Finding Global Optima in Nonconvex Stochastic Semidefinite Optimization with Variance Reduction

Supplementary Material of “Finding Global Optima in Nonconvex
Stochastic Semidefinite Optimization with Variance Reduction”

In this Supplementary Material, we present the main
proofs.

Problem, Algorithms and Main Results

In this section, we first describe the considered prob-
lem, and then propose the stochastic variance reduced
gradient (SVRG) method for the considered problem,
and finally present the main convergence results.

Stochastic Semidefinite Optimization

The stochastic convex semidefinite optimization prob-
lem, arising in many applications like matrix sensing
[12, 22], ordinal embedding [6, 1], is of the following
form:

n

min f(X)::l;fi(X) st. X=0, (1)

where f;(X) is some convex, smooth cost function as-
sociated with the i-th sample, X > 0 is the positive
semidefinite (PSD) constraint.

Since the generic semidefinite optimization methods
are generally not well-scalable, a nonconvex reformu-
lation based on the low-rank factorization became very
popular in recent years [8, 9, 5]. The main idea is to
recast the original problem (1) into an unconstrained
problem via introducing another rectangular matrix
U € RP*" with » < p. Specifically, let X = UUT
and g(U) := f(UUT), then the following alternative
problem is considered:

minimize ¢g(U) where

UeRrpxr r=p. @)
Notations: For any two matrices X,Y € RP*P_ their
inner product is defined as (X,Y) = tr(XTY). We
denote Sﬁ as the set of positive semi-definite matrices
of size p x p. For any matrix X € RP*P, | X || and
| X ||z denote its Frobenius and spectral norms, respec-
tively, and omin(X) and opax(X) denote the smallest
and largest strictly positive singular values of X, de-
note 7(X) := %, with a slight abuse of notation,
we also use 01(X) = omax(X) = || X2, and X, de-
notes the rank-r approximation of X via its truncated
singular value decomposition (SVD) for any r < p. I,

Algorithm 1 SVRG for Problem (1)

Parameters: update frequency m, step size (or learning
rate) {nx}, initial point U° € RP*"
for k=0,1,... do

Xh=0k0n"

gk = 5 2y V(XM U*

U =0*

fort=0,...,m—1do
Xt =utut”

Randomly pick i; € {1,...,n}
Ut = U —ni(V fi, (XU = V fi, (X*)U* + gr)
end for
[jk+l —_ym
end for

denotes the identity matrix with the size p x p. We
will omit the subscript p of I, if there is no confusion
in the context.

SVRG

The SVRG method for solving (2) can be described
as in Algorithm 1. We consider the following three
step-size strategies in Algorithm 1:

(a) Fixed step size [13]:

Ny =n, for some n > 0. (5)
b) Barzilai-Borwein (BB) step size [3, 21]: given an
BIve
initial 9 > 0, and for k > 1, let gz := Vf(X%),
1 IX* — XA

e =—"—= - — -
m [(Xk — XF=1 g — gr1)]

(6)

(c) Stabilized BB step size: given an initial 79 > 0
and an € > 0, for k > 1,
1
= —X 7
M= — (7)
I P o A
(X = X5 g — G )| + e X5 — X1

Throughout the rest of supplementary material, with
a slight abuse, we still name the original SVRG with
a fixed step size as SVRG, and call the SVRG with
stabilized BB step size (7) as SVRG-SBB,, and par-
ticularly, we call SVRG with BB step size as SVRG-
SBBy.
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Main Assumptions

To present our main convergence results, we need the
following assumptions.

Assumption 1 Each f; (i = 1,...,n) satisfies the
following:

(a) fi is L-Lipschitz differentiable for some constant
L > 0, i.e., f; is smooth and Vf; is Lipschitz
continuous satisfying

IVAi(X)=Vi(Y)llp < LIX=Y|r, VXY €S}

(b) fi is (u,r)-restricted strongly convex for some
constants > 0 and r < p, i.e., for any X,Y €
SE with rank-r

F(Y) = H(X) + (VAX)Y = X) + £V - X

Let X* be a global optimum of problem (1) with rank
r* = rank(X™), X* be its rank-r (r < r*) best ap-
proximation via truncated singular value decomposi-
tion (SVD), and U be a decomposition of X via
X} = UUT. Under Assumption 1, we define the
following constants:

