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S.1 Notation

Variable Description
vi number of voxels for subject i
n number of datasets
d index for dataset, d ∈ {1, . . . , n}

Md set of subjects in dataset d
m number of subjects across all datasets
md number of subjects in dataset d
i index for subject, i ∈ {1, . . . ,m}
td number of TRs in dataset d
t index for TR
k dimensionality of the feature space
q index for feature, q ∈ {1, . . . , k}

xdit t-th observation from subject i in dataset d, taking values in Rvi
Xdi observations from subject i in dataset d, Xdi ∈ Rvi×td

xdt
xTdt = [xd1t

T . . . xdit
T ], xdt ∈ R

∑
i vi

concatenated observation of t-th observations from all subjects in dataset d

X(d)
XT

(d) = [Xd1
T . . . Xdi

T ], X(d) ∈ R
∑

i vi×td

concatenated observations from all subjects in dataset d
sdt estimated shared response of t-th observations in dataset d, sdt ∈ Rk

Sd estimated shared response in dataset d, Sd ∈ Rk×td
µdi mean observation from subject i in dataset d, µdi ∈ Rvi

µd
µTd = [µTd1 . . . µ

T
dmd

], µd ∈ R
∑

i vi

concatenated mean observation from all subjects in dataset d
Wi subject specific mapping for subject i, Wi ∈ Rvi×k

W(d)
WT

(d) = [WT
1 . . .WT

md
], W(d) ∈ R

∑
i vi×k

concatenated subject specific mappings for all subjects in dataset d
Σsd covariance for shared response sdt, Σsd ∈ Rk×k

ρ2diIvi isotropic covariance for conditional distribution of xit

Ψd
Ψd = diag(ρ21Iv1 , . . . , ρ

2
md
Ivmd

), Ψd ∈ R
∑

i vi×
∑

i vi

joint covariance for condition distribution of xdt in dataset d
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S.2 Other single-dataset multi-subject models

We briefly introduce some other single-dataset multi-subject models. Independent Vector Analysis
(IVA) [1, 2] is a deterministic algorithm that does not assume time synchronized stimulus and learns
spatial independent components. Hyperalignment (HA) [3–5] is a deterministic model that uses
temporally synchronized data to learn subject specific mappings that are generalizable to other
stimulus. Topographic Factor Analysis (TFA) and Hierarchical Topographic Factor Analysis (HTFA)
[6, 7] are two probabilistic factor models using a topographic basis composed of spherical Gaussians
with different centers and widths. This choice of basis is constraining but since each factor is an
“blob” in the brain it has the advantage of providing a simple spatial interpretation. HTFA has a
further assumption that topographic bases across subjects are different perturbation from the same
group template.

S.3 Deterministic MDMS

We can model the data as Xdi = WiSd +Edi and minimize the cost function
∑n
d=1

∑
i∈md

‖Xdi −
WiSd‖2F . Furthermore, to ensure the uniqueness of coordinates it is necessary that Wdi has linearly
independent columns. We make the stronger assumption that each Wdi has orthonormal columns,
WT
i Wi= Ik. Therefore, we formulate the model as

minWi,Sd

∑n
d=1

∑
i∈md

‖Xdi −WiSd‖2F
s.t. WT

i Wi = Ik,
(1)

The parameters for this model can be estimated with an alternating optimization scheme. Each
Wi is first initialized as a random orthonormal matrix. Then we repeat the following steps until
a stopping criterion in satisfied. Firstly, with respect to each Sd, optimize (1) by setting Sd =
1/md

∑
i∈md

WT
i Xdi, where md is the number of subjects in dataset d. Secondly, with respect to

each Wi, optimize (1) with solution Wi = UV T , where UΣV T is an SVD of
∑
d:i∈md

XdiS
T
d .

Next, we show how probabilistic MDMS matches deterministic MDMS by explicitly writing out
its maximum likelihood estimation (MLE). First we notice the fact that xdit is the t’th column
of Xdi and sdt is the t’th column of Sd. The negative log-likelihood of probabilistic MDMS is

L =
∑
d

∑
i∈md

∑
t
vi
2 log 2π + vi

2 log ρ2di +
ρ−2
di

2 (xdit −Wisdt − µdt)T (xditdt −Wisdt). Without
loss of generality, assume the observations have zero-mean, so the µdt terms can be dropped. We
also assume identical noise across subjects and datasets, ρdi = ρ∀d, i. The MLE can be computed by
minimizing L with respect to Wi and Sd:

min
∑
d

∑
i∈md

∑td
t=1(xdit −Wisdt)

T (xdit −Wisdt) (2)

By expanding and combining terms, (2) becomes:

min
∑

d

∑
i∈md

‖Xdi −WiSd‖2F ,

which is identical to the objective of deterministic MDMS .

