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Abstract

We explore transferring learning between
fMRI datasets. A method is introduced to im-
prove prediction accuracy on a primary fMRI
dataset by jointly learning a model using other
secondary fMRI datasets. We assume the
secondary datasets are directly or indirectly
linked to the primary dataset through sets
of partially shared subjects. This method is
particularly useful when the primary dataset
is small. Using six fMRI datasets linked by
various subsets of shared subjects, we show
that the method yields improved performance
in various predictive tasks. Our tests are per-
formed on a variety of regions of interest in
the brain and across various stimuli.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a
noninvasive neuroimaging technique that measures
brain activity through the proxy of blood-oxygen-level-
dependent (BOLD) contrast imaging [1]. One typically
collects an fMRI dataset for a group of subjects us-
ing a fixed experimental design. The design could be
block based, a naturalistic stimulus, or a combination
of forms. The resulting multi-subject dataset is then
analyzed to address a particular hypothesis about brain
function, or used in an exploratory way to develop new
hypotheses. Various data analysis methods exist for
achieving these objectives. Here we investigate a dis-
tinct approach that seeks to exploit other secondary
datasets (collected for different purposes, at different
times, by other researchers, etc.) to improve the analy-
sis of the primary dataset. There has been prior work
related to this idea using canonical correlation analy-
sis [2,/3]. We take a fresh look at this problem from a
transfer learning perspective [4]. By training a model
jointly on the primary and secondary datasets, we are
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Figure 1: A simple dataset graph. Nodes represent datasets,
edges indicate the presence of shared subjects, and the edge

labels indicate the set of indices of the shared subjects. My
is the set of subject indices in dataset d.

transferring information from the secondary datasets
to the primary dataset. Alternatively, by training on
secondary datasets alone, we can then generalize to the
primary dataset. Prior work [5H9] on transfer learn-
ing in fMRI, MRI, and EEG has used techniques such
as domain adaptation and common-pattern identifica-
tion. Here we employ a distinctive technique to exploit
secondary datasets.

The key challenge in directly analyzing the primary
dataset is accounting for structural and functional vari-
ation across subjects. Of the many approaches to
this issue, functional methods [3,/10+24] have proven
most successful. By modeling the functional variability
across subjects, these methods yield better accuracy on
predictive tasks, e.g., [20,[25,[26], but work best when
there are many subjects and/or many time samples
(TRs) per subject. This creates the opportunity for
secondary datasets to assist the analysis of a small
primary dataset. One can visualize the primary and
secondary datasets as a labeled graph (Fig. with
datasets as nodes and an edge between nodes p and
q labeled with the set of indices of the corresponding
shared subjects. Not all edges need to be present, and
the labels can be distinct and of different sizes. Under
reasonable assumptions, the greater connectivity of the
dataset graph, and the larger the sets of shared subjects
on its edges, the more improvement we expect to see
in the analysis of the primary dataset. An alternative
way to think about the problem is to artificially assume
that all subjects are included in all datasets, but that
some of the data is missing (e.g., the data for a subject
that didn’t participate in an experiment is missing).
We can then view the problem of leveraging secondary
datasets as an instance of the more general problem of
handling missing data. The methods we discuss cover
both situations, but to simplify the presentation, we
focus on the first.
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The existence of datasets with shared subjects is impor-
tant for this research. Some datasets of this form are
currently publicly available (see Fig. , and it is likely
that many more will be available in the future. The
existence of shared subjects across fMRI datasets is al-
ready common in university research laboratories where
each principal investigator (PI) draws subjects from
the same slowly varying pool of participants. Thus,
it is common for some subjects in each experiment to
also participate in several other experiments. Besides,
longitudinal fMRI studies (e.g. [27},/28]) can also pro-
vide multi-datasets with shared subjects. The National
Institute of Mental Health (NIMH) now requires, that
PIs "Obtain Informed Consent that allows for broad
sharing of the research subject’s de-identified data"
and that the PIs "Collect Personally Identifiable Infor-
mation" from subjects that permits the creation of a
de-identified subject ID [29}|30]. Shared subjects be-
tween datasets can then be located in the NIMH data
archive using the subject ID. This adds tremendous
potential value to the fMRI research community and
will increase the number of publicly available datasets
containing ID-identified shared subjects.

