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A Truncation Algorithms for the IHT

In this section, we present the algorithms for the truncation step in the IHT algorithm, i.e., Line 6 in Algorithm
1. The truncation algorithms for sparse vector and low-rank matrix recovery are tabulated in Algorithms 2 and
3, respectively.

Algorithm 2 Evaluation of the truncation function Trunc(Θ, s) in Line 6 of Algorithm 1 for nonlinear sparse
vector recovery

1: Input: Truncation level s > 0, a vector Θ ∈ Rd

2: Sort {|Θj |}dj=1 such that |Θj1 | ≥ |Θj2 | ≥ . . . ≥ |Θjd |
3: S ← {j1, . . . , js}
4: for j in {1, . . . , d} do
5: Θj ← 0 if j /∈ S
6: end for
7: return Θ

Algorithm 3 Evaluation of the truncation function Trunc(Θ, s) in Line 6 of Algorithm 1 for nonlinear low-rank
matrix recovery

1: Input: Truncation level s > 0, a low rank matrix Θ ∈ Rm1×m2 with rank(Θ) = r
2: Perform singular value decomposition Θ = UΛV> where U ∈ Rm1×r, Λ ∈ Rr×r, V ∈ Rr×m2 . The diagonal

elements of Λ are in decreasing order
3: for j in {1, . . . , r} do
4: Λjj ← 0 if j > s
5: end for
6: Θ← UΛV>

7: return Θ
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B Proof of the Main Results

In this section we give a detailed proof of the main results.

B.1 Proof of Theorem 3.5

Proof. We first define supp(V) := {j : vj 6= 0}, for any V = (v1, · · · , vd)> ∈ Rd as the support of V. When
proceeding Algorithm 1 for sparse vector recovery, for t ≥ 0, we denote S(t) = supp(Θ(t)), S∗ = supp(Θ∗) and
F (t) = S(t) ∪S(t+1) ∪S∗. By definition, the cardinality of F (t) is no larger than 2s+ s∗, i.e., ‖ΘF(t)‖0 ≤ 2s+ s∗.

We denote Θ̃(t+1) = Θ(t) − η · ∇F(t)`(Θ(t)), then by definition we have Θ(t+1) = Trunc(Θ̃(t+1), s). By denoting
∆(t) = Θ(t) −Θ∗, we have

‖Θ̃(t+1) −Θ∗‖2 = ‖∆(t) − η · ∇F(t)`(Θ(t))‖2. (B.1)

According to the definition of the least-squares loss function in (1.2), ∇`(Θ(t)) is represented as:

∇`(Θ(t)) =
1

n

n∑
i=1

[
f(〈Xi,Θ

(t)〉)− Yi
]
· f ′
(
〈Xi,Θ

(t)〉
)
·Xi = E(t) + G(t), (B.2)

where E(t) and G(t) are defined as

E(t) :=
1

n

n∑
i=1

[
f ′
(
〈Xi,Θ

(t)〉
)
− f ′

(
〈Xi,Θ

∗〉
)]
· εi ·Xi, and (B.3)

G(t) :=
1

n

n∑
i=1

f ′
(
〈Xi,Θ

(t)〉
)
·
[
f
(
〈Xi,Θ

(t)〉
)
− f

(
〈Xi,Θ

∗〉
)]
·Xi. (B.4)

Triangle inequality yields that

‖Θ̃(t+1) −Θ∗‖2 ≤ ‖∆(t) − η ·G(t)

F(t)‖2 + η · ‖E(t)

F(t)‖2.
(B.5)

Using Mean Value Theorem, G(t) can be written as

G(t) =
1

n

n∑
i=1

f ′
(
〈Xi,Θ

(t)〉
)
· f ′
(
〈Xi,Θ1〉

)
· 〈Xi,∆

(t)〉 ·Xi = A(t) ·∆(t), (B.6)

where Θ1 lies between Θ(t) and Θ∗ and A(t) = n−1
∑n

i=1 f
′(〈Xi,Θ

(t)〉)·f ′(〈Xi,Θ1〉)·XiX
>
i . Since supp(G(t)) ⊆

F (t), we actually have

G(t) = A
(t)

·,F(t) ·∆(t). (B.7)

Therefore, combining (B.5), (B.6), and (B.7), we obtain∥∥Θ̃(t+1) −Θ∗
∥∥
2
≤
∥∥∆(t) − η ·G(t)

