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A.2 SCORE MATCHING

The following lemma is used in the proof of Theorem 2.

Lemma A.1. Assuming that f and g are differentiable a.e., then for all j =1,...,m,

lim  fle_ga)g(@_j;a) — flz_s;b)gl@_jib) / f(@ (@)@ 4y,

a ' +00,b\0F 895] 0 81:]
where (x_;;a) is the vector obtained by replacing the j-th component of x by a.
Proof. This is just an analog of Lemma 4 from Hyvérinen (2005) proved by integrating the partial derivatives. [
Proof of Theorem 2. Recall the following assumptions given in Section 2.3.
(A1) po(x)hj(z;)0;logp(z) — 0 as z; / +oo and as z; \, 01, Va_; e R7, Wp € Py,
(A2) Ey,[[Viogp(X) o b2 (X)) < +o0, Ep,|[(Viegp(X) o h(X)) |1 < +oo, Vpe Py,

where
dlogp(y)

djlogp(x) = 9y,
J

y=x

Without explicitly writing the domains Ry or R’ in all integrals, by (4) we have

1

Inp) = 5 [ @) [V ogp(a) o b2 @) - 2V logp(@) o ht/2(a)) (Vg () o h(2)

+ ||V log po () o h1/2<w>||2} de

_1 - dlogp(x) / “ 310gp (x) 0log po(x)
2/730@);%(“)( O, e po(@) 3 hi(; oz, or; O

Jj=1

B

=A
& dlogpo(x) >
/]90 ;h] ( oz, de,

=C

where A will simply appear in the final display as is, C' is a constant as it only involves the true pdf py, and
we wish to simplify B by integration by parts. We can split the integral into these three parts since A and C
are assumed finite in the first part of (A2), and the integrand in B is integrable since |2ab| < a? + b%. Thus, by
linearity and Fubini’s theorem, we can write 1



_ m . 0log p(x) dlog po(x) ' |
R ;/Upo(m)hj(%) Oz ox; dzj| dz—;.

By the fact that alogif(m) = po%m) a%(i:”), this can be simplified to

B:—ji/ [/ agox(;”)hj(xj)m?ai(w)dxj] de_;.

Then by Lemma A.1 and assumption (Al),

B=- 2; /po(m)hj(zj>al"gp(“’) Ologn(®) g,

B=- Z/ L/olgflfl\w [po(2—j; a)h;(a)d; log p(x—j, a) — po(@—;; b)h;(b)9; log p(z —;, b))
=1 7

3 /po(:c)a(hj(xj)(% }ng(m)) dxj} iz

_ g:l/ [/po(w) 3(%(%)5;:0%(%)) dxj] dz_;.

Justified by the second half of (A2), by Fubini-Tonelli and linearity again

m NEALA
B— Z/Po(iﬁ) A(h; (353>689 ,ng(w)) dz,
=1 i
- dlog p(x) S 9 log p(x)
=3 [ 2B a4 Y- [ o) D ) ao
j=1 j=1 J
Thus,
Jn(p)=B+A+C
i 0logp(x) 9?logp(xz) 1 dlogp(z)\ >
+ j=1 J
where C' is a constant that does not depend on p. O

Proof of Theorem 3. By definition Jp(pg) > 0 and Jp(pe,) = 0, so Oy minimizes Jp(pg). Conversely, suppose

Jn(pe) = 0 for some 0, € ®. By assumption po(x) > 0 almost surely (hereafter a.s.) and hjl-/2(:c) > 0 a.s. for all
j=1,...,m. Therefore, we must have Vlogpg, (x) = Vlogpo(x) a.s., or equivalently, pg, (x) = const x pg(x)
for all almost every x € R'. Since pg, and py are both continuous probability density functions, we necessarily
have pg, () = po(x) for all x € R™, which implies 8; = 0y by the identifiability assumption. The last claim
follows by the law of large numbers, and is an analog of Corollary 3 in Hyvérinen (2005). O

A.3 EXPONENTIAL FAMILIES

Consider the case where {pg : @ € ® C R"} contains exponential families with densities
logpe(x) = 0 t(x) — () + b(x), xcRT.