Our contribution is to show that utilizing a model with
fixed subject-specific basis, and a common stimulus
within each dataset, can account for the differences
between subjects and datasets, and successfully transfer
information between datasets.

2 PROBLEM SETUP

Let m subjects, indexed by ¢ = 1:m, participate in
n different experiments, indexed by d = 1:n. Experi-
ment d is conducted over a subset My of the subjects
with |Mg4| = mg. We make two assumptions. First,
that in experiment d all subjects are recorded for the
same number of time samples (TRs). Each time sample
(TR) is one 3D brain scan. This is not a strong as-
sumption. Second, that across all experiments in which
subject ¢ participates, data is available for the same
set of (anatomically aligned) voxels of our choice. This,
slightly stronger, assumption requires that a common
subset of brain regions are imaged across the datasets.
Under these assumptions, the fMRI data from subject
i € Mg can be represented as a matrix Xg; € RV ¥t
where v; is the number of voxels for subject ¢ and ¢4 is
the number of TRs for experiment d. Each column of
X 4; contains the vectorized brain scan from a specific
time sample. Dataset d, denoted by {Xg; }ienm,, is the
fMRI data from subjects in experiment d.

We focus on factor models that acknowledge functional
variability across subjects. So we want to represent
the j-th column of Xg; in the factored form W;sg;
where the columns of W; form a subject-specific basis
of dimension k. Each column of Xg4; is a “brain map”
indicating the level of activations across the voxels. So

W; is a subject-specific basis of brain maps. With this
in mind, we select three factor models for consider-
ation: Group-ICA (GICA) [20], Dictionary Learning
(DL) |13], and Hyperalignment (HA)/Shared Response
Model (SRM) [12,[16]. These methods differ in how
the data dimensions (space, time, subjects) are treated,
how regularization is imposed to estimate the factors,
and what assumptions are made on the dataset. We
will use these methods applied to a single primary
dataset as comparison benchmarks for any method
making use of secondary datasets. We will also explore
how secondary datasets can be incorporated into these
methods. Below we briefly review each method. Addi-
tional single-dataset multi-subject models are discussed
in the supplementary material.

GICA is a deterministic algorithm that applies two
PCAs and one ICA along the temporal dimension. It
finds an independent basis arranged as the columns of
a matrix W for all subjects in a dataset [19]. Since
GICA estimates only one brain basis W, it does not
directly estimate subject-specific functional variability.
However, applying GICA in the spatial dimension (see,
e.g., |31]) allows estimation of a brain basis W; for each
subject i. We use GICA in this way.

DL learns subject-specific bases W; and loadings U;
while requiring all W; to be similar to a group template
W. The objective is to minimize

32 51X = UWIE + ul Wi = WIE) + poQ(W),

where 2 is a spatial regularizing function and u, «
are parameters. DL has shown good performance in
finding brain maps using resting-state data [13].

HA/SRM methods learn a shared response S for the
dataset and a subject-specific brain basis W; by mini-
mizing >, || X; — W;S||% under the constraint W W;=
1. HA is a deterministic algorithm in which the number
of factors is the number of voxels. SRM is a probabilis-
tic latent variable model with a user selectable number
of factors. To be consistent with GICA and DL, we
only consider SRM.

Note that GICA, DL, and SRM account for subject
variability by finding subject-specific bases W;. GICA
(applied in the spatial dimension) and SRM both as-
sume an identical stimulus for each subject in an ex-
periment and identify a time domain shared loading
matrix S for each experiment. DL does not require this
assumption, and the shared component is identified
through the spatial group template W.

