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Abstract
It has been experimentally observed that
distributed implementations of mini-batch
stochastic gradient descent (SGD) algorithms
exhibit speedup saturation and decaying gen-
eralization ability beyond a particular batch-
size. In this work, we present an analysis
hinting that high similarity between concur-
rently processed gradients may be a cause
of this performance degradation. We intro-
duce the notion of gradient diversity that
measures the dissimilarity between concur-
rent gradient updates, and show its key role
in the convergence and generalization per-
formance of mini-batch SGD. We also es-
tablish that heuristics similar to DropCon-
nect, Langevin dynamics, and quantization,
are provably diversity-inducing mechanisms,
and provide experimental evidence indicat-
ing that these mechanisms can indeed enable
the use of larger batches without sacrificing
accuracy and lead to faster training in dis-
tributed learning. For example, in one of
our experiments, for a convolutional neural
network to reach 95% training accuracy on
MNIST, using the diversity-inducing mecha-
nism can reduce the training time by 30% in
the distributed setting.

1 INTRODUCTION
In recent years, deploying algorithms on distributed
computing units has become the de facto architec-
tural choice for large-scale machine learning. Dis-
tributed optimization has gained significant traction
with a large body of recent work establishing near-
optimal speedup gains on both convex and noncon-
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vex objectives (Chen et al., 2016, Dean et al., 2012,
Duchi et al., 2013, Gemulla et al., 2011, Jaggi et al.,
2014, Liu et al., 2014, Niu et al., 2011, Yun et al.,
2013), and several state-of-the-art publicly available
(distributed) machine learning frameworks, such as
Tensorflow (Abadi et al., 2016), MXNet (Chen et al.),
and Caffe2 (Chilimbi et al., 2014), offer distributed
implementations of popular learning algorithms.

Mini-batch stochastic gradient descent (SGD) is the al-
gorithmic cornerstone for several of these distributed
frameworks. During a distributed iteration of mini-
batch SGD, a master node stores a global model, and
P worker nodes compute gradients for B data points,
sampled from a total of n training data (i.e., B/P
samples per worker per iteration), with respect to the
same global model; the parameter B is commonly re-
ferred to as the batch-size. The master, after receiv-
ing these B gradients, applies them to the model and
sends the updated model back to the workers; this is
the equivalent of one round of communication.

Unfortunately, near-optimal scaling for distributed
variants of mini-batch SGD is only possible for up to
tens of compute nodes. Several studies (Dean et al.,
2012, Qi et al., 2016) indicate that there is a signifi-
cant gap between ideal and realizable speedups when
scaling out to hundreds of compute nodes. This com-
monly observed phenomenon is referred to as speedup
saturation. A key cause of speedup saturation is the
communication overhead of mini-batch SGD.

Ultimately, the batch-size B controls a crucial perfor-
mance trade-off between communication cost and con-
vergence speed, as observed and analyzed in several
studies (Goyal et al., 2017, Takác et al., 2013, Wang
et al., 2017). When using large batch-sizes, we ob-
serve large speedup gains per pass (i.e., per n gra-
dient computations), as shown in Figure 1a, due to
fewer communication rounds. However, as shown in
Figure 1b, to achieve a desired level of accuracy for
larger batches, we may need a larger number of passes
over the dataset, resulting in overall slower computa-



Gradient Diversity: a Key Ingredient for Scalable Distributed Learning

tion that leads to speedup saturation. Furthermore,
recent work shows that large batch sizes lead to mod-
els that generalize worse (Keskar et al., 2016), and
efforts have been made to improve the generalization
ability (Hoffer et al., 2017).

(a) (b)

Figure 1: (a) Speedup gains for a single data pass and
various batch-sizes, for a cuda-convnet model on CIFAR-
10. (b) Number of data passes to reach 95% accuracy for
a cuda-convnet model on CIFAR-10, vs batch-size. Step-
sizes are tuned to maximize convergence speed.

The key question that motivates our work is: How does
the batch-size control the scalability and generalization
performance of mini-batch SGD?

1.1 Our Contributions
We employ the notion of gradient diversity that mea-
sures the dissimilarity between concurrent gradient
updates. We show that the convergence of mini-
batch SGD, on both convex and nonconvex loss func-
tions, including the Polyak-Łojasiewicz functions (Lo-
jasiewicz, 1963, Polyak, 1963), is identical—up to con-
stant factors—to that of serial SGD (e.g., B = 1), if
the batch-size is proportional to a bound implied by
gradient diversity. We also establish the worst case op-
timality and tightness of the bound in strongly convex
functions.

