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Abstract

We study the high-dimensional signal estima-
tion problem with nonlinear measurements,
where the signal of interest is either sparse or
low-rank. In both settings, our estimator is
formulated as the minimizer of the nonlinear
least-squares loss function under a combina-
torial constraint, which is obtained efficiently
by the iterative hard thresholding (IHT) al-
gorithm. Although the loss function is non-
convex due to the nonlinearity of the statisti-
cal model, the IHT algorithm is shown to con-
verge linearly to a point with optimal statis-
tical accuracy using arbitrary initialization.
Moreover, our analysis only hinges on condi-
tions similar to those required in the linear
case. Detailed numerical experiments are in-
cluded to corroborate the theoretical results.

1 Introduction

Signal recovery via linear measurements under the
high-dimensional regime is extensively studied in the
past two decades with fruitful results (Bithlmann and
van de Geer, 2011). However, the linear model is too
stringent for modeling real-world datasets where non-
linear models usually yield better performance. To re-
lax the linear assumption, given a monotone and uni-
variate function f, we study the nonlinear model

Y = f((X,07)) +¢ (1.1)
where Y € R is the response variable, X is the co-
variate, ®* is the parameter of interest, and ¢ € R is
the stochastic noise independent of X. Here we as-
sume f is known and ©@* is either a sparse vector or
a low rank matrix and the inner product in (1.1) is
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the trace inner product in the matrix case. Given n
independent and identically distributed (i.i.d.) obser-
vations {Y;, X;}™ ; of (Y, X), our goal is to estimate
©®* in the high-dimensional setting where the ambient
dimension is much larger than the sample size n.

When f is the identity function, model (1.1) reduces
to the classical linear model. Our model is motivated
by a broad family of nonlinear structured signal re-
covery problems that receive great research interest
recently. See, e.g., Xu et al. (2011); Beck and Eldar
(2013a); Blumensath (2013); Aksoylar and Saligrama
(2014); Gulliksson and Oleynik (2016) and the refer-
ences therein. Moreover, this model also finds appli-
cations in machine learning, for example, the training
of (deep) neural networks (Hecht-Nielsen et al., 1988;
Glorot and Bengio, 2010), where the activation func-
tions are usually unknown and nonlinear.

Since f is known, a tempting method to handle the
nonlinear model is to apply methods for the lin-
ear setting on the transformed data {f~1(Y;), X} ;.
Nonetheless, such an approach succeeds only in the
noiseless case where € is zero. In the noisy setting,
the conditional distribution of f~1(Y") given X in gen-
eral will not be centered at (X, ®*) in presence of the
stochastic noise. Thus, applying methods for the linear
model usually incurs large estimation errors. Instead
of avoiding the nonlinearity through transformation,
we attack the estimation problem by minimizing the
nonlinear least-squares loss function

n

°(©) = % > [¥i-f((x.0))

(1.2)

directly under a combinatorial constraint. Such a con-
straint enables us to obtain a sparse or low-rank so-
lution for the vector and matrix cases, respectively.
Specifically, when ®* is a sparse vector, we solve the
optimization problem in (2.1) subject to a cardinality
constraint that ® has no more than s nonzero entries
for some appropriate integer s > 0. Whereas we adopt
the rank constraint rank(®) < s when ©* is a low-
rank matrix.
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Due to the combinatorial constraint, such an optimiza-
tion problem is not tractable. To obtain a computa-
tionally efficient estimator, we apply the iterative hard
thresholding (THT) algorithm, which is a special case
of the projected gradient descent algorithm. At each
iteration, the algorithm first performs a standard gra-
dient descent step, then truncates the updated esti-
mate such that the combinatorial constraint is satis-
fied. Specifically, for the cardinality constraint, the
truncation step simply selects the largest s entries of
the updated estimate in magnitude (Blumensath and
Davies, 2009). As for the rank constraint, it reduces
to computing the best rank-s approximation of the
updated estimate (Tanner and Wei, 2013), which is
achieved via singular value decomposition (SVD).

For linear models, such an algorithm is shown to con-
verge linearly to an estimator with optimal statistical
accuracy (Blumensath and Davies, 2009; Jain et al.,
2014). Unlike the linear case in which the least-squares
loss function is convex, in general settings the loss
function in (1.2) can be highly nonconvex due to the
existence of the nonlinear function f. Moreover, some
standard assumptions on the loss function such as the
restricted strong convexity (RSC) condition (Negah-
ban et al., 2012) are too stringent to hold in general
nonlinear settings. Hence, new theoretical guarantees
are required for the estimator based on IHT algorithm.