We make two modeling assumptions to help transfer
information from the secondary datasets. First, we
assume that the subject-specific spatial bases W; are
invariant across datasets. This seems to be a reasonable
assumption when the stimuli in the various experiments
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Figure 2: Graphical model for MDMS. Brain activation
pattern xq;: € R¥ (v; voxels) is observed from subject 4 at
time t, t = 1:tq, 1 = 1:m, d = 1:n. Each observation z4;¢
is a linear combination of subject-specific orthogonal basis
(columns of W;) using the weights specified by sq:. Shaded
nodes: observations, unshaded nodes: latent variables, and
black squares: parameters and hyperparameters.

have similar characteristics and the subjects remain in
a healthy state. Note that the bases can be whole-brain
or for voxels within a region of interest (ROI). Second,
to exploit multiple subjects within a dataset, we need
some form of connection across subjects. This can be
achieved through a group spatial basis shared across
subjects, as in DL, or through an identical stimulus,
as in GICA and SRM. We take the latter approach
assuming an identical stimulus within a dataset. This
will be modeled by a common set of temporal features
representing the stimulus.

Henceforth, we assume each subject within a dataset
receives the same stimulus. Both DL and SRM find
subject-specific spatial bases W;. We assume these are
invariant across datasets. The SRM method also learns
temporal loadings S that are specific to the experiment.
The DL method does not require an identical stimulus
for each subject in an experiment, so its temporal load-
ings can be subject-specific. It hence has no explicit
dataset-specific shared component in the time domain.
To address this, we tried modifying the model to enforce
shared loadings across subjects within a dataset during
training. However, this did not perform well in testing.
Alternatively, we can average the subject-specific load-
ings U; across subjects in each dataset and treat the
averaged loadings as the shared temporal component
within the dataset. With this modification, DL can
also be used to leverage secondary datasets. Applying
GICA in the spatial domain estimates subject-specific
bases W,;. But W, is dataset-specific and is not invari-
ant across datasets. So GICA needs more extensive
reformulation to meet our multi-dataset assumptions.

3 SECONDARY DATASETS

We now use DL and SRM to transfer information
from the secondary datasets to the primary dataset.
Since DL does not require an identical stimulus across
subjects, we concatenate each subject’s data from all
datasets and treat this combination as a single dataset.
Then apply DL to the aggregated dataset. The dataset-
specific time domain loadings can be computed after

training as discussed above. We do not change the DL
model. We simply explore how well the DL method
can leverage the secondary datasets. However, to bet-
ter differentiate DL applied on multiple datasets, we
label it multi-dataset DL (MDDL). Since DL does not
require an identical stimulus, it is potentially at a slight
disadvantage in our experimental paradigm. This needs
to be kept in mind when interpreting test results.

The SRM method models the stimulus of a dataset us-
ing a Gaussian latent variable and models the subject-
specific basis as a hyperparameter. To extend SRM
into a multi-dataset setting, we need to modify the
model while respecting the two modeling assumptions.
We extend the single Gaussian latent variable in SRM
into a set of Gaussian latent variables modeling all
n stimuli. The latent variable for dataset d can be
represented as sg; ~ N(0,Y,,) taking values in R¥. In
accordance with modeling assumptions, we keep W;
fixed while introducing multiple datasets. The obser-
vation in dataset d for subject i at time t is denoted
by x4it € RV, x4; is modeled by a multivariate Gaus-
sian distribution x4t ~ N(W;sa + ftai, p5; 1), where
W; € RY** is the basis for subject i, i € My, pai
and p2, are dataset-subject-specific mean and noise,
respectively. Note that the subject-specific basis W; is
used across the datasets.