Although it has been empirically observed that
more diversity in the data leads to more paral-
lelism (Chilimbi et al., 2014), and there has been sig-
nificant work on the theory of mini-batch algorithms,
our results have two major novelties: 1) our batch-
size bound is data-dependent, tight, and essentially
identical across convex and nonconvex functions, and
in some cases leads to guaranteed uniformly larger
batch-sizes compared to prior work, and 2) the bound
has an operational meaning, and inspired by our the-
ory, we establish that algorithmic heuristics similar to
DropConnect (Wan et al., 2013), Langevin dynam-
ics (Welling and Teh, 2011), and quantization (Alis-
tarh et al., 2016) are diversity-inducing mechanisms.
In our experiments, we find that the proposed mecha-
nisms can indeed enable the use of larger batch-size in
distributed learning, and thus reduce training time.

Following our convergence analysis, we study the ef-
fect of batch-size on the generalization behavior of

mini-batch SGD using the notion of algorithmic stabil-
ity (Bousquet and Elisseeff, 2002). Through a similar
measure of gradient diversity, we show that as long as
the batch-size is below a certain threshold, then mini-
batch SGD is as stable as one sample SGD that is
analyzed by Hardt et al. (2015).

2 RELATED WORK

Mini-batch SGD Dekel et al. (2012) analyze mini-
batch SGD on non-strongly convex functions and pro-
pose B = O(

√
T ) as an optimal choice for batch-size.

In contrast, our work provides a data-dependent prin-
ciple for the choice of batch-size, and it holds with-
out the requirement of convexity. Even in the regime
where the result in Dekel et al. (2012) is valid, de-
pending on the problem, our result may still provide
better bounds on the batch-size than O(

√
T ) (e.g., in

the sparse conflict setting shown in Section 4.1). Fried-
lander and Schmidt (2012) propose an adaptive batch-
size scheme and show that this scheme provides weak
linear convergence rate for strongly convex functions.
De et al. (2016) propose an optimization algorithm for
choosing the batch-size, and weighted sampling tech-
niques have also been developed (Needell and Ward,
2016, Zhang et al., 2017, Zhao and Zhang, 2014).
Diversity and data-dependent bounds In em-
pirical studies, it has been observed that more diversity
in the data allows more parallelism (Chilimbi et al.,
2014). As for the theoretical analysis, data-dependent
thresholds for batch-size have been developed for some
specific problems such as least squares (Jain et al.,
2016) and SVM (Takác et al., 2013). In particular,
for least square problems, Jain et al. (2016) propose
a bound on batch-size similar to our measure of gra-
dient diversity; however, as mentioned in Section 1,
our result holds for a wider range of problems includ-
ing nonconvex setups, and can be used to motivate
heuristics that result in speedup gains in distributed
systems.
Other mini-batching and distributed optimiza-
tion algorithms Beyond mini-batch SGD, several
other mini-batching algorithms have been proposed;
we survey a non-exhaustive list. Mini-batch proximal
algorithms are studied by Li et al. (2014), Wang et al.
(2017), Wang and Srebro (2017), and these algorithms
require solving a regularized optimization algorithm on
a sampled batch as a subroutine. Other algorithms in-
clude accelerated methods (Cotter et al., 2011), mini-
batch SDCA (Shalev-Shwartz and Zhang, 2013, Takáč
et al., 2015), and the combination of mini-batching and
variance reduction such as Acc-Prox-SVRG (Nitanda,
2014) and mS2GD (Konečnỳ et al., 2016). Here, we
emphasize that although different mini-batching algo-
rithms can be designed for particular problems and
may work better in particular regimes, especially in
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the convex setting, these algorithms are usually more
difficult to implement in distributed learning frame-
works like Tensorflow or MXNet, and can introduce
additional communication costs. A few other algo-
rithms have been recently proposed to reduce the com-
munication cost by inducing sparsity in the gradients,
for instance, QSGD (Alistarh et al., 2016) and Tern-
Grad (Wen et al., 2017).
Generalization and stability An important per-
formance measure of a learning algorithm is its gener-
alization ability. In their foundational work, Bousquet
and Elisseeff (2002) prove the equivalence between al-
gorithmic stability and generalization. This approach
is then used to establish generalization bounds for
SGD by Hardt et al. (2015). Another approach to
prove generalization bounds is to use the operator
view of averaged SGD (Dfossez and Bach, 2014). This
method is extended by Jain et al. (2016) to the random
least-squares regression problems. Variance reduction
methods are also used to develop algorithms with good
generalization performance (Daneshmand et al., 2016,
Frostig et al., 2015). In this paper, we extend the sta-
bility approach to the mini-batch setting, and show
that the generalization ability is governed by a quan-
tity that is also function of gradient diversity.