L 2(v2 - 1)

= — =——" 8

K /J’ Yo 3k ) ( )

7] 3= min HVf(X*)HF(l — /10 1o, (9)
Too(X7) T (2y70 +70)7(UF)

§=n(1-1n/2), (10)

where 7(X}) := ngﬁig and 7(U}) = % k>11is

generally called the condition number of the objective
function. Thus, 0 < vy < @ and 0 < £ <1/2.
Assumption 2 (rank-r approximation error)
Let X* be a global optimum of problem (1), X} be
the rank-r approximation of X* for a given positive
integer r < r* ;= rank(X*). The following holds

* * \/5_1 - *
[Xr —X"|lr < 751/25 Lo (X,

where k is specified in (8), and o.(X*) is the r-th
largest singular value of X*.

Assumption 2 is a regular assumption used in litera-
ture (say, [5]). Under Assumption 2, we define several

2462 2 *
positive constants as follows: A := (‘571)3# —

* * A —1)2 203 X: * *
EI1X; — X%, A = AV gy xr — X*|2,

9Kk2

22D (X)) i
3K ’

(11)
Y 1= 2(\/57 ]‘)EUT‘(X:) + \/Z’ (12)

"=

3K
= 2(\/5_ ;l)fo'r(X:) _ \/Z’ (13)
5= 222 ;EUT(X:) +VA. (14)

Note that the following relations hold

st = M2V D)

'?l <M < Yu < '?u < ’YOUT(X:% (16)

where the last inequality of (16) holds for 0 < £ <1/2
and Yy, < 28700, (X}) < o0, (X7).

We also need the following common assumption on the
stochastic direction, which has been widely used in lit-
erature on stochastic algorithms (say, [7] and reference
therein).

Assumption 3 (Unbiasedness) {Vf;, (X")U'} sat-
isfies E;, [V fi,(XH)U'] = Vf(X1)U?, Vt € N.

If i; is uniformly sampled, then the above assump-
tion can be satisfied. Under Assumptions 1-3, let
Ny = {U : |U = UM% < v0.(X))}, and we define
the following constants:

B:= sup |UUT|F, (25)
U

0
BQ =

sup {Eq [[IVfi, (UUD)|E] = IVAUUT)E}, (26)

UeN,,

By = sup [VFUUT)|E, (27)
UEN,,
By :=4[2L°B(B+ || X}||r) + Bo + B1] (17)
T LV _va) (V- Duod(Xp)
Mmax ‘= min {Cla CQ; 210} 3 (19)

where § := \/Z+ VA, ¢ o= 1

12 [2L~f~$B+

Bg+B1 ’
(V2= (X))
Co = (V2-1)pgor (X))

2= 1285 :
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Convergence Results

Let {nx} be a sequence satisfying ny € (0, Nmax) for
any k € N. Given a positive integer m, define

(V2= DPEuod(XT)
Pl 186 ’
P = pi + (1= p")meb.- (21)

It is easy to check that 0 < pr < 1 and 0 < p < 1.

Based on the above defined constants, we present our
main theorem as follows.

(20)

Theorem 1 (Linear convergence of SVRG) Let
{Uk} be a sequence generated by Algorithm 1. Suppose
that Assumptions 1-3 hold, and that np € (0, Nmax)-
The following hold: (a) if v < ||U° — U3 < 7u,
there hold

(a1) {E[||U* — U*||2]} is monotonically decreasing,
(a2) (Linear convergence) for any k > 1,

E[|T* — U II7] (22)
k—1 ~
< (H p) IO = U |1 +Tix
k—2 k—1
[ ( I 5i-(1— (Pt)m)> +(1- (Pk—l)m)] :
t=0 \i=t+1
(b) In addition, if |U° — Ur||% < i, then E[|U* —

UrIIE] < for any k € N.

The above theorem holds for a generic step size satisfy-
ing Nk € (0, Nmax). In the following, we give a corollary
to show the convergence of SVRG when adopting the
considered three step-size strategies (5)-(7).

Corollary 1 (Convergence for different step sizes)

Under conditions of Theorem 1, all claims in Theorem
1 hold, if one of the following conditions holds:

(1) 1 € (0, max) when a fized step size is adopted;
(2) m > W for any € > 0 when SBB step size

s adopted.

