Tensor Regression Meets Gaussian Processes

A Supplementary: On the Equivalence of Tensor Regression and Gaussian
Process

A.1 Eigenvalue problem

Let K = UU', take derivative over U, we obtain the stationary point condition: yy ' (K +D)~'U = U, Given
the decomposition of U = U, X, V], similar to (Lawrence, 2004), we have

ny(KJrD)*lfJ - U
yy (K+D)"'u,z,v] = u,z, v/
yy U, (2, +DE; )"V = U,z v/
yy' U, = U,(Z2+D)

which is a eigenvalue problem in the transformed space.

A.2 Derivatives for the Optimization

Given that y ~ N(0,K + D), where K = ¢(X) @M_, K,,¢(X) .
Decompose K,,, = UmU,Tn7 we have K = ¢(X)(®%=1Um)(®%:1UL)¢(X)T.

Let U = ¢(X)(®¥_,U,,), we have K = UU "
The negative log-likelihood

1 - 1 .
L= §yT(UU—r +D) 'y + 3 log det(UU " + D) + const

Based on Woodbury lemma, (fJfJ:r + D):l =D!- D_lfJ'(DN—i— I:J'Tf])_lfj—r as well as matrix determinant
lemma det(UUT + D) = det(I+ U'D~'U) det(D) = det(D + UTU)

Denote ¥ =D + U'U, let w=X"1UTy. The objective function can be rewrite as

1 1 - - 1
L= §D’1yTy - §D’1yTUE’1UTy +5 log det(X) + const

Take derivative over U we have
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ouU - 0U

ouU,, 96(X)
Uy®: + —"—--@Up) = 7(UM®'“Om(i,')"'®U1)
m(isg) Ui j) U (i) ’

m(i,5)

Here O,,,(; ) = e;e] is a matrix with all zeros, but the (4, j)th entry as one.

J
The predictive distribution: p(y.|x., X,y) ~ N (tix, 0x):

e =k(x,,X)(D' =D 'UMD+UU) Uy
o =k(x,, %) —k(x,,X) (D' =D'UMD+ U'TU) U k(X x,)

Where U = ¢(X)(@M_,U,,).
A.3 Proof for Proposition
Consider a 3-mode Ty x Ty x T3 tensor W of functions Wy = [w1(X), -, wp(X)]

w==S8 X1 Ul(X) X9 U2 X3 U3
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where U,, is an orthogonal T},, x R,, matrix. Assuming U;(X) satisfies E[U] U;] = I (orthogonal design after
rotation).

With Tucker property
Wy = U(X)S81)(UsUs) T

The population risk can be written as
£w) = tr{ (Y = (X, W) = (X, W)} =t 2 ) Bleov(, Uy (1) 0T ) FEOY )}
’ ’ 73(1)(U2U3) ’ 78(1)(U2U3)
Denote E[cov(Y, Ui (X)] = ¥(Uy), bound the difference

LOWV) = LOW) = tr{ (S( )(UZIUS)T) (Z(U1) - 2(Uy)) (5(1 (I;)ng)T) }

= H( (U221U3) >(2(U1) =) <5<1) U02U8) )
< C'max{2, ||S(1)||*}||2(U1) — 3(Uy) |2

*

With C as a universal constant. The inequality holds with Schatten norm Hoélder’s inequality

[ABlls, < [[Alls,IBlls, 1/p+1/qg=1

Given that supy;, [|X(U1) — (U2 = Op(\/ —TzTSHOJgV(TlTQTB))

Denote empirical risk £ = Z;T:l Yot L((wy,%¢:). Let W* = infyyeec L(W). The excess risk

LOV) = LOV') = LOV) = LOV) + (LOV) = LOV') + (LOV* = LOV*))
< [LOV) = LOW)] = [LOV*) = £0v*)]
< 2supyyec, {LW) — LOV)}
< oIS ZI=(U) - (U1)]l2)

1/4 .
if we assume || S(1) |2 = of (Wm) ), then LW) —L(W*) < o(1), thus we obtain the oracle inequality
as stated.

A.4 Proof of Theorem [2.2]

We can extend the approach of single task Gaussian process (Sollich and Halees, |2002) to our setting. We provide
the derivation for the full-rank case, but similar results apply to low-rank case as well. The Bayes error for the
full-rank covariance model is:

¢=tr(A' + ¥ TD )

To obtain learning curve ¢ = Ep[¢], it is useful to see how the matrix G = (A~! + ¥ "'D~1W)~! changes with
sample size. W ¥ can be interpreted as the input correlation matrix.

To account for the fluctuations of the element in ¥ ¥, we introduce auxiliary offset parameters {v;} into the
definition of G. Define resolvent matrix

Gl=AT'+¥ DT+ P,
t

where P, is short for Py, ... +,,, which defines the projection of ¢th task to its multi-directional indexes.
Evaluating the change

G(n)yuy) G(n)

Gln+1) = Gn) = (674 (n) + o7 2] = () = S 2
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where element (¢;); = 6, +1’t¢it(.’1/‘n+1) and 7 maps the global sample index to task-specific sample index.
Introducing G = Ep[G] and take expectation over numerator and denominator separately, we have

9G _ EplGP.g]
ony o? +trP,G

Ep[G] = 2. Multiplying P, on both

Since generalization error ¢; = trP;G, we have that —Ep[GP.G] = ai o

U
sides yields the approximation for the expected change: '

c'?PSG o 865 1 865

Ong  Ong  oF + e Ovy

Solving €;(N,v) using the methods of characteristic curves and resetting v to zero, gives the self-consistency

equations:
-1
Et(N) = tI‘Pt (A/_l + Z fts )

o2 + ¢4
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