Then the empirical generalized h-score matching loss becomes

1
Jn(pe) = §9TF(X)0 — g(x) "0 + const,



where

1 n o m ; ] ]
Tx)=—->>" hy (XS (X (X )T e R and (A.1)
i=1 j=1
1< i i i i i i r
g(x) = == >~ [y (XS0 (X5 (X D) + by (X)) (X D) + W (X )8 (X0 € R (A.2)
i=1

Proof of (6). For exponential families, under the assumptions the empirical loss jh(pg) becomes (up to an
additive constant)

>

n(pe)
2
Ly i) 91 X i), 071 xX@y 1 i [ 01 X ()
=2 hQ(X;))%Jrhj(Xg())%Jﬁh (x) %
[ (9Xj a(Xj ) an
=S WO (X D) + (X)) 4 hy (X)) (0T (X D) 4/ (X))
i=1 j=1
+ hi (O (X D) + b (X))
1 n m '
= fBT 3 hy (X)X D) (X )T | 6
n
i=1 j=1

n T
S (XX D) (X D)+ hy (XSt ”(X())—kh’(XJ(’));(X(i))] 6 % + const,
=1

+

which is quadratic in 8. Let

1 ¢~ i i i
L) = 3> b (X)X )T, (A3)
i=1 j=1
%Z [ (XX D)V (X D) 4+ hy (XD (X D)+ (X)) (X) |- (A.4)
i=1
Then we can write Jp (pg) = 10'T(x)8 — g(x) "6 + const. O

Proof of Theorem 4. Recall that Ju(pe) = 20 T@ — g' 6 + const. The minimizer of J(pg) is thus available in

the unique closed form 6 = I'(x)"'g(x) as long as T is invertible (C1). Since I and g are sample averages, by
Khinchin’s weak law of large numbers we have I' =, E, I' = I'g and g —, E,,g = go, where existence of I'j
and g is assumed in (C2). Since Jp,(pe) = E[Jn(pe)] = E[36'T(x)8 — g(x)"6] = 36 ' T\0 — go0 and we know
6¢ minimizes Jp(pg) by definition, by first-order condition we munst have I'y8y = go. Then by Lindeberg-Lévy
central limit theorem (recall that g(x) and I'(x) are sample averages)

Vn(g(x) — T'(x)8) =4 Nm(0,X0),

where o = E,, [(T(x)80 — g(x))(T'(x)8p — g(x)) '], as long as X exists (C2).
Then by Slutsky’s theorem,

V(8 — 85) = i(D(x) " (g(x) ~ T(x)80)) —a N(0,T5 "ET5 1),

as long as I'g is invertible (C2).
For the second half of the theorem, (C2) E,,I'(x) < oo and E,,g(x) < oo implies E,, |T'(x)| < co and E,,|g(x)| <
00, 50 by strong law of large numbers (and a union bound on at most k? null sets)

F(X) —*as. Lo, g(x) —a.s. 90-



Then outside a null set,

0 I‘(X)*lg(x) —Sas. I‘algo = 0.

O

Proof for Example 5. For the family of univariate truncated Gaussian distributions with unknown mean param-
eter 1 and known variance parameter o2, we have

po(x) x exp (Bt(x) + b(x)), 6= %, tx)=z, bz)=-=

We choose to estimate § = /0. Then by (A.1) and (A.2),

fin =00 = o°T'(x) " g()
n -1 n
= —¢? [Z h(XZ)t’(Xl)Z’] [Z h(X;)b' (X))t (X;) + h(X)t"(X;) + h’(Xz)t’(Xl)]
) n -1 n Xl ,
= —0 [ h(Xz)‘| [Z _h(XZ)F +h (Xz)]

o'Eo [h(X)’“;%zX + h’(X)]2 oy <0 Eo [A(X) (o — X) + 02h’(X)]2>
’ E3[h(X)]