3 PROBLEM SETUP
We consider the following general supervised learning
setup. Suppose that D is an unknown distribution over
a sample space Z, and we have access to a sample
S = {z1, . . . , zn} of n data points, that are drawn
i.i.d. from D. Our goal is to find a model w from a
model space W ⊆ Rd with small population risk with
respect to a loss function f , i.e., we want to minimize
R(w) = Ez∼D[f(w; z)]. Since we do not have access
to the population risk, we instead train a model whose
aim is to minimize the empirical risk

RS(w) :=
1

n

n∑
i=1

f(w; zi). (1)

For any training algorithm that operates on the empir-
ical risk, there are two important aspects to analyze:
the convergence speed to a good model with small em-
pirical risk, and the generalization gap |RS(w)−R(w)|
that quantifies the performance discrepancy of the
model between the empirical and population risks.
For simplicity, we use the notation fi(w) := f(w; zi),
F (w) := RS(w), and define w∗ ∈ arg minw∈W F (w).
In this work, we focus on families of differentiable
losses that satisfy a subset of the following for all pa-
rameters w,w′ ∈ W:

Definition 1 (β-smooth).
F (w) ≤ F (w′) + 〈∇F (w′),w −w′〉+ β

2 ‖w −w′‖22.
Definition 2 (λ-strongly convex).
F (w) ≥ F (w′) + 〈∇F (w′),w −w′〉+ λ

2 ‖w −w′‖22.

Definition 3 (µ-Polyak-Łojasiewicz (PL) (Lo-
jasiewicz, 1963, Polyak, 1963)).
1
2‖∇F (w)‖22 ≥ µ(F (w)− F (w∗)).

Mini-batch SGD At each iteration, mini-batch
SGD computes B gradients on randomly sampled data
at the most current global model. At the (k + 1)-th
distributed iteration, the model is given by

w(k+1)B = wkB − γ
(k+1)B−1∑
`=kB

∇fs`(wkB), (2)

where each index si is drawn uniformly at random from
[n], with replacement. Here, we use w with subscript
kB to denote the model we obtain after k distributed
iterations, i.e., a total of kB gradient updates. Note
that we recover serial SGD when B = 1. Our results
also apply to varying step-size, but for simplicity we
only state our bounds with constant step-size. In re-
lated work, there is a normalization of 1/B included
in the gradient step, here, without loss of generality we
subsume that in the step-size γ.

We note that some of our analyses require W to be
a bounded convex subset of Rd, where the projected
version of SGD can be used, by making Euclidean
projections back to W, i.e., w(k+1)B = ΠW(wkB −
γ
∑(k+1)B−1
`=kB ∇fs`(wkB)). For simplicity, in our main

text, we refer to both with/without projection algo-
rithms as “mini-batch SGD”, but in our supplementary
material we make the distinction clear when needed.

4 GRADIENT DIVERSITY AND
CONVERGENCE

In this section, we introduce our definition of gradient
diversity, and state our convergence results.

4.1 Gradient Diversity
Gradient Diversity quantifies the degree to which indi-
vidual gradients of the loss functions are different from
each other. We note that a similar notion was intro-
duced by Jain et al. (2016) for least squares problems.
Definition 4 (gradient diversity). We refer to the fol-
lowing ratio as gradient diversity:

∆D(w) :=

∑n
i=1 ‖∇fi(w)‖22

‖
∑n
i=1∇fi(w)‖22

=

∑n
i=1 ‖∇fi(w)‖22∑n

i=1 ‖∇fi(w)‖22 +
∑
i 6=j〈∇fi(w),∇fj(w)〉

.

Clearly, ∆D(w) is large when the inner products be-
tween the gradients taken with respect to different
data points are small, and so measures diverse these
gradients are. We further define a batch-size bound
BD(w) for each data set S and each w ∈ W:
Definition 5 (batch-size bound).

BD(w) := n∆D(w).
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As we see in later parts, the batch-size bound BD(w)
implied by gradient diversity plays a fundamental role
in the batch-size selection for mini-batch SGD.

Examples of gradient diversity We provide two
examples in which we can compute a uniform lower
bound for all BD(w), w ∈ W. Notice that these
bounds solely depend on the data set S, and are thus
data dependent.
Example 1 (generalized linear function) Suppose that
any data point z consists of feature vector x ∈ Rd and
some label y ∈ R, and for sample S = {z1, . . . , zn},
the loss function f(w; zi) can be written as a gen-
eralized linear function f(w; zi) = `i(x

T
i w), where

`i : R → R is a differentiable one-dimensional func-
tion, and we do not require the convexity of `i(·). Let
X = [x1 x2 · · · xn]T ∈ Rn×d be the feature matrix.
We have the following results for BD(w) for general-
ized linear functions.

