. For compact notation, we
define v as an x 1 vector with

vs =g, Vge = —Sc.

To be more clear, we state the main steps in Algorithm 2
for optimizing H(M) () holding A = 0. As a convention,
the minimum of an empty set is set to be infinity (line 3).
The algorithm for optimizing H(?)()) holding A = 1 can
be written in the same way as Algorithm 2 by changing A
into \.

Algorithm 2 Main steps of HONES algorithm in optimizing
H® (A)
Inputs: parameters A, y,r,g; initial optimum x (corre-
sponding to A)
Procedure:

1: Initialize A <— 0,5 < supp(z);

2: while A < 1do

3 A=min{A; > X :v;(A\) = 0 for some i};

4 L+ {ieS:v(\ =0}

5. I+ {ieS°:v(\) =0}

6: if A <1 then

7: S(—(S\Il)UIQ;

8: else

9: A 1;

10:  end if

1 (zs,pse, po) < (2s(A); pse(A), po(A)) via (8)-
(10).

12: end while
Output: (S7x57MSC7M0)'

2.3 Implementation and Complexity Analysis

Algorithm 2 presents the main idea without the implemen-
tation details. Although we can implement Algorithm 2
by directly computing quantities, e.g. w1, us, in every step
to find the next turning point as in line 3 and also directly
computing the iterates via (8)-(10) as in line 11, it is fairly
inefficient since many quantities appear in several compu-
tation steps and we can store them to save the computation.
A careful derivation in Appendices B and C shows that
the computation complexity is indeed low. For example,

although u; and us involves Agg, there is no need to cal-
culate the matrix inverse directly. Theorem 3 summarizes
the complexity for optimizing H")(\), H®)()) separately.
As a convention, we assume the scalar-scalar multiplication
takes a unit time and ignore the addition for simplicity when
computing the complexity. Since the real implementation
is involved, we state it as well as the proof of theorem 3 in
Appendices B and C for two cases separately.

Theorem 3 In step t, denote by k 4, k, the number of turn-
ing points in optimizing H™ (\) and H®) ()). Further let
s be the maximum support size over the path of (\, \) and
S« by the size of union of all supports from step 1 to step
t. Let Cj; be the computation cost of HONES algorithm in
optimizing HY), then

1. Cii =nse +ns(Bka+ 1) +n(12ks +2) + O(ka);

2. Cy = ns(2k, + 1) +n(6k, + 1) + O(k,).

It is clear that the algorithm adapts to the sparsity when
optimizing both H(!)()\) and H®)()). For each step,
the complexity is O (ns(ka + k;-)), upper bounded by
O(n%(ka + k,.)) for the dense case, which is the same as
other algorithms due to the inevitable multiplication of A
by z. In some special regimes, the solution is guaranteed
to be sparse with high probability, e.g., the data matrix is
randomly generated form a certain distribution such as uni-
form and exponential distributions Chen et al. (2013); Chen
& Peng (2015). We also observe this in our experiments;
See Section 3 for details.

2.4 Number of Turning Points

Let S; be the support of the optimum and k; be the number
of total turning points, then we can derive a generic bound
that

ke > |Se \ Se—1] + [Se—1 \ Sl (13)

provided that only one element is added to or removed from
the support at each update; see Remark 1. This is because it
requires at least |S;_1 \ S¢| steps to pop out the elements in
Si—1\ St and |S; \ Si_1] steps to push in the elements in
St \ Si—1 to translate S;_; into S;.

On the other hand, suppose that no other coordinates than
those in Sy U S;_1 enter into the support in the path, then

ki = [Se \ Se—1| +[Se-1\ Stl- (14)

Heuristically, the equation (14) should hold since if a co-
ordinate, not in Sy U S;_1, entered into the support on the
path, it must be popped out before the end, which, however,
should be rare to happen. For both synthetic data and real
data in section 3, we observe that there are at least 95% of
steps with k; satisfying (14) and over 99% of steps with
ke < |S¢\ Se—1] + [Si—1 \ S¢| + 6, i.e. with at most 3
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outside coordinates entered into the path. Thus, (14) is a
highly reliable result for k.