In §3, we show that, despite nonconvexity, the ITHT
algorithm enjoys both computational efficiency and
statistical accuracy. In particular, similar to the lin-
ear case, it converges linearly in terms of computation
with arbitrary initialization and achieves optimal sta-
tistical rate of convergence after sufficient number of
iterations. We summarize our main result as follows.
Let {®® t > 0} be the iterates of the THT algorithm,
under mild assumptions, there exist two absolute con-
stants 0 < pu < 1 and C' > 0 such that, with high
probability,

|© —©°[ls < ' - [© — ©|ls + C - Rate”. (13)

Here || - ||o stands for the ¢5-norm in the vector case
and the Frobenius norm in the matrix case. Moreover,
Rate* in (1.3) denotes the minimax statistical rate of
convergence in the linear model. The first term on the
right-hand side of (1.3) is the optimization error, which
converges to zero with linear rate; the second term is
the statistical error, which establishes the optimality
of our approach.

Related Work. The model in (1.1) is an extension
of high-dimensional signal recovery with linear mea-
surements, namely Compressed Sensing, which have
been extensively studied. See Biihlmann and van de
Geer (2011) for a thorough review of the literature. In
this case, all projected gradient methods (Needell and

Tropp, 2009; Blumensath and Davies, 2009; Garg and
Khandekar, 2009; Foucart, 2011) are able to obtain
optimal statistical rates of convergence.

In addition to Compressed Sensing, our model is also
related to the Single Index Model (SIM), which as-
sumes the nonlinear function in (1.1) is unknown. SIM
has been studied in the low-dimensional settings where
d < n. See, e.g., McCullagh et al. (1989); Hardle et al.
(1993); Ichimura (1993); Sherman (1994); Xia and Li
(1999); Delecroix et al. (2000, 2006); Horowitz (2000);
Ganti et al. (2015) for details. Most of these works
study M-estimators that are global optima of the
nonconvex optimization problem, thus are known to
be computationally intractable. For high-dimensional
SIM with Gaussian covariates, Plan et al. (2017); Plan
and Vershynin (2016); Thrampoulidis et al. (2015);
Neykov et al. (2016a); Oymak and Soltanolkotabi
(2016) study generalized Lasso estimators which enjoy
sharp statistical rates of convergence. This method is
later extended in Goldstein et al. (2016); Yang et al.
(2017a) for non-Gaussian covariates. In addition, Han
and Wang (2015) propose a method using rank-based
statistics smoothing techniques, Yi et al. (2015) con-
sider an estimator based on the method of moments,
Chen and Banerjee (2017) propose robust estimators
based on U-statistics. However, their results hinge
on the assumption that the distribution of covariate
is known. Hence the flexibility of SIM comes at the
price of more stringent distributional assumptions on
the data. Moreover, since ||@*||2 is incorporated into
f, these methods can only estimate the direction of
O* ie., ©*/||®*|2, instead of the parameter itself.
In comparison to these works in the regime where f
is known, our method is able to estimate @* directly
with X following general distributions.

Moreover, the problem of sufficient dimension reduc-
tion is also relevant, where the goal is to recover a sub-
space U such that Y only depends on the projection
of X onto U. See, e.g., Li (1991, 1992); Cook (1998);
Cook and Lee (1999) and the references therein. These
estimators are based on similar symmetry assumptions
and involve computing second-order (conditional and
unconditional) moments which are difficult to esti-
mate in high-dimensions without restrictive assump-
tions. Furthermore, Kalai and Sastry (2009); Kakade
et al. (2011) propose iterative algorithms that esti-
mate f and B* alternatively, based on isotonic re-
gression in the setting with d < n. However, theory
for parameter estimation is not derived in their anal-
ysis. For the special case where the nonlinear func-
tion f is quadratic, the estimation problem is known
as the phase retrieval problem, where the model is
Y = |XTB|? +eand X € C?is a complex random
vector. For high-dimensional settings, this problem
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has been investigated under both noisy and noiseless
settings. See, e.g., Jaganathan et al. (2012); Ohlsson
et al. (2012); Li and Voroninski (2013); Candes et al.
(2013); Eldar and Mendelson (2014); Ohlsson and El-
dar (2014); Candes et al. (2015); Waldspurger et al.
(2015); Eldar et al. (2015); Cai et al. (2016); Tu et al.
(2016); Goldstein and Studer (2016); Dhifallah et al.
(2017); Ma et al. (2017); Soltanolkotabi (2017) and the
references therein. Moreover, Neykov et al. (2016b);
Yang et al. (2017b) study the misspecified phase re-
trieval model in high dimensions, which can be viewed
as a single index model with symmetric link functions.
It is worth noting that all these works depend on the
assumption that the distribution of covariate is known.