Remark 1. For generalized linear functions, ∀ w ∈
W, BD(w) ≥ nmini=1,...,n ‖xi‖22/σ2

max(X).

We note that it has been shown by Takác et al. (2013)
that the spectral norm of the data matrix is impor-
tant for the batch-size choice for SVM problems, and
our results have similar implication. In addition, sup-
pose that n ≥ d, and xi has i.i.d. σ-sub-Gaussian
entries with zero mean. Then there exist universal
constants c1, c2, c3 > 0 such that with probability
1 − c2ne−c3d, BD(w) ≥ c1d, ∀ w ∈ W. Therefore, as
long as we are in the relatively high dimensional regime
d = Ω(log(n)), we have BD(w) ≥ Ω(d), ∀ w ∈ W with
high probability.

Example 2 (sparse conflicts) In some applica-
tions (Joachims, 2006), the gradient of an individual
loss function ∇fi(w) depends only on a small subset of
all the coordinates of w (called the support), and the
supports of the gradients have sparse conflict. More
specifically, define a graph G = (V,E) with the ver-
tices V representing the n data points, and (i, j) ∈ E
when the supports of ∇fi(w) and ∇fj(w) have non-
empty overlap. Let ρ be the maximum degree of all
the vertices in G.
Remark 2. For sparse conflicts, we have BD(w) ≥
n/(ρ+1) for all w ∈ W. This bound can be large when
G is sparse, i.e., when ρ is small.

4.2 Convergence Rates
Our convergence results are consequences of the fol-
lowing lemma, which does not require convexity of the
losses, and captures the effect of mini-batching on an
iterate-by-iterate basis. Here, we define M2(w) :=
1
n

∑n
i=1 ‖∇fi(w)‖22 for any w ∈ W.

Lemma 1. Let wkB be a fixed model, and let w(k+1)B

denote the model after a mini-batch iteration with
batch-size B = δBD(wkB) + 1. Then

E[‖w(k+1)B −w∗‖22 | wkB ]

≤ ‖wkB −w∗‖22 − 2Bγ 〈∇F (wkB),wkB −w∗〉
+ (1 + δ)Bγ2M2(wkB),

where equality holds when there are no projections.

As one can see, for a single iteration, in expec-
tation, the model trained by serial SGD (B =
1), closes the distance to the optimal by exactly
2γ 〈∇F (wkB),wkB −w∗〉 − γ2M2(wkB). Our bound
says that using the same step-size1 as SGD (without
normalizing with a factor of B), mini-batch will close
that distance to the optimal (or any critical point w∗)
by approximately B times more, if B = O(BD(wkB)).
This matches the best that we could have hoped for:
mini-batch SGD with batch-size B should be B times
faster per iteration than a single iteration of serial
SGD.

We now provide convergence results using gradient di-
versity. For a mini-batch SGD algorithm, define the
set WT ⊂ W as the collection of all possible model
parameters that the algorithm can reach during T/B
parallel iterations, i.e.,
WT := {w ∈ W : w = wkB for some instance
of mini-batch SGD, k = 0, 1, . . . , T/B}.

Our main message can be summarized as follows:

Theorem 1 (informal convergence result). Let B ≤
δBD(w) + 1, ∀ w ∈ WT . If serial SGD achieves an ε-
suboptimal2 solution after T gradient updates, then us-
ing the same step-size as serial SGD, mini-batch SGD
with batch-size B can achieve a (1+ δ

2 )ε-suboptimal so-
lution after the same number of gradient updates ( i.e.,
T/B iterations).
Therefore, our result implies that, as long as the batch-
size does not exceed the fundamental bound implied
by gradient diversity, using the same step-size as the
serial algorithm, mini-batch SGD does not suffer from
convergence speed saturation.

We provide the precise statements of the results as fol-
lows. Define F ∗ = minw∈W F (w), D0 = ‖w0 −w∗‖22.
In all the following results, we assume that B ≤
δBD(w) + 1, ∀ w ∈ WT , and M2(w) ≤ M2, ∀ w ∈
WT . The step-sizes in the following results are known
to be the order-optimal choices for serial SGD with
constant step-size (Bottou et al., 2016, Ghadimi and
Lan, 2016, Karimi et al., 2016). We start with more
general function classes, i.e., nonconvex smooth func-
tions and PL functions.

1In fact, our choice of step-size is consistent with many
state-of-the-art distributed learning frameworks (Goyal
et al., 2017), and we would like to point out that our paper
provides theoretical explanation of this choice of step-size.