Combining the dataset-specific latent variables s4;, the
subject-specific hyperparameter W;, and the observa-
tions x4 yields the joint model (see Fig. [2)),
Sdt ™~ ./\/'(07 Esd),
Zait|sar ~ N(Wisar + pai pgi ), st W Wi = I

When processing dataset d, we mask out subjects that
are not in the dataset. Let dataset d contain subjects
Mg ={1...mg}. We use following notation to indicate
subject masking:

T T T

W(d) - [Wl .o Wmd]
zh = [rare” - Tamaty ")
Uy = dlag(fﬁl], s apglmd‘[)
T T T
trg = [Kar - - - dm,]-

Recall that x4;; € RY is the observation in dataset d
from subject i at time t.

We then derive a constrained EM algorithm to estimate
the posterior distributions of the latent variables and
the hyperparameters (details in Sup. Mat.). The EM
coordinate descent update equations are:

Eq,lzgl8at] = WiayZsa) T (WiayZs, Wy + ¥a) ™

(Tas — pa), (1)
Esd\wd [Sdtsgt] = Esd — ZZ;W(E)(W(d)Ede(E) + \I’d)il
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W(d)zsd + Esd\zd [Sdt}Eded [Sdt]Tu
1 ta
tdi = ta thl Tdit)
Wincw — AZ(AlTAZ)fl/Z’
1 ¢ o
Ai = §(Zd:i€Md thzl(xdit - Mdfw)]ESd\fﬂd [Sdt]T)7
Piinew = tdlui ZEL (”%lit - Mf}fwﬂg — 2(xait — llfilfw)T

Winew]Esd\zd [Sdt} + tr(ESd|fﬂd [Sdt‘sgt}))V

new 1 t
Esd = 5 thzl(ESdlwd [Sdtsgt])'

We adopt techniques from to speed up inversion
of the matrix in (details in Sup. Mat.). For ease
of reference, we call this multi-dataset multi-subject
(MDMS) SRM analysis (for brevity just MDMS).

Next, we investigate how to introduce new data into
MDDL and MDMS. New data and new subjects can
be introduced to MDDL in the same way as DL [13].
So we will not discuss this in detail. Let us focus
instead on MDMS. To simplify the discussion, we use
the deterministic version:

I/%/I},lgd 23:1 ZieMd ||Xdz - WiSdH%'v

(see the Supp. Mat.). First, consider introducing
a new subject i into dataset d, with the data Xg;
gathered under the stimulus of dataset d. We as-
sume dataset d has already been modeled by MDMS.
The basis for subject i can be estimated by solving
minyy, ywryw, oy [|[ Xai — WiS4||% while keeping S, fixed.
Second, consider introducing a new dataset d. Features
modeling the stimulus of dataset d can be estimated by
solving ming, > ;c aq, 1 Xai —W;S4||% while keeping W;
fixed. This is possible when there are shared subjects
between dataset d and the existing datasets. When
we are only interested in estimating the features Sy;
of a new data point Xy from an existing subject i,
we simply project the new data through W;, giving us
Sqi = WiTXdi. We have made additional connections
between GICA, DL, SRM, MDDL, and MDMS. These
are included in the Supp. Mat..

4 EXPERIMENTS

Datasets: To test the transfer of information from
secondary datasets to a primary dataset, we use six
publicly available fMRI datasets collected from a total
of 85 subjects (see Fig. [3). The datasets were collected
while subjects were provided with distinct stimuli, dif-
ferent preprocessing steps, and are explored using dif-
ferent regions of interest (ROI) (details in Tab. [T). All
datasets are aligned to the Montreal Neuroscience In-
stitute (MNI) anatomical template [44]. Each dataset
uses a distinct stimulus, but each subject in a dataset is
presented with the same stimulus. Datasets greeneyes,

Dataset Type Samples  Num. Subjs
greeneyes Audio 450 TRs 40
milky |35/36 Audio 297 TRs 18
vodka IE@ Audio 297 TRs 18
schema |37 Audio 937 TRs 31
sherlock [38]): Movie 1973 TRs 16
sherlock-reca \ Recall 34 scenes 16

1

Figure 3: The Datasets. Top: Information on the fMRI
datasets. Each TR is 1.5 secs. In scene recall, each scene
is the average response over recall period of that scene.
Bottom: Structure of datasets as a graph. The number of
shared subjects is labeled on the graph edges.