As a direct consequence of (14), HONES algorithm is ef-
ficient when the support changes slowly in which case k;
is small. In addition, if the solution is sparse, then a rough
bound suggests that k; < [Si| + |S¢—1]| is small. These
phenomena are observed in various situations (see section
3) and (14) explains the good performance of HONES algo-
rithm.

In general, the worst-case bound for the number of turning
points can be exponential as Mairal & Yu (2012); Girtner
et al. (2009) pointed out for Lasso and SVM respectively.
But the number of turning points is usually not large in prac-
tice. The same issue appears in Simplex method for linear
programming. Although it is known that the worst case com-
plexity is 2™, it usually converges in O(n) operations;See
Bertsimas & Tsitsiklis (1997).

3 Experiments

In this section, we compare the performance of HONES with
SPG and the interior-point method on both real and synthetic
data. We implement HONES in MATLAB 3 and implement
SPG # and interior-point method® by using existing code.
To make a fair comparison, SPG uses the solution to step ¢
as the warm start for the solution to step ¢ + 1. To evaluate
the performance, we display the cumulative running time
as a measure of efficiency. All experiments are conducted
on a machine with 3 GHz Intel Core i7 processor, OS X
Yosemite system and Matlab 2015a.

3.1 Universal Portfolio Management

(Hazan & Arora, 2006) proposed a version of Online New-
ton Step (Figure 3.7) that is equivalent to (2) with

Vi
A0) — I, g(t) = —,
Ty Ve

We apply our algorithm on two datasets from NYSE and
NASDAQ?, with daily stock price data from Jan. 3, 2005 to
May. 13,2016. The NYSE dataset contains 1544 stocks and
NASDAQ dataset contains 1101 stocks. This differs from
classical studies where at most hundreds of stocks, such
as S&P500, are incorporated. Still, we should emphasize
that for some financial institutions like hedge funds, the
number of base assets is huge and the computation efficiency
becomes important when the trading frequency is high. Here
we consider a large number of stocks to show the potential
of HONES algorithm in optimizing a large basket of assets.

3Code available at https://github.com/Elric2718/HONES.
*https://www.cs.ubc.ca/ schmidtm/Software/minConf.html
>QUADPROG function in MATLAB

SData available at https://github.com/Elric2718/HONES.
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Figure 1: Cumulative running time of HONES , SPG and
interior-point method on NYSE and NASDAQ dataset for
universal portfolio management. Each epoch has 252 mea-
surements.

The cumulative running time, measured in seconds, is re-
ported in Figure 1. The interior-point method is quite ineffi-
cient as the running time for 10 steps (0.04 epochs) exceeds
the total running time of HONES and SPG. Thus the pro-
posal by Hazan et al. (2006b) is not desirable. In addition,
HONES is much more efficient than both SPG, especially in
the more volatile case (NASDAQ). In fact, HONES achieves
a 2x speedup on NYSE data and a 6x speedup on NAS-
DAQ data! By excluding the first 4 epochs, HONES even
achieves a 12.5x speedup on NASDAQ data.

To explain the different behavior on two datasets, we re-
port the average solution sparsity in Table 1. Recall that
HONES is accurate in every step and we confirm this by
checking the KKT condition for each solution. Surprisingly,
the solutions are generally sparse for both datasets, as sug-
gested by existing theory (Chen et al., 2013; Chen & Peng,
2015). It is not surprising that the solutions are sparser on
NASDAQ due to the high volatility. As indicated by our
theory, the efficiency gain should be more significant in this
case.

Table 1: Characteristics of HONES for universal portfolio
management on NYSE and NASDAQ data. (Top) solution
Sparsity on NYSE and NASDAQ datasets, including the
average, standard error, maximum and minimum of the
support size; (Bottom) distribution of e;, the number of
excess turning points, on NYSE and NASDAQ datasets.

