
Tensor Regression Meets Gaussian Processes

A Supplementary: On the Equivalence of Tensor Regression and Gaussian

Process

A.1 Eigenvalue problem

Let K = ŨŨ
>, take derivative over Ũ, we obtain the stationary point condition: yy

>(K+D)�1
Ũ = Ũ, Given

the decomposition of Ũ = Ux⌃xV
>
x , similar to (Lawrence, 2004), we have

yy
>(K+D)�1

Ũ = Ũ

yy
>(K+D)�1

Ux⌃xV
>

x = Ux⌃xV
>

x

yy
>
Ux(⌃x +D⌃

�1
x)�1

V
>

x = Ux⌃xV
>

x

yy
>
Ux = Ux(⌃

2
x +D)

which is a eigenvalue problem in the transformed space.

A.2 Derivatives for the Optimization

Given that y ⇠ N(0,K+D), where K = �(X)⌦M
m=1 Km�(X)>.

Decompose Km = UmU
>
m, we have K = �(X)(⌦M

m=1Um)(⌦M
m=1U

>
m)�(X)>.

Let Ũ = �(X)(⌦M
m=1Um), we have K = ŨŨ

>

The negative log-likelihood

L =
1

2
y
>(ŨŨ

> +D)�1
y +

1

2
log det(ŨŨ

> +D) + const

Based on Woodbury lemma, (ŨŨ
> +D)�1 = D

�1
�D

�1
Ũ(D + Ũ

>
Ũ)�1

Ũ
> as well as matrix determinant

lemma det(ŨŨ
> +D) = det(I+ Ũ

>
D

�1
Ũ) det(D) = det(D+ Ũ

>
Ũ)

Denote ⌃ = D+ Ũ
>
Ũ, let w = ⌃�1

Ũ
>
y. The objective function can be rewrite as

L =
1

2
D

�1
y
>
y �

1

2
D

�1
y
>
Ũ⌃

�1
Ũ

>
y +

1

2
log det(⌃) + const

Take derivative over Um(i,j), we have

@L

@Um(i,j)
= tr[(

@L

@Ũ
)>(

@Ũ

@Um(i,j)
)],

@L

@Ũ
= Ũ(⌃�1 +wD

�1
w

>)�1
� yD

�1
w

>

@Ũ

@Um(i,j)
=

@�(X)

@Um(i,j)
(UM ⌦ · · ·

@Um

@Um(i,j)
· · ·⌦U1) =

@�(X)

@Um(i,j)
(UM ⌦ · · ·Om(i,j) · · ·⌦U1)

Here Om(i,j) = eie
>

j is a matrix with all zeros, but the (i, j)th entry as one.

The predictive distribution: p(y?|x?,X,y) ⇠ N(µ?,�?):

µ? = k(x?,X)(D�1
�D

�1
Ũ(D+ Ũ

>
Ũ)�1

Ũ
>)y

�? = k(x?,x?)� k(x?,X)(D�1
�D

�1
Ũ(D+ Ũ

>
Ũ)�1

Ũ
>)k(X,x?)

Where Ũ = �(X)(⌦M
m=1Um).

A.3 Proof for Proposition 2.1

Consider a 3-mode T1 ⇥ T2 ⇥ T3 tensor W of functions W(1) = [w1(X), · · · ,wT (X)]

W = S ⇥1 U1(X)⇥2 U2 ⇥3 U3

Rose Yu?, Guangyu Li†, Yan Liu†

where Um is an orthogonal Tm ⇥Rm matrix. Assuming U1(X) satisfies E[U>
1 U1] = I (orthogonal design after

rotation).

With Tucker property
W(1) = U1(X)S(1)(U2U3)

>

The population risk can be written as

L(W) = tr

n
(Y � hX ,Wi)(Y � hX ,Wi)>

o
= tr

n✓
2I

�S(1)(U2U3)
>

◆>

E[cov(Y,U1(X)]

✓
0

�S(1)(U2U3)
>

◆
+ E(YY>)

o

Denote E[cov(Y,U1(X)] = ⌃(U1), bound the difference

L(W)� L̂(W) = tr
n✓

�2I
S(1)(U2U3)>

◆
(⌃(U1)� ⌃̂(U1))

✓
0

S(1)(U2U3)>

◆o



���
✓

�2I
S(1)(U2U3)>

◆
(⌃(U1)� ⌃̂(U1))

���
2

���
✓

0

S(1)(U2U3)>

◆���
?