S.4 Derivation of constrained EM algorithm for MDMS

Let us define θ as the vector of all parameters, and θold as the initial value or estimated θ from the
previous M-step. In the E-step, given θold, we calculate the sufficient statistics by taking expectation
with respect to p(sdt|xdit, θold):

Esd|xd
[sdt] = (W(d)Σsd)T (W(d)ΣsdW

T
(d) + Ψd)

−1(xdt − µd),

Esd|xd
[sdts

T
dt] = Varsd|xd

[sdt] + Esd|xd
[sdt]Esd|xd

[sdt]
T

= Σsd − ΣTsdW
T
(d)(W(d)ΣsdW

T
(d) + Ψd)

−1W(d)Σsd + Esd|xd
[sdt]Esd|xd

[sdt]
T .

(3)
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In the M-step, we first calculate Q(θ|θold):

Q(θ|θold) =
∑
d

td∑
t=1

∫
p(sdt|xdt; θold) log p(xdt, sdt; θ)dsdt

=
∑
d

td∑
t=1

∫
p(sdt|xdt; θold)(log p(xdt|sdt; θ) + log p(sdt; θ))dsdt

=
∑
d

td∑
t=1

Esd|xd
[log((2π)

∑
i∈Md

vi

2 |Σxd
|− 1

2 exp{−1

2
(xdt −W(d)sdt − µd)TΣ−1xd

(xdt −W(d)sdt − µd)}) + log((2π)
k
2 |Σsd |−

1
2 exp{−1

2
sTdtΣ

−1
sd
sdt})]

=
∑
d

(−
td
∑
i∈Md

vi

2
log(2π)− td

2
|Σxd
| − 1

2

td∑
t=1

Esd|xd
[(xdt −W(d)sdt − µd)TΣ−1xd

(xdt −W(d)sdt − µd)]−
tdk

2
log(2π)− td

2
|Σsd | −

1

2

∑
i∈Md

Esd|xd
[sTdtΣ

−1
sd
sdt]).

Parameters θnew are estimated by maximizing Q with respect to Wi, µdi, ρ2di, and Σsd separately. The
orthogonality constraint of Wi is brought in by adding tr(Λi(WT

i Wi − I)) to the objective function,
where Λi is a symmetric matrix.

The update equations we get by setting the derivation

µnew
di = 1

td

∑td
t=1 xdit,

W new
i = Ai(A

T
i Ai)

−1/2, Ai = 1
2

(∑
d:i∈Md

∑td
t=1(xdit − µnew

di )Esd|xd
[sdt]

T
)
, (4)

ρ2di
new

= 1
tdvi

∑td
t=1

(
‖xdit − µnew

di ‖2 − 2(xdit − µnew
di )TW new

i Esd|xd
[sdt] + tr(Esd|xd

[sdts
T
dt])
)
,

Σnew
sd

= 1
td

∑td
t=1(Esd|xd

[sdts
T
dt]).

S.5 Tricks used to speed up MDMS

The computational bottleneck of solving MDMS with a constrained EM algorithm is the inversion of
(W(d)ΣsdW

T
(d) + Ψd)

−1, which is a size Vd by Vd matrix for dataset d, where Vd =
∑
i∈Md

vi. We
adopt the method described in [8] to avoid computing this inversion directly by applying the matrix
inversion lemma and use the facts that WT

i Wi = Ik and Ψd is a diagonal matrix.
In details,

Σsd − ΣTsdW
T
(d)(W(d)ΣsdW

T
(d) + Ψd)

−1W(d)Σsd = (Σ−1sd +WT
(d)Ψ

−1
d W(d))

−1

= (Σ−1sd +
∑
i∈Md

WT
i (ρ−2di I)Wi)

−1

= (Σ−1sd + ρdI)−1
(5)

, where ρd =
∑
i∈Md

ρ−2di , and

(W(d)Σsd)T (W(d)ΣsdW
T
(d) + Ψd)

−1 = ΣTsd [I − ρd(Σ−1sd + ρdI)−1]WT
(d)Ψ

−1
d (6)

In (5) and (6), only inversions of k by k matrices are involved. The computational complexity is
reduced from O(V 2

d ) to O(k2).