Dataset sparsity
mean std. max min
NYSE 16.0 8.6 98 4
NASDAQ 6.46 3.7 64 2
Dataset  proportion of zeros quantiles
9%  99.9%
NYSE 65.8% 8 22
NASDAQ 85.4% 4 11
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Finally, we examine our conjecture in Section 2.4 on the
number of turning points. As explained there, a bench-
mark for k; is |S; \ Si—1]| + |Si—1 \ S¢|. We refer to
er = (kt — St \ Si—1| — |St—1 \ St|)/2 as the number
of excess turning points; see Section 2.4 for details. For
each synthetic dataset, we report the proportion of zero e;
in Table 1. It is clear that most steps (65.8% for NYSE
data and 85.4% for NASDAQ data) are predicted by our
conjecture and almost all steps (over 99% for both data) are
not far away from our conjecture. This indicates that k; is
an accurate proxy for the number of turning points.

3.2 Synthetic Data

As discussed in Section 1, the problem (2) is indeed more
general than universal portfolio management. To examine
our algorithm comprehensively, we consider (2) under other
setups. First we consider the problem with the following
structure on synthetic data:

i L) TA® (e —
Qin o(z—y) Az ~y). (15)
Without the superscript ¢, this problem is called standard
quadratic programming problem and has attracted the at-
tention in various fields, e.g. Bomze (1998); Scozzari &
Tardella (2008); Bomze et al. (2008). It is of particular inter-
est to study the case where A(®) is a random matrix gener-
ated from some distribution. For instance, Chen et al. (2013)
consider a Wigner matrix A with {A4;; : 1 <7 < j < n}
being i.i.d. random variables and A;; = A;;. In this article,
we consider another important class of matrices in random
matrix theory — covariance matrix of rectangular matrices
with i.i.d. entries, ie. AW = ' ¢()(g()T, where
g'*) € R™ has i.i.d. Gaussian entries; see Bai & Silverstein
(2010) for more discussion. In this case the matrix flow
{A® .t =1,2,...} satisfies (3). To avoid singularity, we
set A©®) = eI where e = 10~ is a small positive num-
ber. Then it is easy to see that A is non-singular for all ¢
with probability 1 so that the solution z(*) is unique. The
vector y governs the sparsity of the solution. To see this,
consider the isotropic case where A = I, the solution of
(15) is the projection of y onto the simplex. If y is a zero
vector, the optimum is a dense vector with all entries % In
contrast, if y has large entries, the simplex constraint will
pull the optimum towards that direction and forces the other
entries to be zero , in which case the solution is sparse. The
same phenomenon is observed in anisotropic case as will be
shown below.

Our goal is to explore the scalability, in terms of the di-
mension, and the adaptivity to solution sparsity of the al-
gorithms. For the aspect of the dimension, we consider
three dimensions: {100, 1000, 3000}; for the aspect of the
sparsity, we set y = cyo with yo generated from N (0, I,,x»,)
and ¢ € {0.01,0.1}. For each case, we set the total number
of steps as 5000 and treat every 250 steps as an epoch (20
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Figure 2: Cumulative running time of HONES and SPG on
synthetic datasets. Each row corresponds to a dimension n
and each column corresponds to a factor c.

Table 2: Solution Sparsity and overall computation gain
of HONES over SPG on synthetic datasets. The first two
columns correspond to the dimension and the factor c; the
third column gives the mean of support size with its standard
deviation (in the parentheses); the fourth column gives the
maximum support size along the path; the last two columns
show the ratio of overall running time between SPG and
HONES .

scenarios sparsity speed ratio

n c mean (s.e.) max

100 0.01 81.3 (3.5) 88 0.97
1000 0.01 158.3(30.6) 190 1.13
3000 0.01 146.4(34.9) 225 1.68
100 0.1 19.5 (2.3) 26 1.34
1000 0.1 22.0(5.3) 32 5.26
3000 0.1 18.3 (4.2) 27 4.51

epochs in total). Similar to the previous case, we report the
cumulative running time in Figure 2 and other information
in Table 2 and Table 3. Here we exclude the interior-point
method since it is too slow.