2Suboptimality is defined differently for different classes
of functions.
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Theorem 2 (smooth functions). Suppose that F (w)
is β-smooth, W = Rd, and use step-size γ = ε

βM2 .
Then, after T ≥ 2

ε2M
2β(F (w0)−F ∗) gradient updates,

mink=0,...,T/B−1 E[‖∇F (wkB)‖22] ≤ (1 + δ
2 )ε.

Theorem 3 (PL functions). Suppose that F (w)
is β-smooth, µ-PL, W = Rd, and use step-size
γ = 2εµ

M2β , and batch-size B ≤ 1
2γµ . Then, after

T ≥ M2β
4µ2ε log( 2(F (w0)−F∗)

ε ) gradient updates, we have
E[F (wT )− F ∗] ≤ (1 + δ

2 )ε.

For convex loss functions, we emphasize that, there
have been a lot of studies that establish similar rates,
without explicitly using our notion of gradient diver-
sity (Friedlander and Schmidt, 2012, Jain et al., 2016,
Takác et al., 2013). We present the results for com-
pleteness, and also note that via gradient diversity,
we provide a general form of convergence rates that is
essentially identical across convex and nonconvex ob-
jectives.

Theorem 4 (convex functions). Suppose that F (w)
is convex, and use step-size γ = ε

M2 . Then, after T ≥
M2D0

ε2 gradient updates, we have E[F (BT
∑ T

B−1
k=0 wkB)−

F ∗] ≤ (1 + δ
2 )ε.

Theorem 5 (strongly convex functions). Suppose
that F (w) is λ-strongly convex, and use step-size
γ = ελ

M2 and batch-size B ≤ 1
2λγ . Then, after

T ≥ M2

2λ2ε log( 2D0

ε ) gradient updates, we have E[‖wT −
w∗‖22] ≤ (1 + δ

2 )ε.

4.3 Worst-case Optimality
Here, we establish that the above bound on the batch-
size is worst-case optimal. The following theorem
demonstrates this for a convex problem with varying
agnostic batch-sizes3 Bk. Essentially, if we violate the
batch bound prescribed above by a factor of δ, then
the quality of our model will be penalized by a factor
of δ, in terms of accuracy.

Theorem 6. Consider a mini-batch SGD algo-
rithm with K iterations and varying batch-sizes
B1, B2, . . . , BK , and let Nk =

∑k
i=1Bi. Then,

there exists a λ-strongly convex function F (w) =
1
n

∑n
i=1 fi(w) with bounded parameter space W, such

that, if Bk ≤ 1
2λγ and Bk ≥ δE[BD(wNk−1

)] + 1 ∀ k =

1, . . . ,K (where the expectation is taken over the ran-
domness of the mini-batch SGD algorithm), and the to-
tal number of gradient updates T = NK ≥ c

λγ for some
universal constant c > 0, we have: E[‖wT −w∗‖22] ≥
c′(1 + δ)γM

2

λ , where c′ > 0 is another universal con-
stant. More concretely, when running mini-batch SGD

3Here, by saying that the batch-sizes are agnostic, we
emphasize the fact that the batch-sizes are constants that
are picked up without looking at the progress of the algo-
rithm.

with step-size γ = ελ
M2 and at least O(M

2

λ2ε ) gradient up-
dates, we have E[‖wT −w∗‖22] ≥ c′(1 + δ)ε.

Although the above bound is only for strongly convex
functions, it reveals that there exist regimes beyond
which scaling the batch-size beyond our fundamental
bound can lead to only worse performance in terms of
the accuracy for a given iteration, or the number of
iterations needed for a specific accuracy.
4.4 Diversity-inducing Mechanisms
In recent years, several algorithmic heuristics, such as
DropConnect (Wan et al., 2013), stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011),
and quantization (Alistarh et al., 2016), have been
shown to be useful for improving large scale optimiza-
tion in various aspects. For example, they may help
improve generalization or escape saddle points (Ge
et al., 2015). In this section, we demonstrate a differ-
ent aspect of these heuristics. We show that gradient
diversity can increase when applying these techniques
independently to the data points in a batch, render-
ing mini-batch SGD more amenable to distributed
speedup gains.

We note that these mechanisms have two opposing ef-
fects: on one hand, as we show in the sequel they allow
the use of larger batch-sizes, and thus can reduce com-
munication cost by reducing the number of iterations;
on the other hand, these methods usually introduce ad-
ditional variance to the stochastic gradients, and may
require more iteration to achieve a particular accuracy.
Consequently, there is a communication-computation
trade-off inherent to these mechanisms. By carefully
exploiting this trade-off, our goal would be to see a
gain in the overall run time. In Section 6, we provide
experimental evidence to show that this run time gain
can indeed be observed in real distributed systems.