S.6 Connections of MDMS with other methods

We restate the mathematical formulation for MDMS and deterministic version of MDMS for ease of
comparison with related methods. MDMS model:

sdt ∼ N (0,Σsd),

xdit|sdt ∼ N (Wisdt + µdi, ρ
2
diI), (7)

WT
i Wi = Ik,
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The deterministic version of MDMS model:

minWi,Sd

∑n
d=1

∑
i∈Md

‖Xdi −WiSd‖2F
s.t. WT

i Wi = Ik,
(8)

S.6.1 MDMS and Group-ICA (GICA)

GICA [9] is a deterministic algorithm tries to learn independent spatial maps for single-dataset multi-
subject analysis. We compare MDMS with a variant of GICA [10] that uses temporally synchronized
stimulus since it has a closer connection with the problem we are addressing. We will abbreviate this
variant as GICA in our following discussion. The basic goal of GICA is to decompose Xi = WiS
for all subjects i in a single dataset, where Xi is data of subject i, such that S contains temporal
components that are statistically independent. There are 4 steps in GICA: Firstly, perform a PCA
along the spatial dimension for each subject i: Xi = FiPi. Secondly, concatenate the reduced data
and perform a PCA along spatial dimension: P = [PT1 · · ·PTm]T , where m is number of subjects in
this dataset, and then P = GY . Thirdly, perform an ICA along spatial dimension: Y = AS. Lastly,
partition G matrix to subject-specific Gi: [GT1 · · ·GTm]T = G. The basis of subject i is computed as
Wi = FiGiA.

In a single dataset case, MDMS and GICA both try to approximate Xi with WiS using different
objectives and constraints. MDMS tries to minimize Frobenius norm of l2 loss with the constraint of
orthonormal subject basis while GICA tries to find statistically independent components.

S.6.2 MDMS and Dictionary learning (DL)

DL [11] tries to learn subject-specific basis Wi and loadings Ui while regularizing Wi to be similar to
a group template W . As DL does not require temporally synchronized stimulus, we can concatenate
data from different datasets of the same subject together and use the formulation of DL directly in
a multi-dataset setting. Here we compare MDMS with DL applied on multiple datasets (MDDL).
MDMS and MDDL are closely related. The formulation of MDDL is as follows: Denote Xi a
concatenation of subject i’s data from different datasets along temporal dimension. More specifically,
Xi = [Xd1i · · ·Xdpi], where {d1 · · · dp} = set{d : i ∈Md}. Plug it into the formulation of DL

minUi,Wi,W

∑
i∈m

1
2 (‖XT

i − UiWT
i ‖2F + µ‖Wi −W‖2F ) + µαΩ(W ) (9)

Note that it is a transpose of the data matrix used in [11]. Ω is a regularization on the group template
W . We used Total-Variation (TV) as Ω as in [11].
We now rewrite this formulation by transposing the first term and combining the second and third
terms as a general regularization term. Then (9) becomes

minUi,Wi,W

∑
i∈m

1
2‖Xi −WiU

T
i ‖2F + βΩ(Wi,W ) (10)

, where Ω stands for a general regularization term on Wi and W .
Expand Xi in the first term, we can further rewrite (10) as

minUi,Wi,W

∑n
d=1

∑
i∈md

‖Xdi −WiU
T
di‖2F + βΩ(Wi,W ) (11)

In this case, each data point Xdi has its own loadings Udi.
Note that the constraint WT

i Wi = Ik in (8) can also be written as a general regularization term with
a Lagrange multiplier, and (8) would become

minWi,Sd

∑n
d=1

∑
i∈md

‖Xdi −WiSd‖2F + βΩ(Wi) (12)

If we enforce loadings in (11) to be the same within each dataset, and denote the transpose of dataset
specific loadings as Sd, then (11) and (12) have the same objective with different regularizations. In
our experiments, we use the formulation of (11) in training, and whenever we need the k-dimensional
feature of dataset d, we set Sd = 1/|md|

∑
i∈Md

UTdi.