A more relevant line of works focuses on the
sparsity-constrained optimization procedure for non-
linear problems. Shalev-Shwartz et al. (2010) studies a
few greedy algorithms for minimizing the expected loss
of a linear predictor. In their analysis, it is assumed
that the loss function satisfies some smoothness and
convexity condition, which does not hold for the least-
squares loss function considered here. Liu et al. (2014)
studies forward-backward selection algorithm for gen-
eral convex smooth loss functions and Bahmani et al.
(2013) considers the Gradient Support Pursuit algo-
rithm and its variants. More relevant works are Yuan
et al. (2014); Jain et al. (2014); Beck and Eldar (2013b)
that provide analysis for the iterative hard threshold-
ing algorithms. Although the convergence of the algo-
rithms and the statistical error of the estimators are
both derived in these works, they are limited to the
case where the Restricted Strong Convexity and Re-
stricted Smoothness Conditions are satisfied. This rel-
atively stringent assumption forbids trivial extensions
of these existing analysis to our problem with more
general loss functions. For general Compressed Sens-
ing problems, Blumensath (2013) proposes a formu-
lation where the linear measurement operator which
measures the signal is replaced by a general nonlinear
operator. THT algorithm is then advocated and the
estimation error bound is obtained. However, the gen-
erality of the nonlinear operator comes at a price. Par-
ticularly, their analysis relies on both the Restricted
Isometry Property (RIP) and Restricted Smoothness
Conditions to hold for the Jacobian of the nonlinear
operator. Moreover, the coefficient in the RIP condi-
tion is required to be less than 0.2, implying that the
RIP assumption cannot be relaxed to the Restricted
Strong Convexity condition. In contrast, we consider a
more specific model and are able to derive optimal sta-
tistical rate of convergence under significantly weaker
conditions.

Summary of Contributions. The main contribu-
tion of the present work is two-fold. First, we pro-

pose a unified treatment of the signal recovery problem
with nonlinear statistical model in high dimensions.
Second, we develop the iterative hard thresholding al-
gorithm to efficiently achieve the recovery results for
both sparse and low-rank signals. The THT algorithm
is guaranteed to achieve optimal statistical rates of
convergence despite the model nonlinearity. In addi-
tion, the assumptions required for these guarantees are
mild and similar to those required in the linear case.

Notation. We adopt the following notation through-
out this paper. Let N,Z and R be the set of natu-
ral numbers, integers, and real numbers. We write
{1,...,n} as [n] for any n € N, and [n] as the small-
est integer that is greater than n. For 0 < p < oo, we
denote the ¢,-norm of v as ||v||,, specifically, ||v||o de-
notes the number of nonzero entries in v. For a matrix
M, let |[M|/r and ||[M]|z be the Frobenius and oper-
ator norm of M. Define |M||pmax as the max norm
of M, which is the largest absolute value of the ele-
ments in M. We denote the inner product operation
as (©1,0,). In the vector case, (@1,0,) = O] O,
whereas in the matrix case, (@1,0,) = tr(©] ©,).
For S C R%, let vs denote the projection of v on the
subspace S and similarly for S C R™*™2 and Mg.
Let |S| denote the dimension of the subspace S. We
use vec(M) to denote the vectorized form of the matrix
M. A random vector U € R? is sub-Gaussian with
variance proxy 72 if E(U) = 0 and for all A € R,
Elexp(ATU)| < exp(| A3 - 72/2).

Organization. We introduce the combinatorial op-
timization problem and the estimation procedure in
62, and in §3 we present the theoretical results. The
numerical experiments are illustrated in §4. Finally,
we conclude the paper in §5 with further discussions.
The theoretical guarantees of the proposed algorithm
are proved in §B.

