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A.1 Eigenvalue problem
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which is a eigenvalue problem in the transformed space.

A.2 Derivatives for the Optimization
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Ũ) det(D) = det(D+ Ũ
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Ũ, let w = ⌃�1

Ũ
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Ũ⌃

�1
Ũ
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Take derivative over Um(i,j), we have
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Here Om(i,j) = eie
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j is a matrix with all zeros, but the (i, j)th entry as one.

The predictive distribution: p(y?|x?,X,y) ⇠ N(µ?,�?):

µ? = k(x?,X)(D�1
�D

�1
Ũ(D+ Ũ
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Where Ũ = �(X)(⌦M
m=1Um).

A.3 Proof for Proposition 2.1

Consider a 3-mode T1 ⇥ T2 ⇥ T3 tensor W of functions W(1) = [w1(X), · · · ,wT (X)]

W = S ⇥1 U1(X )⇥2 U2 ⇥3 U3
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where Um is an orthogonal Tm ⇥Rm matrix. Assuming U1(X ) satisfies E[U>
1 U1] = I (orthogonal design after

rotation).

With Tucker property
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The population risk can be written as
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Denote E[cov(Y,U1(X )] = ⌃(U1), bound the difference
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With C as a universal constant. The inequality holds with Schatten norm Hölder’s inequality

kABkS1  kAkSpkBkSq 1/p+ 1/q = 1

Given that supU1
k⌃(U1)� ⌃̂(U1)k2 = OP

⇣q
T2T3+log(T1T2T3)

N

⌘

Denote empirical risk L̂ =
PT

t=1

Pnt

i=1 L(hwt,xt,ii. Let W
? = infW2CL(W). The excess risk
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A.4 Proof of Theorem 2.2

We can extend the approach of single task Gaussian process (Sollich and Halees, 2002) to our setting. We provide
the derivation for the full-rank case, but similar results apply to low-rank case as well. The Bayes error for the
full-rank covariance model is:
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where Pt is short for Pt1,··· ,tM , which defines the projection of tth task to its multi-directional indexes.

Evaluating the change
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where element ( t)i = �⌧n+1,t�it(xn+1) and ⌧ maps the global sample index to task-specific sample index.
Introducing G = ED[G] and take expectation over numerator and denominator separately, we have
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@

@vt
ED[G] =

@G
vt
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sides yields the approximation for the expected change:
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Solving ✏t(N, v) using the methods of characteristic curves and resetting v to zero, gives the self-consistency
equations:
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