By integration by parts, (suppressing the dependence of p,,, on p)
h(X)W (X)(X = puo)]
/ W (ah(a)o — polpla) e = [ ha) o~ po)o(o) ah(a)
— R (@)~ wolpla)ly ~ [ ) dh(o)@ - po)p(a)
/h2 dx—/h W () (z — p0)p dx+/h2 Y@= e,

where the last step follows from the assumptions 1@1& h(z) =0 and lim h%(z)(z — po)pu,(z) = 0. So

z /oo
ol (X' (X) (X — o)) = U po /7 ~ 1] (4.5)
The asymptotic variance thus becomes
Eo [h(X) (1o — X) + 0 (X)]?
E§[h(X)]
o [R(X)(X = o) = 202h3(X) (X = po)?/0® — 1) 2+ 0" W*(X)]
- E§[h(X)]

Eo[o2h2(X) + o*h'?(X)]
E3[h(X)] '

We note that the Cramér-Rao lower bound is which follows from taking the second derivative of

04
var(X —po)?
log p,, with respect to . O



Proof for Example 6. For the family of univariate truncated Gaussian distributions with known mean parameter
1 and unknown variance parameter o2 > 0, we have
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1
po(x) < exp (0t(z) + b(x)), 0= gt t(x)
We estimate = 1/0%. By (A.1) and (A.2),

6 =T(z) 'g(x)

n —1
=- [ h(Xi)t’(Xi)Q] [Z R(X) (X)) (X3) + h(X)E"(X;) + B (X))t (X;)

n

" -1
= lZ h(X:)(X; — u)ﬂ [Z h(X) + 1 (X)) (X — )| -

By Theorem 4, /n(6 — 0) —4 N(0,2), where

o Eo [M(X)(X = w)2/o3 —1) = W (X)(X — ))°
E2[A(X)(X — 1)7]

S

- BRI (Eo[hQ(X)(X — ) /o = 2BE(X)(X = o)? o + h(X) + WP O(X — po)?

~ 2O (X)X ) o+ OON (X)X ) )

By integration by parts, (suppressing the dependence of Doz ON o?)
Eo[h(X)W (X)(X — p)’]
o)

/ "W @)h(@) (o — 1)p() de = | @) - ot anta)

— R @)~ w*pa)fy - [ o) (o) - 0°p(a)

4

= [ Hw @ e = o) de =3 [ 12— wPpe)as+ [ 120w aa,

k)

where the last step follows from the assumptions lim+ h(z) =0 and }1&1 h?(z)(z — u)?’pgg (z) = 0. Combining
N0 T oo

this with (A.5) we get

Vil —0) —a N(0,6%) ~ N (o 2B (1 (X)(X — p)? /03] + Eo[h*(X — u)2}>

E§[h(X)(X — p)?]

and so by the delta method, for &,% = é‘l,

V(67 — o) a N (0, 20§Eo[h?(X)(X — )] + o§Eo[h/*(X — M)2]> |

E§[h(X)(X — )]

8
We note that the Cramér-Rao lower bound is var(i%ﬂ)% which follows from taking the second derivative of

1ogpag with respect to o3. [

A.4 REGULARIZED GENERALIZED SCORE MATCHING

We first verify assumptions (A1)—(A2) in the case of truncated Gaussian distributions.



Lemma A.2 (Assumptions for truncated Gaussian). Consider the non-centered truncated Gaussian distribution
with density
1
log po(x) = —5(93 — o) "Ko(z — po) + const
with unknown positive definite inverse covariance parameter Ko and unknown mean parameter py. Then assum-
ing 0 < hy < Mj, lim+ hj(z;) =0 and |h}| < M}, assumptions (A1)-(A2) for score matching are satisfied for
xj \O

any proposed parameters K >= 0 and p. Taking p = po = 0 the assumptions also hold in the centered setting.
Choosing m =1 gives the univariate case.

Proof of Lemma A.2. Consider p ~ TN(p, K), with k; the j-th column of K. Let M = max; M; and M’ =
max; M.