F(t)

∥∥
2

+ η ·
∥∥E(t)

F(t)

∥∥
2

≤
∥∥I− η ·A(t)

F(t),F(t)

∥∥
2
·
∥∥∆(t)

∥∥
2

+ η ·
∥∥E(t)

F(t)

∥∥
2
, (B.8)

where I ∈ R|F(t)|×|F(t)| is the identity matrix. Here the second inequality follows from the definition of operator
norm. Since |F (t)| ≤ 2s+ s∗, by Assumptions 3.1 and 3.2 we have

a2[1− δ(2s+ s∗)] · ‖V‖2 ≤ V>A
(t)

F(t),F(t)V ≤ b2[1 + δ(2s+ s∗)] · ‖V‖2

for any V ∈ R|F (t)|. Therefore, given η we can bound
∥∥I− η ·A(t)

F(t),F(t)

∥∥
2

by

λ1(η) := max
{

1− ηa2[1− δ(2s+ s∗)], ηb2[1 + δ(2s+ s∗)]− 1
}
. (B.9)
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By choosing 3/7 · {a2[1− δ(2s+ s∗)]}−1 < η < 11/7 · {b2[1 + δ(2s+ s∗)]}−1, we have λ1(η) ∈ (0, 4/7). Note that
given a and b, such η always exists as long as the constant δ(2s+ s∗) is sufficiently small.

Moreover, due to the property of the norms,∥∥E(t)

F(t)

∥∥
2
≤
√

2s+ s∗ ·
∥∥E(t)

∥∥
∞. (B.10)

Therefore, combining (B.8), (B.9), and (B.10), we obtain that∥∥Θ̃(t+1) −Θ∗
∥∥
2
≤ λ1(η) ·

∥∥∆(t)
∥∥
2

+ η
√

2s+ s∗ ·
∥∥E(t)

∥∥
∞. (B.11)

The following lemma further upper bounds
∥∥E(t)

∥∥
∞ with high probability.

Lemma B.1. For E(t) defined in (B.3), if we assume Xi ∈ Rd satisfies Assumption 3.4, then it holds with
probability at least 1− d−1 that ∥∥E(t)

∥∥
∞ ≤ 2bσD ·

√
log d/n, ∀t ≥ 0. (B.12)

Proof. Recall that ε1, . . . , εn are i.i.d. sub-Gaussian random variables. By the definition of E(t), for j ∈ {1, . . . , d},
each entry E

(t)
j is a sub-Gaussian random variable with variance proxy given by

τt :=
σ2

n2

n∑
i=1

[f ′(〈Xi,Θ
(t)〉)− f ′〈Xi,Θ

∗〉)]2X2
ij ≤ 4b2σ2D2/n, ∀t ≥ 0,

where Xij denotes the j-th entry in Xi. Here the inequality follows from the assumption that f ′(u) ≤ b for all
u ∈ R and Assumption 3.4. By the definition of sub-Gaussian random vectors, for any A ∈ Rd, we have

max
t≥0

E[exp(A>E(t))] ≤ max
t≥0

exp(‖A‖22 · τ2t ) ≤ exp(‖A‖22 · 4b2σ2D2/n).

By the tail inequality for sub-Gaussian random variables, we conclude that

‖E(t)‖∞ ≤ 2bσD ·
√

log d/n, ∀t ≥ 0

with probability at least 1− d−1. Thus, we conclude the proof of the lemma.

Now we use the following lemma from Jain et al. (2014) to characterize the relation between ‖Θ̃(t+1) −Θ∗‖2
and ‖Θ(t+1) −Θ∗‖2.

Lemma B.2. For any Θ ∈ Rk and integer s ≤ k, let Θt = Trunc(Θ, s). Then for any Θ∗ ∈ Rk such that
‖Θ∗‖0 ≤ s∗, we have ‖Θt −Θ‖22 ≤ (k − s)/(k − s∗) · ‖Θ∗ −Θ‖22.

Proof. See Lemma 1 of Jain et al. (2014) for a detailed proof.