milky, and vodka are collected while subjects were lis-
tening to a narrated story. Dataset sherlock contains
two components for the same group of subjects. The
first part (movie) was collected when the subjects were
watching a movie and the second part (recall) was
collected when the same subjects recalled the scenes
in the movie without any external prompts. Dataset
schema is a concatenation of 8 small datasets where
each small dataset was collected while subjects listened
to a 3-minute narrated story. References to the source
of each dataset are given in the Table in Fig. 3] By
treating a dataset as a node and shared subjects be-
tween two datasets as an edge, the network structure
of these datasets is shown in Fig. [3] Three subjects are
shared by greeneyes, milky, and sherlock, and 1 subject
by vodka, schema, and greeneyes. No subject is shared
by more than 3 datasets. (See Supp. Mat. for details).

Evaluation Method: We use test accuracy on various
prediction tasks as a performance metric. All the accu-
racies are computed based on data from one or more
left-out subjects. For each model, the number of fac-
tors k is selected from the set [25, 50, 75, 100, 125, 150]
using 4-fold cross-validation on the training data.

Experiment 1: Do Secondary Datasets Help?
We first test if the prediction accuracy of a time seg-
ment matching experiment and a scene recall matching
experiment on the primary dataset can be improved
by leveraging secondary datasets. The time segment
matching experiment tries to predict the time point
of a given segment of fMRI response from a testing
subject after training the model on data from other
subjects. The scene recall matching experiment tries
to predict the scene from recall data after training the
model on data from other subjects. The experiments
treat one dataset as the primary dataset and the other
datasets as secondary datasets. Prediction accuracy
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Region of Interest (ROI)

Num. Voxels

Description

default mode network (DMN) [40]
early auditory cortex (EAC) [41]
planum temporale (PT) [42]
posterior medial cortex (PMC) [43]

2329 language processing, etc.
1189 low level auditory processing
1318 high level auditory processing
813 mental state, etc.

Table 1: Information of ROIs used in the experiments.

Learning a basis for each subject

r training subjects ( 7@ testing subjects ) averaged k-dim. features across training subjects
sec. subj3 subj4 - .
sec. subjl | subj2 | subj3 subj4 --- : seg 1
. 1 seg 2
prm. subj 1 i subj2 i\ subj i : subj i+l ... subjm
1 ] 1 1
7 /. overlapping subj; i (178 [Rv74 ;
b e {in two datase . ' : i+l : Won i exclude segments | S€gY
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, H | > )
k-dim. feature S, of prm. dataset cmdmmd ! : overlapping with y
1 seg t-1
Evaluation of the learned bases segt
T
prm. | subj1 | subj2 subji ! subjitl - subjm | find max. correlation
kedim lVVl le lVVi : lVViJrl lI/Vm segy
featurle subj1  subj2 subj i | i subji+l -+ subjm 1 pick
[ train ! | subj p
output «—. classifier test i ) \_ k-dim. features of a testing subject )

Figure 4: Experiment 1. See Exp. 1 paragraph 2 for full details. Left: Use sec. datasets to help prm. dataset learn a
better set of subject bases. k-dimensional feature of secondary datasets are learned but not used in this experiment. Test
on left-out testing subjects. Right: Time segment matching correlation classifier. Repeat for all possible segments.

is calculated on left-out subjects and left-out data in
the primary dataset. We randomly partition all sub-
jects from all datasets into 65 training subjects and
20 testing subjects. We ensure all datasets are linked
through training subjects, and each dataset has at least
three testing subjects. Testing subjects are completely
left-out from all datasets during training. The split-
ting of training and testing subject is illustrated in
Fig. [6 This random partition is repeated five times
and averaged results are reported with standard error.