(A1) For any fixed _; € RTA and any p € Py with parameters K and p,

. . 1
i (e )(e)0s g (@) o TG exp (3 — o) Kala — o) ) K] (o~ )

x

. 1
= hmoo hj(l'j) exp (Cl + CQI'J‘ — QKZOJ‘J'CE?> (Cg + 041’]‘)

for some constants Cy,Cs,C3, and C4 depending on =_;, Ko, K, po and p. Since kg ;; > 0 and we
assumed h; to be bounded, the limit equals to 0 for all j and x_;.
Similarly,

. , 1
m_}{?ﬁ hij(x)po(2)0; log p(x) o I_]lgl(l)+ hj(x;) exp (Cl + Coxj — Q’fo,jﬂ?> (C3 + Cyzy)

= exp(Cl)C’g mjli\l(l(l)Jr hj (IL']) =0

if and only if we assume xjh\l‘r(l)"' hj(zj) = 0.
(A2) For any p € Py with parameters K and p,
Ey, [V 1ogp(X) o B'/2(X)|5 < ME,, ||V 1ogp(X)|3 = Mtr (Ey, [(K(X — p)(K(X — ) '])
= Mtr (KEp, [(X — po + (1o — ))(X — po + (o — 1)) '] KT)
= Mir (K (Ko + (o — 1) (1o — ) T) K) < +00

since M, K, Kg, p, pg are all finite constants. We also have
B (7 o) 0 (X)) 1 = 37 By (X2 log () + by ()02 og p(X)|

i=1

< iEPOIh}(Xj)(?j log p(X)| + Epo | (X;) 7 log p(X)]
i=1

<" ME K] (X - )| + Mo,
i=1

< iM’\kjFEpoX + M|k} p| + Mtr(K) < +oo.
i=1

Hence, (A1) and (A2) are both satisfied.
O

Our analysis of the regularized generalized h-score matching estimator follows the proof for the following
theorem from Lin et al. (2016), restated below. In our definition and implementation we choose to optimize
over all symmetric matrices, but we adopt the following theorem in whose proof the symmetry condition is not
explicitly imposed, in order to decouple the columns of K and to highlight the scaling.



Theorem A.3 (Analog of Theorem 1 from Lin et al. (2016)). Recall that Sy = S(Ko) = {(4,7) : ko, # 0}.
Suppose Ty g,5, is invertible and satisfies the irrepresentability condition (10) with incoherence parameter o €
(0,1]. Assume that

IT(x) = Lol < e, 19(x) = gollos < €2, (A.6)

with dg,e1 < a/(6er,). If

3(2—
A > w max{ck,€1, €2},
then the following statements hold:

(a) The regularized generalized h-score matching estimator K in (9) is unique, with support S = S(K) C S,
and satisfies

~ cr
K- Kj||leo < .
R

(b) If
cry, )\,
—Q

. Ko
1§jni1kn§m‘ 0.5k > 2

then S = Sy and sign(f{jk) = sign(Ko_jx) for all (4,k) € Sp.

This is a deterministic result, and the improvement of our generalized estimator over the one in Lin et al.
(2016) is in its asymptotic guarantees, as in Theorem 10. We present a corollary to this theorem, as seen in the
second and third inequalities in Theorem 10 (a).

Corollary A.1. Suppose the same assumptions under Theorem A.3 hold. Then K satisfies

1K — Kol < =2 A/[S0] < =22\ /dic,m,

2 -« 2—-—«a
A C .
IK — K|z < 5 Amin(v/]S0]. dxc, ).