Applying Lemma B.2 with Θ = Θ̃(t+1), we have

‖Θ̃(t+1) −Θ(t+1)‖22 ≤
|F (t)| − s
|F (t)| − s∗

· ‖Θ̃(t+1) −Θ∗‖22 ≤
s+ s∗

2s
· ‖Θ̃(t+1) −Θ∗‖22

where the second inequality follows from |F (t)| ≤ 2s+ s∗. From Assumption 3.2 that s ≥ 8s∗, we further have

‖Θ̃(t+1) −Θ(t+1)‖22 ≤ 9/16 · ‖Θ̃(t+1) −Θ∗‖22,

Therefore, we obtain

‖Θ(t+1) −Θ∗‖2 ≤ ‖Θ(t+1) − Θ̃(t+1)‖2 + ‖Θ̃(t+1) −Θ∗‖2 ≤ 7/4 · ‖Θ̃(t+1) −Θ∗‖2. (B.13)

Finally we obtain the main result by combining (B.11), (B.12), and (B.13):

‖Θ(t+1) −Θ∗‖2 ≤ µt
1 · ‖Θ(0) −Θ∗‖2 + C1 ·

√
(2s+ s∗) log d/n,

where µ1 ∈ (0, 1) and C1 > 0 is an absolute constant. Therefore, we conclude the proof of the theorem.
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B.2 Proof of Theorem 3.6

Proof. The proof has the similar procedure as the proof of Theorem 3.5. When Algorithm 1 is adopted for
low-rank matrix recovery, for t ≥ 0, we define S(t) and S∗ as

S(t) :=
{
V ∈ Rm1×m2 : row

(
V
)
⊆ row

(
Θ(t)

)
, col

(
V
)
⊆ col

(
Θ(t)

)}
,

S∗ :=
{
V ∈ Rm1×m2 : row

(
V
)
⊆ row

(
Θ∗
)
, col

(
V
)
⊆ col

(
Θ∗
)}
.

Therefore, any matrix in subspace F (t) := S(t)∪S(t+1)∪S∗ has rank no larger than 2s+s∗, i.e., rank
(
ΘF(t)

)
≤ 2s+

s∗, for any Θ ∈ Rm1×m2 . Therefore, by denoting Θ̃(t+1) = Θ(t)−η ·∇F(t)`(Θ(t)) and Θ(t+1) = Trunc(Θ̃(t+1), s),
we obtain the same results as (B.1) and (B.2) for low-rank matrix recovery and have the same definition for E(t)

and G(t) as (B.3) and (B.4), respectively. With triangle inequality for the Frobenius norm, we obtain∥∥Θ̃(t+1) −Θ∗
∥∥
F
≤
∥∥∆(t) − η ·G(t)

F(t)

∥∥
F

+ η ·
∥∥E(t)

F(t)

∥∥
F
. (B.14)

We need to upper bound the two terms on the right hand side.

Using the Mean Value Theorem, G(t) can be written as

G(t) =
1

n

n∑
i=1

f ′
(
〈Xi,Θ

(t)〉
)
· f ′
(
〈Xi,Θ1〉

)
· 〈Xi,∆

(t)〉 ·Xi =
1

n

n∑
i=1

Bi · 〈Xi,∆
(t)〉 ·Xi,

where Θ1 lies between Θ(t) and Θ∗ and Bi = f ′(〈Xi,Θ
(t)〉)·f ′(〈Xi,Θ1〉). Hence by definition,

∥∥∆(t)−η·G(t)

F(t)

∥∥
F

can be written as

∥∥∆(t) − η ·G(t)

F(t)

∥∥
F

= sup
∆̃∈S̃(t)

∣∣∣∣〈∆̃,∆(t)〉 − η · 1

n

n∑
i=1

Bi · 〈Xi,∆
(t)〉〈∆̃,Xi〉

∣∣∣∣ (B.15)

where S̃(t) :=
{
∆̃ ∈ F (t) : ‖∆̃‖F = 1

}
. Using triangle inequality, we have

sup
∆̃∈S̃(t)

∣∣∣∣〈∆̃,∆(t)〉 − η · 1

n

n∑
i=1

Bi · 〈Xi,∆
(t)〉〈∆̃,Xi〉

∣∣∣∣
≤ sup

∆̃∈S̃(t)

∣∣∣∣〈∆̃,∆(t)〉 − η · 1

n

n∑
i=1

Bi · 〈∆̃,∆(t)〉
∣∣∣∣+∣∣∣∣η · 1

n

n∑
i=1

Bi ·
(
〈∆̃,∆(t)〉 − 〈Xi,∆

(t)〉〈∆̃,Xi〉
)∣∣∣∣ (B.16)

The first term on the right hand side of (B.16) is bounded as

sup
∆̃∈S̃(t)

∣∣∣∣〈∆̃,∆(t)〉 − η · 1

n

n∑
i=1

Bi · 〈∆̃,∆(t)〉
∣∣∣∣ ≤ max{1− ηa2, ηb2 − 1} · ‖∆(t)‖F , (B.17)

due to the boundness of the derivative f ′.