2 Parameter Estimation via Iterative
Hard Thresholding

In this section, we introduce the proposed combinato-
rial optimization problem and the THT algorithm for
nonlinear structured signal estimation.

As stated in §1, we aim to estimate the high-
dimensional signal ®* given n i.i.d. observations
{V;,X;}7, of the model (1.1). It is assumed that
s*,d,m1, and mo are positive integers satisfying s* <
n < d and s* < min{my,ma}. For sparse vector
estimation, we assume ©* € R? with ||@*|y = s,
while for low-rank matrix recovery, we consider @* €
R™1*™2 with rank(@*) = s*.

To recover the structured signal in high dimensions,
we proposed a nonconvex optimization problem with a
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Algorithm 1 The iterative hard thresholding (IHT)
algorithm for nonlinear signal recovery in high dimen-
sions

1: Input: Truncation level s > 0, step-size n > 0.
2: Initialization: set iteration counter ¢ <— 0 and
choose an initial estimator @) either a vector in
R¢ or a matrix in R™1*m2
Output: A sequence of estimators {©®) ¢ > 1}
Repeat

ot —e® —y. vg(@(t))

O+« Trunc(©@(+Y 5). Solved by Algo-
rithms 2 or 3 in §A

Update iteration counter t < ¢t + 1
8: Until convergence

ot

combinatorial constraint, which reduces to a cardinal-
ity or a rank constraint. Specifically, for sparse vector
recovery, the estimator is the minimizer of the combi-
natorial optimization problem

min ¢(®) such that ||O|y < s,

2.1
Qnin, (2.1)

where ¢(©) is as defined in (1.2), and s > 0 is the
parameter that will be specified later. By definition,
the optimization problem in (2.1) will always return a
solution with no more than s nonzero entries. Like-
wise, for low-rank matrix recovery, we formulate an
optimization problem with a rank constraint

min  ¢(©) such that rank(®) < s.
@cRm1xXm3

(2.2)
Due to the high computational complexity to di-
rectly solve (2.1) and (2.2) under the high-dimensional
regime, we resort to the iterative hard thresholding
algorithm to efficiently attack the combinatorial op-
timization problems. Such an algorithm iteratively
generates a sequence of estimators {@(t),t > 1} via
a standard gradient descent followed by a truncation
step. The unified algorithm for both sparse vector and
low-rank matrix recovery via IHT is summarized in Al-
gorithm 1.

In detail, let n > 0 be a fixed step-size. For each ¢ > 1,
at the t-th iteration, the algorithm first performs a
gradient descent step

et+th — @) _ n- vg(@(t))
and then does a truncation step

O+ = Trunc(@1+D), s), (2.3)

where the positive integer s > 0 is the parameter of the
algorithm controlling the truncation level. Specifically,
for sparse vector recovery, the truncation function sim-
ply keeps the largest s entries of @“+1) in magnitude

and shrinks the rest of the entries to zero. For low-rank
matrix recovery, the truncation function computes the
best s-rank approximation of @1 via singular value
decomposition. The truncation step in (2.3) are pre-
sented in detail as Algorithms 2 and 3, respectively, in
8A. Algorithm 1 iterates continuously until a conver-
gence criteria is reached. For example, we can termi-
nate the algorithm if [|@¢+1) —@®) ||, /|©®||, < ¢ for
some threshold € > 0.

Although Algorithm 1 proceeds in the same way as
its linear counterpart, i.e., the IHT algorithm for lin-
ear structured signal recovery (Bithlmann and van de
Geer, 2011), there are still several questions remaining
open. First, due to the nonlinearity of f, the loss func-
tion in (1.2) can be highly nonconvex. Thus it is not
clear whether the IHT algorithm will converge; even
if the algorithm does converge, nor is it clear about
the rate of convergence and where the algorithm con-
verges. In addition, for general nonconvex optimiza-
tion, initialization plays a significant role in gradient-
based algorithms since the algorithms can easily get
stuck at a local minimum or saddle point with an ini-
tial point around them. Therefore, it is imperative to
investigate whether our IHT algorithm requires non-
trivial initialization.