1)-(13), if r = r* then || X} — X*||r = 0, and

thus 4; = 0 and ~, = (2+‘/§)'(\/§;1)50"(x:)

(2=v3) (V2-1)é0,(X})
3Kk

From (1

. However,

in this case, v; = > 0, and thus,
we cannot claim the exact recovery of a global opti-
mum directly from Theorem 1 even if [T —U*||% < ;.
To circumvent this problem, we use a more consecu-
tive step size, and get the following corollary showing
the exact recovery of SVRG. Let

Ly,
Mmax = Mi o ¢ /Imax (- 23
7 min { 2B, } (23)

Corollary 2 (Exact recovery when r = r*) Let
{U*} be a sequence generated by Algorithm 1. Let
Assumptions 1 and 8 hold. If the following condi-
tions hold: (a) r = r*, (b) n € (0, 7max), and (c)
00 — Ur|3 < @EAWZNE XD ey SVRG
exactly recover the global optimum X* in expectation
at a linear rate.

Proofs

For any matrix U € RP*" let Qu be a basis of the
column space of U. Denote Py := QuQf;,. Then Py -
U = U. For any matrix Y € RP*P Py Y is a projection
of Y onto the subspace spanned by X := UUT.

Proof of Lemma 1

In the following, we describe a key lemma for the con-
vergence of SVRG.

Lemma 1 (A key lemma) Let {U'}", be the se-
quence at the k-th inner loop. Let Assumptions 1,
2 and 3 hold. Let m, € (0,Nmax). If i < E[|UF —
Ur%] < ~u, then the sequence {E[|U" — Ur||%]} is
monotonically decreasing fort =0,....m —1, and

E, [IU* - U7 7]

2(v/2 - 1)

<Ut_U*2_
g

nepor (XU = US|

771<L * & *
+ ¥||Ut — U g +niBe - |U* = US| %
ML .
s (21)

where By is specified in (17); while if E[|U* —U*||%] <
v, then E[|Ut — UZ||%] < for anyt=0,...,m — 1.

The sketch proof of Lemma 1 is show as follows. We
prove this lemma by induction. Specifically, we first
show that if v; < E[||U* = U} ||%] < ~u, then E[|J U —
Ur%] < E[|Ut — Uz||%] < vy for t = 0,...,m — 1.
Furthermore, E[[|[U'! — U7||%] can be estimated via
noting that

E, (U - U2 |E]

= U = U \IE + miEs, [llvilIF]

- 277k]Eit [<Ultc7 Ut - U:>]7
where v, = Vf;, (XU — Vf;, (X¥)U* + VF(X*)U*,
and establishing the bounds of both E;,[||vl|%] and

E;, [(vl,U" — U})] shown as the following two lemmas,
respectively.

Lemma 2 (Bound of 2E;, [(v},U" — U)]) Let As-
sumptions 1 and 3 hold. Let {U'}," be a sequence
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generated by SVRG in Algorithm 1 at the k-th in-
ner loop. Let Xt = U'U'" and v, = Vf;, (XHU' —
Vi (X TRV F(XE)OR. I U =UF % < v000(X7),
then there holds

2E;, [(vi, U' = U))]

% . §
> §||Xt - X%+ ﬁHPUtVf(Xt)H%

L L
— X = XA = = | U = U ||%.
2H M5 25H I

where £ is specified in (10).

Proof. By Assumption 3,

Lok, U — U]

XHut,ut —uUr)
xt—uruth

- X7)

XY, Xt 4+ X —2urUth).