We use abbreviation DIM for any diversity-inducing
mechanism. When data point i is sampled, instead
of making gradient update ∇fi(w), the algorithm up-
dates with a random surrogate vector gDIM

i (w) by in-
troducing some additional randomness, which is ac-
quired i.i.d. across data points and iterations.

We can thus define the corresponding gradient diver-
sity and batch-size bounds

∆DIM
D (w) :=

∑n
i=1 E‖gDIM

i (w)‖22
E‖
∑n
i=1 g

DIM
i (w)‖22

,

BDIM
D (w) := n∆DIM

D (w),

where the expectation is taken over the randomness
of the mechanism. In the following parts, we first
demonstrate various diversity-inducing mechanisms,
and then compare BDIM

D (w) with BD(w).

DropConnect We interpret DropConnect as updat-
ing a randomly chosen subset of all the coordinates
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of the model parameter vector4. Let D1, . . . ,Dn be
i.i.d. diagonal matrices with diagonal entries being
i.i.d. Bernoulli random variables, and each diagonal
entry is 0 with drop probability p ∈ (0, 1). When
data point zi is chosen, we make DropConnect update
gdrop
i (w) = Di∇fi(w).

Stochastic gradient Langevin dynamics
(SGLD) SGLD takes the gradient updates:
gsgld
i (w) = ∇fi(w) + ξi where ξi, i = 1, . . . , n, are

independent isotropic Gaussian noise N (0, σ2I).
Quantized gradients Define Q(v) as the quantized
version of a vector v. More precisely, [Q(v)]` =
‖v‖2 sign(v`)η`(v), where η`(v)’s are independent
Bernoulli random variables with P{η` = 1} =
|v`|/‖v‖2. We let gquant

i (w) = Q(∇fi(w)).

We can show that these mechanisms increases gradi-
ent diversity, as long as BD(w) is not already large.
Formally, we have the following result.
Theorem 7. For any w ∈ W such that BD(w) ≤
n, we have BDIM

D (w) ≥ BD(w), where DIM ∈
{drop, sgld, quant}.

5 DIFFERENTIAL GRADIENT
DIVERSITY AND STABILITY

In this section, we turn to another important property
of mini-batch SGD algorithm, i.e., the generalization
ability.

5.1 Stability and Generalization
Recall that in supervised learning, our goal is to
learn a parametric model with small population risk
R(w) := Ez∼D[f(w; z)]. In order to do so, we use em-
pirical risk minimization, and hope to obtain a model
that has both small empirical risk and small popula-
tion risk to avoid overfitting. Formally, let A be a
possibly randomized algorithm which maps the train-
ing data to the parameter space as w = A(S). In this
paper, we use the model parameter obtained in the
final iteration as the output of the mini-batch SGD
algorithm, i.e., A(S) = wT . We define the expected
generalization error of the algorithm as εgen(A) :=
ES,A[RS(A(S))−R(A(S))].

Bousquet and Elisseeff (2002) show the equivalence be-
tween the generalization error and algorithmic stabil-
ity. The basic idea of proving generalization bounds
using stability is to bound the distance between the
model parameters obtained by running an algorithm
on two datasets that only differ on one data point.
This framework is used by Hardt et al. (2015) to show
stability guarantees for serial SGD algorithm for Lip-
schitz and smooth loss functions. Roughly speaking,

4We note that our notion of DropConnect is slightly
different from the original paper (Wan et al., 2013), but is
of similar spirit.

they show upper bounds γ on the step-size below which
serial SGD is stable. This yields, as a corollary, that
mini-batch SGD is stable provided the step-size is up-
per bounded by γ/B. We remind the reader that since
we absorb the 1/B factor in the step-size, the only
step-size for which the analysis by Hardt et al. (2015)
would imply stability for SGD is 1/B less than what
we suggest in the convergence results. In the follow-
ing parts of this section, we show that the mini-batch
algorithm with a similar step-size to SGD is indeed
stable, provided the differential gradient diversity is
large enough.

5.2 Differential Gradient Diversity
The stability of mini-batch SGD is governed by the
differential gradient diversity, defined as follows.

Definition 6 (differential gradient diversity and
batch-size bound). For any w,w′ ∈ W, w 6= w′, the
differential gradient diversity and batch-size bound is
given by

∆D(w,w′) :=

∑n
i=1 ‖∇fi(w)−∇fi(w′)‖22

‖
∑n
i=1∇fi(w)−∇fi(w′)‖22

,

BD(w,w′) := n∆D(w,w′).