Interestingly, we show in the next section that, un-
der mild assumptions, the IHT algorithm is guaran-
teed to converge linearly for nonlinear structured sig-
nal estimation with proper step-size n under random
initialization. Furthermore, the algorithm converges
to a point with optimal statistical rate of convergence.
Hence our proposed estimator achieves both computa-
tional feasibility and statistical accuracy.

3 Theoretical Results

In this section, we establish the convergence results
for the iterative hard thresholding algorithm. As the
basis for the ensuing analysis, an assumption on the
nonlinear function f is first stated.

Assumption 3.1. We assume the nonlinear function
f:R—Rin (1.1) is monotone and differentiable. Ad-
ditionally, there exist two positive constants a, and b
such that f'(u) € [a,b] for all u € R.

Note that such an assumption holds in a significant
machine learning application, i.e., the training of deep
neural networks. In this case, the derivative f’ is
bounded as long as (X, ®*) is bounded, whereas the
latter has to be satisfied because otherwise the gradi-
ent of the cost function would either vanish or explode,
making the training process slow and inefficient (Glo-
rot and Bengio, 2010).

We acknowledge that such an assumption is stronger
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than that in sparse single index models (Plan
et al., 2017; Plan and Vershynin, 2016; Goldstein
et al., 2016), where f only needs to satisfy that
E[f'((X,0*))] # 0. However, their generality comes
at a price. Specifically, all these works need to assume
that the distribution of X is Gaussian or Elliptical,
which is much stronger than our assumption on the
covariate as we will provide later. In fact, for non-
linear signal recovery problems with general covariate,
knowledge of f is required for consistent estimation.
As such, the problems are solved in a case-by-case
manner. See Ai et al. (2014); Loh and Wainwright
(2015); Krahmer and Liu (2016) for results in gener-
alized linear models, phase retrieval, and one-bit com-
pressed sensing with sub-Gaussian covariate. By sac-
rificing some flexibility of f as in Assumption 3.1, we
aim to present a more unified analysis for a rich class of
nonlinear signal recovery problems, including both the
sparse and low-rank cases, with milder assumptions on
the covariate.

In the following, we present an assumption on the co-
variates {X;}? ;, which are n independent observa-
tions of X in (1.1). Recall that X is a random vec-
tor in R¢ for the sparse model and a random matrix
in R™tX™2 for the low-rank case. The following as-
sumption states that the Restricted Isometry Prop-
erty (Candes and Tao, 2005; Candes, 2008) holds for
the covariates.

Assumption 3.2. For {X;}" ;, we assume that the
RIP condition holds with parameter 2s+s*, where s* is
the sparsity or rank of @* and there exists s > Cys* for
some sufficiently large constant Cy. For convenience
of derivation, we further assume that Cy > 8 in the
ensuing analysis.

More specifically, for sparse vector recovery where s* =
|©%]l0, we assume that for any V € R? with || V|| <

25+ s*, there exists a constant 0(2s + s*) € [0,1) such
that

l - 2 * 2

§ KV IVIE| <520+ IVIE 31

Moreover, for the low-rank case where s* = rank(©*),
we assume that for any V € R™**™2 with rank(V) <
2s + s*, we have

<0(2s+5) - [IVIE, (3:2)

:M—‘

Z va - ||V||%

where §(2s + s*) € [0,1) is a constant.

Note that the constant 6(2s + s*) in (3.1) and
(3.2) are not related; the one in (3.1) depends only
on (n,d,s*, s) whereas the one in (3.2) relies on

(n,m1,ma,s*,s). For ease of notation, we keep ¢ as a
function of only 2s + s*.

The RIP condition is one of the earliest sufficient con-
ditions for the success of compressed sensing, and
has significant impact on the development of high-
dimensional statistics. As shown in Vershynin (2010),
in the vector case, the RIP condition is satisfied with
high probability when X is a sub-Gaussian isotropic
vector and that for the low-rank case holds when
vec(X) is isotropic and sub-Gaussian. This includes
the most common case assumed in low-rank matrix re-
covery where X has i.i.d. Gaussian entries (Negahban
and Wainwright, 2011).