+
3 g
=
B

(28)

To bound the first term of (28), we utilize the following
three inequalities mainly by the Lipschitz differentia-
bility and restricted strong convexity of f, that is,

(i) F(X7) >
FXY 4+ (VA X = X1 + DIX; = X3,
(i) f(X*) > f(X*)+ (1= 7/2)aL~" - [Py V (XY,

(i) F(X°) > F(X7) — 51X = X[

where (i) holds for the (u,r)-restricted strong convex-
ity of f, (ii) holds the following inequality induced by
the L-Lipschitz differentiability of f, i.e.,

FOX') 2 F(X) +{(VFX), X' = X) = X"~ X
(where X := X" — %PUtvf(Xt)PUt)
= F(X) + (L= /AL [Pu (X

and f(X) > f(X*) since X* is an optimum and X is
a feasible point by Lemma 8(b), and (iii) holds for the
L-Lipschitz differentiability of f and the optimality
condition V f(X*)U* =0, i.e.,

FIXT) < F(X7) +

= f(X")+

* * * L * *
(VX)X = X7) + S 1% = X7

L * *

5 ||X - X’I" ”%,

where the equality holds for Vf(X*)U* = 0, which
directly implies the following facts: Vf(X*)U* = 0,
VA(X*)X* = 0 and Vf(X*)X) = 0 due to X* =

UU*T and X7
(1)-(iii) yields

= U*U*T. Summing the inequalities

(VI X' = X7) > DX = X% (20)

- - L * *
+ (L =7/2)L~" - [PV F(XY)F — FIX" =X, [

On the other hand, we observe that

(VXY X+ X7 — 207U

= (Pu:Vf(X") + (I —Pye) VX", X"+ X —
= (P VXY, X'+ X7 — 207U

= (PueV (X, (U = UHU - UHT)

(1 =n/2)n
= 2L
L

2n7(1 —n/2)

where the second equality is due to ((I —
Pu)VF(X1), XY =0, (I-Py)VF(X"), UU") =0
and ((I — Py+)Vf(X"),X}) = 0 by Lemma 8(c), the
last equality holds for X = U} UT*T, and the inequal-
1ty holds for the basic inequality: (Y, Z) > —£[|Y[|% —

=||Z||% for any Y, Z € RP*P and ¢ > 0. Substltutmg
(29) and (30) into (28) concludes this lemma. O

L Pyev £(X)3

Ut = Ul (30)

Lemma 3 (Bound of E;, [||v}||%]) Let Assumptions
1, 2 and 3 hold. Assume that |[U* — U||% < v, and

HUk — UM% < Yu, then

Es, [[vil|7] < 4(Bo + B)(IU" = U |5 + 1T* - U )1%)
+ALPB(| X' - X7 1% + I1IXF — X7 1I7)
+ [Poe VAXNE - 1 X |-

Proof. Note that
lokllF = IV fi, (XHU" -
+ VA XU
+2(Vfi, (XHU" —

Vi (XU

Vi (XEYO*, V f(XF)T*).
Thus,

Eq, [0} 1 7]
=E;,[|Vfi,(X")U" -
+IVHXF)O*%
+2VA(XYU = VH(XU*, Y f(XF)UF)
=B, [IV£i, (XU =V £;,(XF)U*|17]
—IVA(XHU" = VH(XF)O*F + |V F(X
<SEL[IVfi, (XHUT =V i, (XF)UF|17]

+ PueVFX)NE - I1X ) e,

Vi (X017

U*|I%

(31)

2T
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where the last inequality holds for [|[Vf(X')U! — <|NU = U % = ni||UT = U ||% %
VF(X*)U*|% > 0 and
XD Hf . [2(\@— Do, (X7) (g f4nkL26) — 4n(Bo +Bl)}
VXU & nkL
= [Py VA(XOU + (I = Py) V(XU |7 e IU* = Urll

= [Py VA XHUY|?

R +4nk [L2BIX* = X} 1% + (Bo + B1)||0* - U713
< IPoVHXE - IX -

el . X
+T”X - X%

In the following, we bound the first term of (31). Note . nkL . .
n : (31) <0 = U7 + B 10 = U = ellU° - U
IV fi,(XHUT =V f;, (X*)T*)2 [Q(ﬁ Do (XD) (g . 4nkL28) — dnyu(Bo + Bl)}

— |V /i, (XU — Uf) + (VXY = VEENME 402 D2BB + |X25) + Bo + B - [T — U712
<2V, (XU - TN}

L
: o) 7K 2 + 22X - X0

+2[|(Vfi, (X°) = Vi, (X*)U" %
<2V, (XHE|U - U)|% where the first inequality is due to Lemma 2 and