In the time segment matching experiment, we test on
scenarios when greeneyes, milky, vodka, sherlock each
becomes the primary dataset. schema is not used as a
primary dataset because it has large temporal discon-
tinuities due to the concatenation of smaller datasets.
On each primary dataset, we perform a version of the
time segment matching experiment adapted from [16].
The major difference is that we test on left-out subjects
instead of left-out data of training subjects. There are
two phases in the experiment. The first phase has two
steps. In the first step, we partition the primary dataset
into two halves in time. Then for all training subjects,
we use one half of the primary dataset, and all TRs
of the secondary datasets to jointly learn the subject-
specific bases W;. We also learn the k-dimensional
temporal feature S, for the selected half of the primary
dataset. In the second step, for all testing subjects, the
subject-specific bases W; are computed using the other
half of the primary dataset and the temporal feature
Sp learned in the first step (details in §3).

In the second phase, we evaluate the usefulness of the

estimated bases for the testing subjects in the pri-
mary dataset. The left-out data of all subjects in the
primary dataset is transformed to the k-dimensional
feature space using the bases learned in the first phase.
Features are averaged across training subjects. For
each testing subject, a 9 TR time segment y in the
feature is selected and correlated with all 9 TR seg-
ments in the averaged feature across training subjects.
Segments overlapping with y are excluded. If the high-
est correlation appears at segment y in the averaged
feature across training subjects, then we say segment
1y is correctly matched. This procedure is repeated for
both halves of the primary dataset, and all possible 9
TR segments and results are averaged. This time seg-
ment matching experiment tests two properties of the
learned subject-specific bases. First, that the bases are
stimulus-invariant. Second, that the bases transform
subjects’ data into a common feature space such that
features of similar stimuli are highly correlated. In this
case, a high matching accuracy suggests a high quality
of the learned bases. Results on default mode network
(DMN) (Tab. [1]) are summarized in Fig. [5| (other ROIs
in Sup. Mat.). For each model, k values are selected
using cross-validation. MDMS has the highest accu-
racy in this matching experiment among all methods
we have tested. This suggests MDMS can effectively
leverage information in secondary datasets to aid the
analysis in the primary dataset. We also observe more
improvement when the primary dataset is small (milky
and vodka). This is expected as it is hard for a pri-
mary dataset with a small number of training samples
to learn bases with good generalizability, so adding
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Time Segment Matching (ROIl: DMN)

MNI I GICA s DL N SRM

MDDL I MDMS /7. Prm. Prm.+Sec.

Prm.: GreenEyes Prm.: Sherlock
.345

> 0.41 T +1std.em
© .278
—
3
0 0.2
<

0.0+

model MNI GICA DL SRM MDDIMDMS ~ MNI GICA DL SRM MDDLMDMS
k 50 50 75 25 75 50 50 75 25

Prm.: Vodka Prm.: Milky

—:= chance

MNI GICA DL SRM MDDIMDMS
50 50 75 25 75 50 50 75 25 75

MNI GICA DL SRM MDDLMDMS

Figure 5: Experiment 1. Results of time segment matching experiment on ROI DMN (other ROIs in Supp. Mat.). Chance
accuracy: greeneyes: 0.005; sherlock: 0.001; vodka: 0.008; milky: 0.008. k is selected based on 4-fold cross-validation. MNI
is anatomical alignment. Mean and standard error computed using 5 random partitions of training and testing subjects.

Prm. Sec.1 Sec.2
Subj1 I
sl s
Subj3 | | 2
Subj4 | I ] =
Subj5 | | ja

Figure 6: An example of a random partition of the training
and testing subjects. Available observations are grey blocks,
missing observations are white blocks. For all datasets,
testing subjects are completely left-out.