For estimating a high-dimensional sparse vector, the
RIP condition can be relaxed to the sparse eigenvalue
(SE) condition. Specifically, for any k-sparse V, it
only requires

1 n
p-(k)-IV]3 < EZ X VI < pi (k) - VI,

i=1

where p_(k) and py(k) are two positive constants.
Note that RIP requires py (k) < 2, thus is more strin-
gent. The sparse eigenvalue condition and a closely re-
lated notion, the restricted strong convexity condition,
have been studied extensively by Bickel et al. (2009);
Raskutti et al. (2010); Zhang (2010); Negahban et al.
(2012); Xiao and Zhang (2013); Bahmani et al. (2013);
Wang et al. (2014); Loh and Wainwright (2015).

Remark 3.3. Note that the SE condition is only used
for sparse vector recovery whereas the RSC condition
is also used for low-rank matrix recovery (Negahban
et al., 2012). It is not clear whether the counterpart
of the SE condition for the low-rank case can be used
for theoretical analysis. In two recent works, Carpen-
tier and Kim (2015); Rauhut et al. (2016) consider the
THT algorithm for low-rank matrix recovery with lin-
ear measurements. Both of their theories hinge on the
RIP condition; it is not clear whether such condition
could be relaxed. Moreover, we note that in terms of
sparse signal estimation, our theory also holds under
the SE condition. We adopt the RIP condition in order
to have a uniform treatment since the matrix model
usually requires more delicate conditions.

In the following, we present the main results of this pa-
per. For sparse vector recovery, an additional assump-
tion on the regularity of the entries of n=1 1" | X; X
is required for a more refined result.

Assumption 3.4. There exists an absolute constant
D that does not depend on n,d, or s* such that

1 & T
ﬁ;XiXi

<D.

max
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This assumption is true if the distribution of X is
regular. For example, if X is sub-Gaussian or sub-
exponential, standard concentration inequality implies
that

—0

max

% d XX -E(xXT)
i=1

as n goes to infinity. In this case Assumption 3.4 is
naturally satisfied.

We thus obtain the following theorem in the case of
sparse vector recovery.

Theorem 3.5. Under Assumptions 3.1, 3.2, and 3.4,
if the step size 1 in Algorithm 1 satisfies
3 11
T —o2s 15 S TR 4025 + 57)]
then for {®() ¢t > 1} obtained from Algorithm 1, it
holds with probability at least 1—d ! that for all ¢ > 1,

||@(t) — O, < pt - ||@(0> — ©*|| +C14/s*logd/n,

optimization error

statistical error

for the sparse vector recovery problem (2.1). u; €
(0,1) and Cy are absolute constants that do not de-
pend on n,d, or s*.

By Theorem 3.5, we see that the IHT algorithm con-
verges linearly and yields an estimator with sharp sta-
tistical rate. In each step, the estimation error of
O® is decomposed into two parts: the first part is
a geometric sequence that converges to zero rapidly
whereas the second part is the statistical error of or-
der \/s* logd/n. It is clear that after sufficient number

of iterations, Algorithm 1 will output an estimator e
such that ||© — ©®*|| = Op(4/s*logd/n). This rate
is of the same order as the minimax optimal rate of
noisy compressed sensing and high-dimensional linear
regression (Raskutti et al., 2011).

Furthermore, for low-rank matrix recovery, similar re-
sult on the convergence rate and statistical error is
stated as follows.

Theorem 3.6. Under Assumptions 3.1 and 3.2, if the
step size 1 in Algorithm 1 satisfies

1 11

2 TS e eses + s O
3 o1

a2 — 262525 + 57)] " " a2’

then for {G(t),t > 1} obtained from Algorithm 1, it
holds that for all t > 1,

@Y — e r

)

2

1 n
<pih |00 — @[5+ Cov/s - Hn > X
=1

optimization error

statistical error

for the low-rank matrix recovery problem (2.2). ps €
(0,1) and Cy are absolute constants that do not de-
pend on my,mo,n, or s*.

Remark 3.7. To obtain a more general result, we
drop the assumption on Gaussian covariate X as in
most matrix sensing literature (Negahban et al., 2009;
Recht et al., 2010). The order of statistical error,
ie., Vs*- Hn‘l Z?:l eiXiHZ, is dependent on the as-
sumption made on the covariate X. In particular, if
[IX;ill2 < R for some R > 0, then the statistical error
has the order of Op(y/m1 + ma - \/s* log(m1 + m2)/n)
with high probability (Tropp, 2012). As a special case,
the same rate is achieved if X; are assumed to be sam-
pled from i.i.d. sub-Gaussian distribution. In addi-
tion, if we further assume X; are sampled from the
3-ensemble for some positive definite ¥ as in Negah-
ban and Wainwright (2011), the rate can be improved
to Op(yv/m1 + ma-+/s*/n). In this case, the statistical
rate of convergence attained by Algorithm 1 has the
same order as the minimax optimal rate for linear low-
rank matrix recovery shown in Negahban et al. (2009).