- = Lemma 3, the second inequality holds for 7 < nmax <

2| vk t k)2
+ 2L X |l X° — XElp, 2BL’ the third inequality holds for 7y < Nmax < SBHL
which follows and Lemma 5(b), the final inequality holds for Lemma
. . (V2-1)po (X;)
Eit[||vfit (Xt)Ut -V, (Xk)UkH%] 5(a). Since 7k, < Nmax < 12[2(v2—-1)0,-(X})L2B+Bo+B1]’
2(E;, IV fi, XONFE] = IVF(XO)IENU* = U* 1% then

FRAVAX - U~ T4+ 222 KA X~ XM 2(vE 1o (57) (& — 4 LB) — ami(Bo + By)
<2(Bo+ By)- |U" - 0¥ + 2L°BIX° — X¥} VI Do (X)
<4(Bo+ By) - (|U" = Us|% + 1U* - U |1%) - 3
+4LB(|| Xt — XF||% + | XF — X¥)2), Thus, substituting the above inequality into the first

where By, By and B are specified in (26), (27) and main inequality yields (24).

(25), respectively. Substituting the above inequality =~ Furthermore, by the assumption of this lemma and

into (31), we can conclude this lemma. O Yu < Y00-(X}), we have
Based on the above two lemmas, we give the proof of Hf]k — U < yo0n(X7)
Lemma 1.
Thus,
Proof of Lemma 1: By Lemma 2 and Lemma 3,
E, [|US — UZI3] < lU* - UF |13 Eq, [lU = U 7]
L
1% * 5 t * 771«
—e | BIX X0 0  Pue V)3 < U8 = Url + 5
2 2L
28k B2
L % « L " t _ rr*|4 * X 2 . X*
L A 0= U+ €1 = X2+ P2, x)
* F * L 4(v2-1 (X
T 4g(Bo + By (U — U2+ [T* - U7 |2) I (Vo= Do)yt _ (32)
- K
+ 428 (IIX" = X} |3 + 1 X* - X;13) e L
S F
+ il Poe VAXOE - X e 2%
; e ft ; . )
< - Uy - (T - amtLB) X' - X o - vz - 22N e
L
423 B t_U*2 nLUt_U*4 N
+ 40 (Bo + B1)||U e+ 2% | e L €K — X72 + (V2 — 1)2€202(X; )]
v * o * 2 r QK2 ’
+ 4} [2BIX* — X713 + (Bo + B)||0* — U7 3] ¢
77k L, ., .12 where the second inequality holds for 77k < Nmax <
X" = X7 7 (V2—Dpugo, (X)) < Do (X)) o

1285, s and 7k < fmax < 18xB270
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the definitions of v; (11) and 7, (12), the above in-
equality implies

E,[|U = UM NF < U = Ur 1B
77kL * *
- 275(7“ — U = U IR) U = U E =),

which implies E[|U'™! — U*||%] < E[|U? — UF||%] if
v < E[|U = Uz||%] < Yu. Inductively, we can claim
the first part of this lemma.

Define a univariate function h(z) = 2z — L= .

(i + )z — 2% =y 7u) for any z € Ry. Then its
derivative is

L L
h'(z):l—nL'(Vl+7u)+nL‘Z
2 3
L
:1—w@—n%mwxn+ﬂ§~z>a

for 0 < z < 7, where the second equality holds
for (15), and the inequality is due to 1 — (v/2 —
Dnepor(XY) > 0 for any i € (0, Nmax). Thus, for
any 0<z < Vi,

h(z) < h(v) =,

which shows that the last statement of this lemma
holds. Therefore, we end the proof of this lemma. [

Proof of Corollary 2

Proof. Note that fnax < Nmax- By Theorem 1, if

(2-V3) (V2 - 1o (X})
3K
(2+V3) (V2 - 1o (X)) |

< |U°=U*?% < = Y,
| ~F ” gl

"=

then it is obvious that SVRG converges to the op-
timum X* at a linear rate. As a consequence, we
only need to prove the exact recovery of SVRG when
[U° — U*|% < ~. By Theorem 1, in this case,
E[|U* — U?||%] < y for all k € N. Actually, by the
proof of Theorem 1, at any k-th inner loop,

E[|U" - U |17] <% (33)
forany t=1,...,m.