 Cmax{2, kS(1)k
2
?}k⌃(U1)� ⌃̂(U1)k2

With C as a universal constant. The inequality holds with Schatten norm Hölder’s inequality

kABkS1  kAkSpkBkSq 1/p+ 1/q = 1

Given that supU1
k⌃(U1)� ⌃̂(U1)k2 = OP

⇣q
T2T3+log(T1T2T3)

N

⌘

Denote empirical risk L̂ =
PT

t=1

Pnt

i=1 L(hwt,xt,ii. Let W
? = infW2CL(W). The excess risk

L(Ŵ)� L(W?) = L(Ŵ)� L̂(Ŵ) + (L̂(Ŵ)� L̂(W?) + (L̂(W?
� L(W?))

 [L(Ŵ)� L̂(Ŵ)]� [L(W?)� L̂(W?)]

 2supW2CN
{L(W)� L̂(W)}

 O

⇣
kS(1)k

2
?k⌃(U1)� ⌃̂(U1)k2

⌘

if we assume kS(1)k
2
? = O(

⇣
N

T2T3+log(T1T2T3)

⌘1/4
), then L(Ŵ)�L(W?)  O(1), thus we obtain the oracle inequality

as stated.

A.4 Proof of Theorem 2.2

We can extend the approach of single task Gaussian process (Sollich and Halees, 2002) to our setting. We provide
the derivation for the full-rank case, but similar results apply to low-rank case as well. The Bayes error for the
full-rank covariance model is:

✏̂ = tr(⇤0�1
+ >

D
�1
)�1

To obtain learning curve ✏ = ED[✏̂], it is useful to see how the matrix G = (⇤�1 + >
D

�1
)�1 changes with

sample size. >
 can be interpreted as the input correlation matrix.

To account for the fluctuations of the element in >
 , we introduce auxiliary offset parameters {vt} into the

definition of G. Define resolvent matrix

G
�1 = ⇤�1 + >

D
�1
 +

X

t

vtPt

where Pt is short for Pt1,··· ,tM , which defines the projection of tth task to its multi-directional indexes.

Evaluating the change

G(n+ 1)� G(n) = [G�1(n) + ��2
t t

>

t]
�1

� G(n) =
G(n) t >

t G(n)

�2
t + >

t G(n) t

Tensor Regression Meets Gaussian Processes

where element (t)i = �⌧n+1,t�it(xn+1) and ⌧ maps the global sample index to task-specific sample index.
Introducing G = ED[G] and take expectation over numerator and denominator separately, we have

@G

@nt
= �

ED[GPtG]

�2
t + trPtG

Since generalization error ✏t = trPtG, we have that �ED[GPtG] =
@

@vt
ED[G] =

@G
vt

. Multiplying Ps on both
sides yields the approximation for the expected change:

@PsG

@nt
=
@✏s
@nt

=
1

�2
t + ✏t

@✏s
@vt

Solving ✏t(N, v) using the methods of characteristic curves and resetting v to zero, gives the self-consistency
equations:

✏t(N) = trPt

⇣
⇤

0�1
+

X

s

ns

�2
s + ✏s

⌘�1

	Introduction
	Tensor Regression and Its Counterpart
	 Low-Rank Tensor Regression
	Multi-linear Gaussian Processes
	Connection Between Two Models
	Theoretical Analysis
	Relation to Other Methods

	Experiments
	Multi-linear Multi-task learning
	Spatio-temporal Forecasting
	Multi-output regression

	Discussion and Conclusion
	Acknowledgment
	 Supplementary: On the Equivalence of Tensor Regression and Gaussian Process
	Eigenvalue problem
	Derivatives for the Optimization
	Proof for Proposition 2.1
	Proof of Theorem 2.2