Proof of Corollary A.1. By Theorem A.3, under assumptions in that theorem, the support of K is a subset of
the true support of Ko, and [|K — Ko|loo < 522 \. Since Kg has |Sy| nonzero entries,

— 2—«
1/2
. . . c
IK-Kollp = | > K ~Kop)| < VISolIK - Kolloo < 572 A/[S0]-
Koijéo
Similarly, by the definition of matrix f~-¢s, norm,
N ~ LR cr
1K =Kol < K — Koll, = max > [Kjk — Koil < 5=,
T k=1
The result follows by also noting that ||K — Kol|, < [[K — Kol| - O

Proof of Theorem 10. By Theorem A.3 it suffices to prove that for any 7 > 3, we can bound ||T'(x) — I'g||eo by
some €; and ||g(x) — gollc by some €3, uniformly with probability 1 — m3~7. Recall from Section 4.2 that the
4 block of T' € R™**™ has (k, ()-th entry
1 m o (0) (6 i
- o xxPh(x),
i=1

and the entry in g € R™ (obtained by linearizing a m x m matrix) corresponding to (j, k) with j # k, is

1« i i
- ZXIQ )h;(X]( ),
i=1



while the entry for (j,7) is

n

L= () y(y L @
EZXJ. W (X )+52hj(xj ).

i=1 i=1

Denote M = max; sup,~q h;(z) and M’ = max; sup,., b’ (r), and let cx = 2max;(2,/%;; + /eEoX;). Using
results for sub-gaussian random variables from Lemma A.6 below and Hoeffding’s inequality, we have for any

t1,t2,1,t22 > 0,
P ( iiX;“Xg“hj(Xf)) — Eo X, Xoh;(X;)
p < %Zn:X,i“h;(X;i — o Xuh) (X,
=1
1 i hy(X$7) — Eqhy(

P(
ni:l

€1 = Mc%(max{

1 T—1 1 1 T—2 1
1 = ﬁM/CX\/OgmanQ . M\/Ogm2n+0g6

I /\
’U

X
nt% 1
=1 ) (‘2M2X> |

>t22> S 2nt22/M2).

Choosing

2(logm™ + log 6) \/2(log mT™ + log 6) }
n ’ n ’

and taking union bounds over m?, m2, and m events, respectively, we have

sup
7.k, L
P | sup|—
gk |7
(sup

Hence, with probability at least 1 — m3~7, ||T(x) — Ty|loo < €1 and [|g(x) — golloo < €2 = €21 + €2,2. Consider
any 7 > 3, and let

Z XX hy (X)) — Bo X Xohj (X;)| 2

ZX(’)h’ (X)) — Bo Xph'y(X;)| >

Zh (X)) — Eohy(X;)| >

6

C2 = —ery, n > max{2M?*c c3dy (T 1logm + log 6), 2M ¢k cadx, (1 logm + log 6)},
9 _

A > Mmax{cKoel,eg}
2 — 1 T +1

_ 32— a) maX{McKo & 2(logm™ + 0g6)7
o n
2(logm™ + log 6 logm™ 1 4+ log6 logm™ 2 4+ log 6
McKoc?x\/ (log m™ + log )’\/iM,CX\/Ogm +1log6 . [logm™=? +log }
n n 2n
Then dk,e1 < a/(6cr,) and the results follow from Theorem A.3. O

We now present the definition of sub-Gaussian and sub-exponential norms and variables as well as lemmas
required for the proof above.

Definition A.4 (Sub-Gaussian and Sub-Exponential Variables). The sub-gaussian (r = 2) and sub-exponential
(r =1) norms of a random variable are defined as

1X|ly, =supg /" (E[X]")YTD = sup g/ [| X | rq.
q>1 q>1



If || X ||, < oo wesay X is sub-gaussian; if || X ||y, < oo we call X sub-exponential.
For a zero-mean sub-gaussian random variable X also define the sub-gaussian parameter

7(X) = inf{r > 0: Eexp(tX) < exp(r?t?/2), Vt € R}.

Note that the definition of sub-gaussian norm here allows the variable to be non-centered, and is different from
the one in Vershynin (2010), which uses ||X||, in the definition. Instead, it coincides with s in Buldygin and
Kozachenko (2000). The definition of the sub-gaussian parameter is the same as in Buldygin and Kozachenko
(2000), and the definition of the sub-exponential norm is as in Vershynin (2010).

Lemma A.5 (Properties of Sub-Gaussian and Sub-Exponential Variables). Then

1) For any X and r = 1,2, | X — EX|y, < 2| X|y, and || X|y, < [|[X — EX||y, + [EX]|, as long as the
expectation and norms are finite.