In this case, it is obvious that Lemmas 2 and 3 still
hold, and (32) in the proof of Lemma 1 should be

revised as

B [|U = U7II%]
. L
< Ut - U3+ ;Tx
4(V2 — 1)¢o, (X7)

t_ rr4 _
10t - Uik =

Ut = U

By T — U3

77kL *
S(L—2-%)WW—UH%
2By I — U (34)

where the second inequality holds for (33) and (15).
By (34), recursively, after some simplifications we have

E[|U*! — U*||3] (35)
ﬁkL " Tk (12

< - . —

< (1 % vu) U U*||%

2Bomi€ Ny L S )2
R _
+ 7w D) Tu ”U U ”F

Since 1 € (0, fmax ), then

2Bomi€
Ly,

ComL "
0<@ 25”0

2Boni€ Nk L "
—|1- u 1,
L, 2 <

0<

<1,

+ 1— 2

which implies that SVRG converges to X* at a linear
rate. Therefore, we finish the proof of this corollary.
O

Appendix

In the appendix, we first present several lemmas, which
are frequently used in this paper, and then provide the
embedding results of eurodist dataset .

A. Several Important Lemmas

Lemma 4 ([1]) Let A and B be two positive semi-
definite matrices with the size p X p. Assume that A is
full rank, then

tr(AB) > omin(A)tr(B).

Lemma 5 For any U € RP*" et X = UUT, X =
UzUT, the following hold:
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(a) (Upper bound) | X—X;[[3 < 2(I1X | #+]1X; 1)
|U = Uz|2, and

(b) (Lower bound) if ||U — Uf||lr < ~o.(
some 0 < v <1, then

IX = X713 2 2(v2 = Do (U) U = U3

Proof. (a) Note that
v — v e = lUW - U5)"
< (Ulle +UZIU = UZ | -

Thus, [X — X;;II% < (11l + 1T 11R)? U = UF|E <
201U + NUZ )T = UF [I%-

(b) For any = € R", note that
207U U e = |[Ux3 + ||Uf]I3 = (U = U)al3
> [[U ] = U = UZN3 - i3
> (1=~ (X7) |13
>0 (0<7y<1), (36)

where the first inequality is due to |[Uz||3 > 0 and
U = UMzl < U = U2 - ||x|l2, and the second
inequality holds for |U*x[|3 > o.(X})||z||3 and ||U —
Ur% < ||U - U?|% < 420,.(X}) by the assumption of
this lemma. Thus, (36) implies

utur = o, (37)

and UTU} is full rank. Based on (37), we prove part
(b). Let H=U —U}. Then

|X — X213 =t (HTH)? +4HTHHTU})
+tr (Q(HTU:)2 + 2U:TUjHTH) .
Thus, establishing Lemma 5(b) is equivalent to show
that
tr (H'H)? +4H"HH"U; +2(H"U;)?)
+tr (2U:TU:HTH - cHTH)
>0,

where ¢ := 2(v/2 — 1)02(U}). By some simple deriva-

tions, we can observe that
tr (H'H)* +4H"HH"U; +2(H"U;)?)
+tr (2U:TU:HTH - cHTH)

tr ( (HTH + V2HTU*)? + (4 — 2\/§)HTHHTU:>
tr (2U*T U*HTH — HTH)

tr

\ \/ +

( (4 —
tr (( (4 —2vV2)HTU? + 20 U* — cI) : HTH) .

Uy) for

+ (U =UNU |r

W2HTHHTU? + 20U HTH — HTH)

Recalling HTU* = UTU? — UrTU*, we have

tr (((4 — 22 HTU? +2U:TUr — cI) : HTH)
=tr ((4—2v2)UTU* - HTH)

) -H'H)

2 - V2)UTU" + U:TU)-HTH)

+ tr

(
(
tr(
o
(

(2 2 - HurTur -
(

tr (2 nurTur - ) ~HTH>
>t ((2(v2 - WUurTur - ) -HTH)
>0, (.ec: 2(\/5 — 1)e?(UY), Lemma 4)

where the second equality is due to tr(UTU HT H) =
tr(HTHUTU) = tr(UUHTH), and the first in-
equality holds for (37) and Lemma 4. Therefore, the
above inequality implies

tr (H'H)? +4H"HH"U; +2(H"U;)?)