Although it is a distinct measure, differential gradient
diversity shares similar properties with gradient diver-
sity. For example, the lower bounds for BD(w) in ex-
amples 1 and 2 in Section 4.1 also hold for BD(w,w′),
and two mechanisms, DropConnect and SGLD also in-
duce differential gradient diversity, as we note in the
supplementary material.

5.3 Stability of Mini-batch SGD
We analyze the stability (generalization) of mini-batch
SGD via differential gradient diversity. We assume
that, for each z ∈ Z, the loss function f(w; z) is con-
vex, L-Lipschitz and β-smooth in W. We choose not
to discuss the generalization error for nonconvex func-
tions, since this may require a significantly small step-
size (Hardt et al., 2015).

Our result is stated informally in Theorem 8, and holds
for both convex and strongly convex functions. Here,
γ is the step-size upper bound required to guarantee
stability of serial SGD, and differently from the conver-
gence results, we treat BD(w,w′) as a random variable
defined by the sample S.
Theorem 8 (informal stability result). Suppose that,
with high probability, the batch-size B . BD(w,w′)
for all w,w′ ∈ W, w 6= w′. Then, after the
same number of gradient updates, the generalization
errors of mini-batch SGD and serial SGD satisfy
εgen(minibatch SGD) . εgen(serial SGD), and such a
guarantee holds for any step-size γ . γ.

Therefore, our main message is that, if with high prob-
ability, batch-size B is smaller than BD(w,w′) for all
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w,w′, mini-batch SGD and serial SGD can be both
stable in roughly the same range of step-sizes, and
the generalization error of mini-batch SGD and serial
SGD are roughly the same. We now provide the pre-
cise statements. In the following, we denote by 1 the
indicator function.
Theorem 9 (generalization error of convex functions).
Suppose that for any z ∈ Z, f(w; z) is convex, L-
Lipschitz and β-smooth in W. For a fixed step size
γ > 0, let

η = P
{

inf
w 6=w′

BD(w,w′) <
B − 1

2
γβ − 1− 1

n−11B>1

}
,

where the probability is over the randomness of S.
Then the generalization error of mini-batch SGD sat-
isfies εgen ≤ 2γL2 T

n (1− η) + 2γL2Tη.

It is shown by Hardt et al. (2015) that
εgen(serial SGD) ≤ 2γL2 T

n , for convex functions,
when γ ≤ 2

β . Notice that in our result, when B = 1,
we get η = 0, and thus recover the generalization
bound for serial SGD. Further, suppose one can
find B such that infw 6=w′ BD(w,w′) ≥ B with high
probability. Then by choosing B ≤ 1 + δB, and
γ ≤ 2

β(1+δ+ 1
n−1 )

, we obtain similar generalization
error as the serial algorithm without significant change
in the step-size range. For strongly convex functions,
we have:
Theorem 10 (generalization error of strongly convex
functions). Suppose that for any z ∈ Z, f(w; z) is L-
Lipschitz, β-smooth, and λ-strongly convex in W, and
B ≤ 1

2γλ . For a fixed step size γ > 0, let

η = P
{

inf
w 6=w′

BD(w,w′) <
B − 1

2
γ(β+λ) − 1− 1

n−11B>1

}
,

where the probability is over the randomness of S.
Then the generalization error of mini-batch SGD sat-
isfies εgen ≤ 4L2

λn (1− η) + 2γL2Tη.

Again, as shown by Hardt et al. (2015), we have
εgen(serial SGD) ≤ 4L2

λn for strongly convex functions,
when γ ≤ 2

β+λ . Thus, our remarks for the convex
case above also carry over here. We also mention that
while in general, the probability parameter η may ap-
pear to weaken the bound, there are practical functions
for which η has rate decaying in n. For example, for
generalized linear functions, we can show that when
the feature vectors have i.i.d. sub-Gaussian entries,
choosing B . d yields η . ne−d, which has polyno-
mial decay in n when d = Ω(log(n)). For details, see
the supplementary material.

6 EXPERIMENTS
We conduct experiments to justify our theoretical re-
sults. Our neural network experiments are all imple-
mented in Tensorflow and run on Amazon EC2 in-
stances g2.2xlarge.