2) (Buldygin and Kozachenko, 2000) 7(X) is a norm on the space of all zero-mean sub-gaussian variables; in
particular, (X +Y) < 7(X) + 7(Y) as long as the quantities are defined and finite.
If X is zero-mean sub-gaussian, then var(X) < 72(X), || X |y, < 27(X)/Ve, 7(X) < Vel X||y,-
If X4,...,X, are i.i.d. zero-mean sub-gaussian, T (% Z?zl Xi) < ﬁT(Xi),

3) If random wvariables X1 and Xo (not necessarily independent) are sub-gaussian with | X1|yp, < K1 and
| X2y, < Ko, then X1 X5 is sub-exponential with || X1 Xs||y, < K1Ko.

4) (Buldygin and Kozachenko, 2000) If X is zero-mean sub-gaussian,
E[X|* < 2(g/e)?*7(X)

for any q > 0.
5) (Buldygin and Kozachenko, 2000) If X1,...,X,, are independent zero-mean sub-gaussian variables, then
for any € > 0,
€2
P(|X1]>¢€) <2 —_——
(1511 2 ) < 200 (-5 ).
1 & ne
P(|— X; <2 - ).
(557 ) 2o (-
6) (Vershynin, 2010) If X1,...,X,, are independent zero-mean sub-exponential random variables with K >

max; || X; ||y, , then for any € > 0,
> ) < i ¢«
]P)(|X1| _e)_26xp — min 86277467 y
P15 x> e) < 2exp (—min (20
e A 8e2K? 4K ) )

Proof. 1) For r = 1,2, by triangle inequality, ||X —EX||y,. <[ Xy, + IEX |y, = | Xy, + [EX| < | X ||y, +
E|X| < 2||X||y,, where in the last step we used the definition of || - ||y, with ¢ =1 for r = 1 and E|X| <
(E|X\2)1/2 with ¢ = 2 for r = 2. On the other hand, | X ||y, < | X —EX||y, +[EX|y, = | X —EX|y, +|EX].

2) These follow from Theorems 1.2 and 1.3 and Lemmas 1.2 and 1.7 from Buldygin and Kozachenko (2000),
and v/3.1e%/10 /\/2 ~ 1.6467 < 1.6487 ~ /e.

3) By Holder’s inequality (or Cauchy-Schwarz),

1X1 Xz, = sup g (B[ X1 X2|9)"9 = sup ¢ (B[ X{X3|)/
g>1 q>1

1/q
< supg ™t [(BIX, )2 (B X))

q>

< sup |:q71/2(IE|X1|2q)1/2q:| S‘;lf [q’1/2(E|X2|2q)1/2q
q=

g>1
= [| X[y, 1 Xolly, < KiK.



4) This is Lemma 1.4 from Buldygin and Kozachenko (2000).
5) This is Theorem 1.5 from Buldygin and Kozachenko (2000).
6) This follows from Corollary 5.17 from Vershynin (2010). O

Lemma A.6. Suppose X follows a truncated normal distribution on R with parameters p and X = K-!~o.
Let XM ... X™) be i.i.d. copies of X, with j-th component of the i-th copy being Xj(-z). Then

1. Forj=1,...,p, 7(X; —EX;) < /%;;. That is, the sub-gaussian parameter of any marginal distribution
of X, after centering, is bounded by the square root of its corresponding diagonal entry in the covariance

P(” (lmelfﬂ 2, Then ’()7 dny € > 07
> < ne
Z]]

IRt
P(nZXJU—EXj

i=1
In particular, if hg is a function bounded by My, then for any € > 0,

X ho(X,") — EX;ho(Xy)

S|

s
Il
-

=
7 N\

n€2
>e| <2exp| — )
= ) = p( SM2(2+/5;, +\/§EXJ»)2>

1 & i 7 2M0
T (";X; Tho(X (V) — Etho(Xk)> < W(2\/271»+ VeEX;),
" i ho(Xy") — EXjho(Xy) _ﬁ(\/?Jr eEX;).
= s