Ftr (2U:TU:HTH - cHTH) >0

which concludes part (b) of this lemma. O

The following lemma is similar to [5, Lemma 18].

Lemma 6 Let X = UUT and X} = UU" be two
p X p rank-r positive semidefinite matrices. Let ||[U —

Uillr < ~vor(U}) for some constant 0 < v < 1. Then

X = X7 r < 2y +9°) - 7(UF) - 0 (X)),
*) . o1(U))
where T7(U}) = oi(iU,n)

Proof. Note that

IX = X |lp = UW =UN" + (U =UHU ||
<NU=Ur(IUll2 + [1UF]l2)
< QU2 +vor(UNU = Uillp
<@+ lU2 - 0 (U)),

where the first inequality holds for the triangle inequal-
ity, Cauchy-Schwartz inequality and the fact that the
spectral norm is invariant with respect to the orthog-
onal transformation, the second inequality is due to
the following sequence of inequalities, based on the
hypothesis of the lemma:

1Ull2 = 1UZ]l2 < IU = U2 < U = Ur|lr < yor(Uy),

and the last inequality holds for the fact o,.(U}) <
[UZ|l2 and the assumption of this lemma. The above

inequality directly implies the claim of this lemma by
the definition of 7(U}). O

Moreover, we need modify [5, Lemma 19] as follows.
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Lemma 7 Let X = UUT and X} = UUT be two
p X p rank-r positive semidefinite matrices. Let || U —
Uilp < vo.(U}) for some constant 0 <y < 1. Then

or(U) = (1 =)o (U;).

Proof. Using the norm ordering || |2 < |- ||r and the
Weyl’s inequality for perturbation of singular values
(see, [2, Theorem 3.3.16]), we get

0i(U) = 03(U;)| <70, (U)), L<i <,
which implies that

or(U) = (1 =), (U7).

O

Lemma 8 Let Assumption 1 hold. Let X = UUT
and X = UrU*T be two p x p rank-r (r < p) posi-
tive semidefinite matrices. Suppse that |U — U ||% <
Yoor (X)), where vg is specified in (8). Then the fol-
lowing hold:

(a) (Bounded gradient)

IVF(X)|lF
< IVAEXDIF + (2v70 +70) LT (U7)or (X5,

(b) (Feasibility of X) Let X := X~} Py V f(X)Py,
where 1 is specified in (9), then X is a feasible
point, i.e., X is symmetric and positive semidefi-
nite.

(¢) (1—Pu)X; =0.

Proof. (a) Note that

IVF(X)llr < IVAXDr + LIX - X[p
< IVAXD)F + 2vA0 +70) L7 (U)o (X7),
where the first inequality holds for the L-Lipschitz dif-

ferentiability of f, and the second inequality holds for
Lemma 6.

(b) Since PyXPy = X and X is rank-r, then

X =L PV f(X)Py = Pu(X — LV f(X))Py,

=

which implies that X is symmetric and that the last
p — r eigenvalues of the matrix X — % - Py V f(X)Py
are zero, that is, \j(X — % - PyVf(X)Py) = 0 for

i=r+1,...,p. While forany i=1,...,r,
(x_T.
A (X =2 PoviPy)

> )\z(X) - : Amax(Pva(X)PU)

=< S

(X) -
—V%
IV s

v
Q
S

: Umax(vf(X))
or(X7)

X)NEe + 2v70 +70) LU )or (X))

Y
_

~
[v)

Y4
© N~

where the third inequality holds for Lemma 7 and (a)
of this lemma, and the final inequality holds for the
definition of 77. Therefore, X is positive semidefinite.

(c) By ||[U = U}|lFr < Y0, (U}) and 0 < /70 < 1,
we have

O‘l(U) ) O'l(U*) > O7

T

ie{l,...,r}
and
Uz(U:)ZO, O'Z(U)ZO, iE{T—Fl,...,p},

which implies that U} lies in the subspace spanned by
U. In other words, U} does not lie in the orthogonal
subspace of the subspace spanned by U, that is, the
following holds

(1 —Py)Ur =0.

Thus, (I—-Py)X:=0.0

B. Embedding results of eurodist dataset
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Figure 5: Embedding results of eurodist dataset.
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