The proofs of both Theorem 3.5 and Theorem 3.6 are
provided in the appendix.

4 Numerical Experiments

We assess the finite sample performance of the pro-
posed IHT algorithm for nonlinear structured signal
estimation on both real and simulated data.

4.1 Tests on Simulated Data

We first test the algorithm on simulated data for both
sparse vector recovery and low-rank matrix recovery.

Data generation: We generate simulated data in-
dependently from model (1.1) with ¢ ~ N(0,1). For
sparse vector recovery, we generate X; that follows
N(0,%) where ¥ € R4*? is a Toeplitz matrix with
Yik = 0.95=F for any 1 < j # k < d. The first
s* entries of ®* are independently sampled from the
uniform distribution on interval [0, 1] whereas the re-
maining entries are set zero, i.e., ©F ~ U(0,1) for
1 <j<s"and ©f =0 for j > s*. For low-rank
matrix recovery, the covariate X, are sampled from
3-ensemble. Specifically, the entries of vec(X;) follow
N(0,%') with X' a Toeplitz matrix and X, = 0.5/~
forany 1 < j # k < my x ma. We set @ = UAVT,
where U and V are orthonormalized after the entries
are i.i.d. drawn from N(0,1), and A is a diagonal
matrix whose first s* diagonal values are 1 and the
remains are zero. The nonlinear function in model
(1.1) is selected to be f(x) = 2z + cos(z) such that
the derivative f’ is bounded by a = 1 and b = 4. We
sample n = 30 i.i.d. observations for both tests.
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Figure 1: Relative statistical error H@ — ©*|2/|©*||> for sparse vector recovery plotted against the value of

s*logd/n. In (a), d = 256 is fixed and the results with various values of s* are compared. In (b), s* = 10 is
fixed and the results with various values of d are compared. In (c), the result of applying the IHT algorithm on
the nonlinear measurements is compared with that of applying Lasso on the inverted linear measurements.
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Figure 2: Relative statistical error |@ — ©*[|r/|@*| ¢ for low-rank matrix recovery plotted against the value
of /mi +msy - /s*/n. In (a), m; = mg = 25 are fixed and the results with various values of s* are compared.
In (b), s* = 10 is fixed and the results with various values of m; and mq are compared. In (c), the result of
applying the THT algorithm on the nonlinear measurements is compared with that of applying NNLS on the
inverted linear measurements.

Sparse vector recovery: We compare the estima- (See Remark 3.7). Here we select s = s* and n =
tion error with 4/s*logd/n under two different set- 0.1. We plot the estimation error versus /mj + ms -
tings: (i) we fix d = 256, s* = 6,8, or 10, and vary  +/s*/n under two settings: (i) we fix m; = 25,my =
n, and (i) fix s* = 10, d = 128,256, or 512, and 25, s* = 1,3, or 5, and vary n, and (ii) fix s* = 3, m; =
vary n. Here © is the estimator produced by Algo-  ma = 15,25, or 35, and vary n. In Figure 2, we show
rithm 1. Given the data, we apply the IHT algorithm  that ||© — ©* ||z grows (sub)linearly with \/m; + ms -
with s = s* and 7 = 0.2. With random initialization, \/$*/m, which corroborates Theorem 3.6.

we run 7" = 1000 iterations to obtain 8 and simu-
late the estimation procedure 39 tin.les to evaluate the . Ty e oo function # is known, it is tempt-
average error. As illustrated in Figure ,1’ the aver- ing to apply linear signal estimation techniques to
age estimation error ||© — ©*||2 grows linearly with the inverted data {Z;, X:}", where Z; = f~1(Y;)
v/s*logd/n. This verifies our argument in Theorem However. since the z;nelaﬁ:lof 7 - ‘ YY) e
3.5 that [[©—©*||2 < C1/5*logd/n for some absolute FHf({X, ©%))+€] is generally different from (X, ©*)
constant Cf. conditioned on X, linear estimators may generate

Low-rank matrix recovery: Since the covariate X; large estimation errors in noisy cases. We compare
are sampled from X'-ensemble, the statistical error is ~ OUr IHT algorithm with two linear estimators in the

proved to be ||(:) — @*|F = Op(y/my1 +myg - \/s*/n) experiment.