For the second term on the right hand side of (B.16), we introduce the following lemma from Carpentier and
Kim (2015) to bound it.

Lemma B.3. Under Assumption 3.2, for any s ≤ 8s∗, we have that

sup
A,B∈R(s)

∣∣∣∣ 1n
n∑

i=1

〈Xi,A〉〈Xi,B〉 − 〈A,B〉
∣∣∣∣ ≤ 2δ(s) · ‖A‖F ‖B‖F , (B.18)

where we denote R(s) := {V ∈ Rm1×m2 : |row(V)| ≤ s, |col(V)| ≤ s}.

Proof. See Lemma 5.1. of Carpentier and Kim (2015) for a detailed proof.
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By applying Lemma B.3, we have

sup
∆̃∈S̃(t)

∣∣∣∣η · 1

n

n∑
i=1

Bi ·
(
〈∆̃,∆(t)〉 − 〈Xi,∆

(t)〉〈∆̃,Xi〉
)∣∣∣∣ ≤ 2ηb2δ(2s+ s∗) · ‖∆(t)‖F . (B.19)

Thus (B.15) can be upper bounded by combining (B.17) and (B.19)∥∥∆(t) − η ·G(t)

F(t)

∥∥
F
≤ λ2(η) := max{1− ηa2, ηb2 − 1}+ 2ηb2δ(2s+ s∗). (B.20)

By choosing b−2 < η < 11/7 · b−2 · [1 + 2δ(2s + s∗)]−1, or 3/7 · [a2 − 2b2δ(2s + s∗)]−1 < η < a−2, we have
λ2(η) < 4/7. Note that such η always exists as long as the constant δ(2s+ s∗) in the RIP condition is sufficiently
small.

For the term
∥∥E(t)

F(t)

∥∥
F

, we also have ∥∥E(t)

F(t)

∥∥
F
≤
√

2s+ s∗ ·
∥∥E(t)

∥∥
2

(B.21)

due to the relation between the Frobenius norm and the operator norm. Moreover, we can further upper bound
‖E(t)‖2 with high probability for low-rank matrix recovery depending on different assumptions on X. For
example, under the assumption that Xi are i.i.d. sampled from the Σ-ensemble with some positive definite Σ,
we have

∥∥E(t)
∥∥
2

= OP(
√
m1 +m2/

√
n) (Negahban and Wainwright, 2011) (See more discussions in Remark 3.7).

To characterize the relation between ‖Θ̃(t+1) −Θ∗‖F and ‖Θ(t+1) −Θ∗‖F , we use another lemma in Jain et al.
(2014) for matrix recovery.

Lemma B.4. For any Θ ∈ Rm1×m2 with rank k and integer s ≤ k, let Θ1 = Trunc(Θ, s). Then for any
Θ∗ ∈ Rm1×m2 with rank(Θ∗) ≤ s∗, we have ‖Θ1 −Θ‖2F ≤ (k − s)/(k − s∗) · ‖Θ∗ −Θ‖2F .

Proof. See Lemma 2 of Jain et al. (2014) for a detailed proof.

By applying Lemma B.4, we arrive at the similar result as (B.13),

‖Θ(t+1) −Θ∗‖F ≤ ‖Θ(t+1) − Θ̃(t+1)‖F + ‖Θ̃(t+1) −Θ∗‖F ≤ 7/4 · ‖Θ̃(t+1) −Θ∗‖F . (B.22)

Finally we obtain the main results for low-rank matrix recovery by combining (B.14), (B.20), (B.21), and (B.22):

‖Θ(t) −Θ∗‖F ≤ µt
2 · ‖Θ(0) −Θ∗‖F + η

√
2s+ s∗ ·

∥∥E(t)
∥∥
2

≤ µt
2 · ‖Θ(0) −Θ∗‖F + C2

√
2s+ s∗·

∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥
2

,

with µ2 ∈ (0, 1) and C2 = 2bη > 0 as an absolute constant. Thus, we conclude the proof of the theorem.