First we notice that HONES is more scalable in high dimen-
sion. Moreover, as expected, a larger c gives sparser solu-
tions along the path and HONES significantly outperforms
SPG when the solution is sparse (¢ = 0.1) especially for
large-scale problems (n = 1000, 3000), in which HONES is
over 4.5 times faster than SPG. When the solution is not
sparse (¢ = 0.01), HONES is similar to SPG in small-scale
problem (n = 100) and increasingly more efficient when
the size of the problem grows. Finally the results in Table 3
show that our conjecture in Section 2.4 is extremely accurate
in this setting.
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Table 3: Distribution of e;, the number of excess turning
points, on synthetic datasets. The first two columns corre-
spond to the dimension and the factor c; the third column
gives the proportion of zero e;; the last two columns give
the 99% and 99.9% quantiles of e;.

scenarios proportion of zeros quantiles
n c 9%  99.9%
100 0.01 99.8% 0 1
1000 0.01 98.9% 1 4
3000 0.01 98.7% 1 6
100 0.1 99.9% 0 0
1000 0.1 99.8% 0 1
3000 0.1 99.8% 0 1

3.3 Markowitz Portfolio Selection

In this Subsection, we consider the application of HONES
algorithm on sequential Markowitz portfolio selection prob-
lem. In this problem, the vector of stock prices is assumed
to be a random vector with mean p and covariance matrix X
and the investor observes a realization from this distribution.
The goal is to minimize the risk, measured by the variance
2T¥z of a given portfolio while maintaining a reasonably
high average return 27 .. The problem is usually formulated
as follows: )
JJItréi]llgn ixtTEact — Xz} p.

For simplicity we assume A = 0. In practice, p and
are unknown and one has to replace them by estimators.
The most natural estimators >(*) and (1Y) are the sample
covariance matrix and the sample mean, i.e.

t t

1 al 1 y
A(t) e (S) (t) — (S)_ A(S) (S)_ A(S)
i _tg w Y —tgl(w a4 (w At

where w(® is the vector of daily gains, measured by the
entrywise log return log(~y;), of all assets of interest. Via
some algebra, it can be shown that the problem is equivalent
to (2) with

A Z 50 0 Z 0 g0 - JE1 (wa) _ﬂ<t—1>>
b) b) t .

We should emphasize that the solution in this way is opti-
mal from hindsight, which is different from the notions in
online learning regret minimization. Nonetheless, it is an
interesting and important problem in the context of back
testing and risk management since the result can reveal the
hidden structure of the assets; see Brodie et al. (2009); Fan
et al. (2008, 2012) for more details.

Similar to the Section 3.1, we report the cumulative running
time of HONES and SPG in Figure 3 and report other in-
formation in Table 4. Again, HONES is more efficient than
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Figure 3: Cumulative running time of HONES and SPG
on NYSE and NASDAQ dataset for Markowitz portfolio
management. Each epoch has 252 measurements.

SPG. We also try the interior-point method on each dataset.
It is 67 times slower than HONES on NYSE dataset and 31
times slower than HONES on NASDAQ dataset. Finally, the
conjecture on the number of turning points is also validated
by the results in the bottom panel of Table 4.

Table 4: (Top) solution Sparsity on NYSE and NASDAQ
datasets for Markowitz portfolio management, including
the average, standard error, maximum and minimum of the
support size; (Bottom) distribution of e;, the number of
excess turning points, on NYSE and NASDAQ datasets.

Dataset sparsity
mean s.e. max min
NYSE 49.8 22.7 108 30
NASDAQ 148.9 17.8 192 127
Dataset  proportion of zeros quantiles
9%  99.9%
NYSE 97.9% 1 10
NASDAQ 96.2% 3 22

4 Conclusion

In this article, we propose an efficient algorithm HONES to
solve the sequential generalized projection problem (2) with
rank-one update (3), appeared as the building block and the
bottleneck of Online Newton Step. HONES is a homotopy
continuation method that interpolates the consecutive objec-
tives. By a careful derivation, we calculate the exact number
of atomic operations, up to an additive constant (Theorem
3) and show that HONES has a good performance when
the support of the solution changes slowly with time or is
sparse as in many applications. We also provide a heuristic
conjecture on the number of turning points which plays an
important role in the computation complexity. The heuris-
tic conjecture and the efficiency of HONES algorithm are
supported and confirmed by extensive experiments on both
synthetic and real data.
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