Comparison with linear estimators: Note that
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(a) The original image.

(b) The compressed image.

(c) The reconstructed image.

Figure 3: We apply the IHT algorithm to a sparse signal recovery problem based on a photo of the Nassau Hall
at Princeton University. We show the original image in (a). The compressed image with s* = 80 is shown in
(b). In (c), we plot the reconstructed image using the THT algorithm.

To this end, we first consider the setting where d = 256
and s* = 8 for sparse vector recovery. Lasso is applied
to the inverted data {Z;, X;}"_; and the estimation er-
ror is reported in Figure 1 (c¢). It is shown that the pro-
posed method indeed outperforms the linear method
in terms of estimation errors. For low-rank matrix
recovery, we apply the accelerated proximal gradient
algorithm for nuclear norm regularized least squares
(NNLS) (Toh and Yun, 2010) on the inverted data,
where the setting m; = mo = 25 and s* = 5 is consid-
ered. When the sample number n becomes relatively
small, the NNLS algorithm explodes in estimation er-
ror while the proposed IHT algorithm maintains linear
statistical error rate.

4.2 A Real-Data Example

We apply our algorithm for the sparse case to an im-
age reconstruction example. The sparse signal is con-
structed from an image as follows. Let Z € R"*" be
the image with height h € N and width w € N, where
for simplicity we assume h < w. Let Z = Zje[h] oj -
ujv;'— be the singular value decomposition of Z, where
01,09,...,0p are the singular values of Z in the de-
scending order, {u;},en € R" and {v,};epn € RY
are the left and right singular vectors, respectively.
For a fixed integer s*, let T = 3, (.j0; - u;v] be
the best rank-s* approximation of Z. Finally, we let
b = (01,...,05,0,...,0)7 € R" be the vector con-
sisting of the top s* singular values, and let the signal
parameter be 3* = b/||bll2. We fix {u;,v;} ;e and
a = ||b||2. Given an estimator B of B*, we reconstruct
an image by 7= de[h] - BJ oj - quJ , which is an

estimator of Z.

In the experiment, we let Z be a photo of the Nas-
sau Hall at Princeton University (see Figure 3(a))
with h = 1080 and w = 1440. The signal parame-
ter B* € R" is constructed with s* = 80. To obtain

the data, we sample n = [5s* log h] i.i.d. observations
of the nonlinear regression model Y = f({X,8*) +¢,
where the link function is f(u) = 2u+-cos u, the covari-
ateis X ~ N(0,I), and the noise is € ~ A (0,1). Given
the data, we apply the IHT algorithm with s = 100
and n = 0.005. With random initialization, we run
T = 1000 iterations to obtain ,3 We observe that the
fo-error of the iterates decays rapidly and converges
to about 0.06, which indicates that we achieve a rel-
ative error of 6%. Moreover, the performance is not
sensitive to the choice of s, 1, and the initialization.
The reconstructed image I is shown in Figure 3(c).
Comparing 7 with the compressed image 7 in Figure
3(b), we perceive very little visual difference, which
demonstrates the success of our method.

5 Conclusions

In this paper, we consider a nonlinear structured sig-
nal estimation problem in high dimensions and pro-
pose an estimator that minimizes the nonlinear least
squares loss function with combinatorial constraint.
The iterative hard thresholding algorithm is leveraged
to achieve an estimator for both the sparse and the
low-rank models. Under mild assumptions similar to
those required in the linear case, the IHT algorithm
is guaranteed to converge linearly to a point which
enjoys optimal statistical accuracy despite the model
nonlinearity.

An interesting direction of future work is to extend
the class of nonlinear functions in (1.1). Currently
we assume f is monotonically increasing with deriva-
tive bounded from below and above. It would be in-
teresting to incorporate functions such as f(u) = u?
and f(u) = sign(u), thus making our analysis applica-
ble to problems including phase retrieval and one-bit
compressed sensing, where existing works require the
covariate to be Gaussian distributed.
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