2. For j, k.0 € {1,...,p}, if ho is a function bounded by My, then with cx = 2max;(2,/3;; + /eEXj),

M,
15 Xiho (Xe) = BX; Xiho (Xo) |y < 555 (A7)

In particular, for any € > 0,

P > <2 i ne’ ne
€ ex —mn|\ —— 75— .
= 2O OMZAA 2Mock

Proof of Lemma A.6. 1. Without loss of generality choose j = 1. By the definition of sub-gaussian parame-
ters, we need to show that for all t € R,

1 < &) (i i
- ST XOXPho(X[Y) — EX; Xioho(Xe)
=1

Eexp(tX;) < exp(t*$11/2 + tEX)),

which is equivalent to
211 /2 +tEX; —logEexp(tX;) >0 VtcR. (A.8)

Since the left-hand side of (A.8) equals 0 at ¢t = 0, it suffices to show that its derivative

dlogEexp(tX1) ﬂ%t(txl)
ty EX; — —————= =% EX; — —<—— A9
A dt R Eexp(tX1) (A.9)

is non-negative on (0,00) and non-positive on (—o0,0). By properties of moment-generating functions,

dEexp(tX1) evaluated at ¢ = 0 equals EX1, so (A.9) equals 0 at ¢ = 0. It in turn suffices to show the

derivative of (A.9), namely

d?log E exp(tX7)
de?

S — (A.10)

is non-negative in ¢t € R.



By Tallis (1961), denoting the first column of X as 3;, the moment-generating function of the marginal
distribution of X is
1. Ty—1
fRi—u—tzl exp (—3x' X7 'x) do

fRi—u exp (—%wTEfla:) dx

1
exp (tul + 21522%1) .
(A.10) thus becomes

1
- log/ exp (—wT21m> dx.
de? R —p—t%, 2

Showing this is non-negative in ¢ € R is equivalent to showing that the integral itself is log-concave in t.

But 1 1
/ exp (mT21m> dx = / exp <$T21$) Ige (@ +t3,) de
Rifuftﬁl 2 RP 2 i

with exp (—3z "% 'x) log-concave in = and ]lRi,H(:L' + t3) log-concave in (x,t) since R — p is a
convex set (half-space). Here 1g(+) is the indicator function of a set S. Since log-concavity is closed under
multiplication and integration over RP, the integral is indeed log-concave, and our proof of the bound on
the sub-gaussian parameter of X; — EX; is complete. The tail bound follows from 5) of Lemma A.5.

Now by 1) and 2) of Lemma A.5,
1Xllw, < 2¢/355/e + EX;.
If hg is a function bounded by M, then by definition

X5 ho(Xk) |l < Mo (2\/2jj/€+EXj> .

By 1) and 2) of Lemma A.5 again,
7(Xjho(Xk) — EX;ho(Xy)) < Vel Xjho(Xi) — EX;ho(Xk) |4
< 2Ve|| X;ho(Xk) v,
< 2My(2y/2;; + VeEX;).

The tail bound thus follows from the first inequality using 5) of Lemma A.5. By 2),

1 & 2M,

(Z XD ho(x () ]Etho(Xk)> <=2 = (2/5; + VeEX)),
n

1 4M,

EZ Dho(X D) — EXho(Xk) g 0 2,/ 5, + VeEX;).

b2

. By the proof of 1) of this lemma, ||.X;||y, <24y/%;;/e+EX;, and by 3) of Lemma A.5,

2
||XijH1/,1 < (2 ij/e—FEXj)(Q\/Ekk/e—F]EXk) < mJaX <2\/2jj/6+]EXj> .

Since hg is a function bounded by My, by definition

2
HXijho(Xgﬂml < M, mjax (2\/2jj/€+EXj> .

Then by 1) of Lemma A.5 again,

2
||Xijh()(Xg) — EXijho(Xz)”wl S QM() mjax (2\/2jj/6 + EXJ) .

The tail bound then follows from 6) of Lemma A.5.