Convergence We conduct the experiments on a lo-
gistic regression model and two deep neural networks
(a cuda convolutional neural network (Krizhevsky
et al., 2012) and a deep residual network (He et al.,
2016)) with cross-entropy loss running on CIFAR-10
dataset. These results are presented in Figure 2. We
use data replication to implicitly construct datasets
with different gradient diversity. By replication with
a factor r (or r-replication), we mean picking a ran-
dom 1/r fraction of the data and replicating it r times.
Across all configurations of batch-sizes, we tune our
(constant) step-size to maximize convergence, e.g., to
minimize training time. The sample size does not
change by data replication, but gradient diversity con-
ceivably gets smaller while we increase r. We use
the ratio of the loss function for large batch-size SGD
(e.g., B = 512) to the loss for small batch-size SGD
(e.g., B = 16) to measure the negative effect of large
batch sizes on the convergence rate. When this ratio
gets larger, the algorithm with the large batch-size is
converging slower. We can see from the figures that
while we increase r, the large batch-size instances in-
deed perform worse, and the large batch instance per-
forms the best when we have DropConnect, due to its
diversity-inducing effect, as discussed in the previous
sections. This experiment thus validates our theoreti-
cal findings.

Stability We also conduct experiments to study the
effect of large batch-size on the stability of mini-batch
SGD. Our experiments essentially use the same tech-
nique as in the study for serial SGD by Hardt et al.
(2015). Based on the CIFAR-10 dataset, we construct
two training datasets which only differ in one data
point, and train a cuda convolutional neural network
using the same mini-batch SGD algorithm on these two
datasets. For different batch-sizes, we test the normal-
ized Euclidean distance

√
‖w −w′‖22/(‖w‖22 + ‖w′‖22)

between the obtained model on the two datasets. As
shown in Figure 3a, the normalized distance between
the two models becomes larger when we increase the
batch-size, which implies that we lose stability by hav-
ing a larger batch-size. We also compare the general-
ization behavior of mini-batch SGD with B = 512 and
B = 1024, as shown in Figures 3b and 3c. As we can
see, for large batch sizes, the models exhibit higher
variance in their generalization behavior, and our ob-
servation is in agreement with Keskar et al. (2016).

Diversity-inducing Mechanisms We finally im-
plement diversity-inducing mechanisms in a dis-
tributed setting with 2 workers and test the speedup
gains. We use a convolutional neural network on
MNIST and implement the DropConnect mechanism
with drop probability pdrop = 0.4, 0.5. We tune the
step-size γ and batch-size B for vanilla mini-batch
SGD and the diversity-induced setting, and find the
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(a) (b) (c)

Figure 2: Data replication. Here, 2-R, 4-R, etc represent 2-replication, 4-replication, etc, and DC stand for DropConnect.
(a) Logistic regression with two classes of CIFAR-10 (b) Cuda convolutional neural network (c) Residual network. For
(a), we plot the average loss ratio during all the iterations of the algorithm, and average over 10 experiments; for (b), (c),
we plot the loss ratio as a function of the number of passes over the entire dataset, and average over 3 experiments. We
observe that with the larger replication factor, the gap of convergence increases.

(a) (b) (c)

Figure 3: Stability. (a) Normalized Euclidean distance vs number of data passes. (b) Generalization behavior of batch-size
512. (c) Generalization behavior of batch-size 1024. Results are averaged over 3 experiments.

(γ,B) pair that gives the fastest convergence for each
setting. Then, we compare the overall run time to
reach 90%, 95%, and 99% training accuracy. The re-
sults are shown in Table 1, where each time measure-
ment is averaged over 5 runs. Comparing wall-clock
times, we see DropConnect provides significant im-
provements. Indeed, the the batch-size gain afforded
by DropConnect—the best batch-size for vanilla mini-
batch SGD is 256, while with the diversity-inducing
mechanism, it becomes 512—is able to dwarf the noise
in gradient computation. Reducing communication
cost thus has the biggest effect on runtime, more so
than introducing additional variance in stochastic gra-
dient computations.

Table 1: Speedup Gains via DropConnect

train accuracy (%) 90 95 99
mini-batch time (sec) 46.97 57.39 361.52

pdrop = 0.4
time (sec) 24.88 39.12 313.60
gain (%) 46.98 31.83 13.25

pdrop = 0.5
time (sec) 29.68 43.24 317.79
gain (%) 36.76 24.66 12.09

7 CONCLUSION
We propose the notion of gradient diversity to measure
the dissimilarity between concurrent gradient updates

in mini-batch SGD. We show that, for both convex
and nonconvex loss functions, the convergence rate of
mini-batch SGD is identical—up to constant factors—
to that of serial SGD, provided that the batch-size is at
most proportional to a bound implied by gradient di-
versity. We also develop a corresponding lower bound
for the convergence rate of strongly convex objectives.
Our results show that on problems with high gradi-
ent diversity, the distributed implementation of mini-
batch SGD is amenable to better speedups. We also
establish similar results for generalization using the no-
tion of differential gradient diversity. Some open prob-
lems include finding more mechanisms that improve
gradient diversity, and in neural network learning,
studying how the network structure, such as width,
depth, and activation functions, impacts gradient di-
versity.
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