The main difference between MDMS and MDDL is that MDMS utilizes temporally synchrony during
optimization, so it would be more useful when temporally synchronized data is available. MDDL
does not assume temporally synchronized data, but assumes spatial patterns of subject basis, so it
would be more useful when finding spatial maps in resting-state data.
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S.6.3 MDMS and SRM

We show that MDMS degenerates to SRM [12] when number of datasets n = 1. Set n = 1, and ask
data of all subjects to be available, then (7) becomes

st ∼ N (0,Σs),

xit|st ∼ N (Wist + µi, ρ
2
i I), (13)

WT
i Wi = Ik,

, where xit ∈ Rvi are the observations from subject i in this single dataset at time t, st is the latent
variable of this dataset. The SRM has the identical formulation as (13) in this degenerated case.
SRM cannot be applied to multiple datasets directly because SRM requires data from all subjects
have the same stimulus, which is not the case in a multiple dataset analysis in general.

S.7 Subject list of each dataset

There are 5 datasets and 85 subjects in total. We number the subjects from 1 to 85, and list here
indices of subjects in each dataset.
greeneyes: [1-40]
milky: [1,8,13,17,18,19,22,27,28,29,31,33,35,37,40,41,42,43]
vodka: [4,5,6,7,9,11,12,15,21,23,24,25,26,32,34,36,38,39]
sherlock (and sherlock-recall): [8,20,31,35,44-55]
schema: [38,56-85]

S.8 More experiment results

S.8.1 Do secondary datasets help learning?

Here we show time segment matching results on PT and EAC in Fig. 1. We see MDMS has a robust
performance across ROIs we tested, while MDDL is not as robust as MDMS . It suggests MDMS
enables leveraging secondary datasets robustly.

±1 std.	err.

±1 std.	err.

Figure 1: Results of time segment matching on PT and EAC. Chance accuracy: greeneyes: 0.005;
sherlock: 0.001; vodka: 0.008; milky: 0.008. k values selected based on cross-validation.
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S.8.2 leveraging secondary datasets for semantic embedding

We show the classification accuracy of fMRI data to text semantic embedding mapping experiment
on EAC and DMN in Fig. 2. We see MDMS and MDDL are the two methods that have the highest
accuracy in this experiment among methods we tested here.

±1 std.	err. ±1 std.	err.

Figure 2: fMRI data to text embedding mapping classification accuracy. Results on EAC and DMN.
Chance accuracy: greeneyes:0.14; sherlock: 0.04. k selected based on cross-validation.

S.8.3 Transfer learning to unseen datasets

We show the results from experiment 3 on PT and EAC in Fig. 3. It suggests we can use small
secondary datasets as anchors to transfer information from big secondary datasets to the primary
dataset.

±1 std.	err. ±1 std.	err.

Figure 3: Time segment matching accuracy on prm. dataset using subject basis learned from 1 or 2
sec. datasets. Results on PT and EAC. Chance accuracy: greeneyes: 0.0025; milky: 0.004; sherlock:
0.0005. k value same as experiment 1.

S.8.4 Effect of adding independent subjects in secondary datasets

We evaluate the effect of different number of independent subjects in the secondary dataset. We
start with only one shared subject in the secondary dataset, and then add in independent subjects
one by one. No clear pattern on accuracies can be observed. Result from a pair of primary and
secondary dataset is shown in Fig. 4 as an example. This suggests that independent subjects in a
single secondary dataset do not necessarily help the primary dataset directly. We would then like to
explore if independent subjects can help the primary dataset indirectly, and notice that dataset schema
only has one shared subject with other datasets, and has no direct shared subject with dataset milky
and sherlock, but has many independent subjects. We redo time segment matching in experiment
1 without dataset schema and see how the accuracies change. Results on all tested ROIs shown in
Fig. 4. We notice that small primary datasets, including milky, still get improvement after adding
schema as a secondary dataset. These results imply a possibility that independent subjects are used as
anchors between secondary datasets so that information from all connected secondary datasets can
propagate to the primary dataset.
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±1 std.	err.
±1 std.	err.

±1 std.	err. ±1 std.	err.

Figure 4: Top(left): Time segment matching accuracy on the prm. dataset when the sec. dataset
has 1 shared subject and different number of independent subjects. Top(right) and Bottom: Time
segment matching accuracy before and after adding the schema dataset on DMN, PT and EAC.
Chance accuracy and k values same as experiment 1.
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