Scene Recall Matching (ROI: PMC)
MNI S GICA SN DL WEE SRM MDDL WSS MDMS

cs// Prm. Prm.+Sec. —:= chance 142

Prm.: Sherlock
.09

.050

4
=

Accuracy

0.0 -
model  MNI GICA DL SRM MDDL  MDMS
Kk 25 100 125 100 125

Figure 7: Experiment 1. Scene recall matching on PMC
ROIL. On average each subject has data for 34 recalled
scenes; there are 50 possible scenes (classes) in total. So
the chance accuracy is 0.02. For each method, k is selected
using 4-fold cross-validation on the training data. MNI is
anatomical alignment only. The mean and standard error
are computed using 5 random partitions of the training and
testing subjects.

information from secondary datasets yields a better
generalization to left-out data. A primary dataset with
many samples is less prone to overfitting; hence we
expect less improvement.

In the scene recall matching experiment, the test-
ing data in the primary dataset has a more distinct
form from the secondary datasets. sherlock is used as
the primary dataset and all the others as secondary
datasets. We are interested in classifying the scenes of
the sherlock-recall data from testing subjects while us-
ing a classifier learned from the training subjects. This
experiment also has a two-phase procedure. In the
first phase, we fit the model to the movie part of sher-
lock and all secondary datasets as in the time segment
matching experiment. In the second phase, we test the
effectiveness of the learned bases. An SVM classifier
is trained with the scene label and training subjects’
recall data transformed into the common feature space

using the learned bases. The SVM is then used to
classify testing subjects’ transformed recall data.

The averaged accuracy over five random partitions with
standard error is reported in Fig. [7] This experiment
is only conducted on posterior medial cortex (PMC)
(Tab. [1)), the ROI used in [38]. We observe improved
prediction performance for MDMS on the distinct scene
recall task. This suggests that by leveraging secondary
datasets, the primary dataset can learn spatial bases
that can generalize well to distinct (but related) tasks
while using several distinct stimuli. Note that in our
case no secondary dataset has the same type of stimulus
as the left-out data, but we still observe improvement
in prediction accuracy. The ability to learn basis that
works for various types of stimulus is essential when
exploring new types of stimulus.

Experiment 2: Semantic Embedding We now
explore if secondary datasets can help in an fMRI to
text semantic embedding experiment adapted from .
This is a harder task than experiment 1. A major
difference is that we test on completely left-out subjects
instead of left-out data of training subjects, and we
are testing on multiple datasets. We use greeneyes,
vodka, milky, and sherlock, datasets (augmented with
text annotation for each TR of the stimuli) to learn a
linear mapping between the common feature space and
a text semantic embedding space.

The experiment has three phases. In the first phase,
we preprocess the text annotation of each TR to a 300-
dimensional semantic vector using methods in . We
also partitioned all subjects into training and testing
subjects as in experiment 1. In the second phase, we
partition each dataset into two halves in time. Bases
for all training subjects and k-dimensional features
for each dataset are learned from one time half of all
datasets. For MDDL and MDMS, bases and features
are learned jointly from the multiple datasets and for
other methods, bases and features are learned sepa-
rately for each dataset. The features of all datasets are
then concatenated along the temporal axis to form a
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matrix Sy, and their corresponding text embeddings
are concatenated in the same way to form a matrix
Tuu- The linear map € from the common feature space
to the semantic embedding space is learned by solving

ming HTall — QSallH?p s.t. QTQ =1.

In the last phase, 2 and our learned subject basis are
tested with a scene classification task conducted on
datasets greeneyes and sherlock separately (vodka and
milky have too few TRs to form meaningful scenes
for testing). Left-out half of greeneyes and sher-
lock are evenly divided into 7 and 25 non-overlapping
scenes, respectively. Testing subjects’ left-out half
of data in dataset d is transformed to k-dimensional
space with learned bases and averaged across subjects.
Then, we predict the semantic embedding vectors of all
scenes, as columns of T),.q, by mapping the averaged
k-dimensional feature S, through €2 to the semantic
embedding space, Tprcq = 25,. The predicted seman-
tic vector of a scene y is then selected and correlated
with the true semantic vectors of all scenes. If the high-
est correlation appears at scene y, then it is correctly
classified. This procedure is repeated for all scenes in
Tpred- The experiment pipeline and scene matching
procedure is shown in Fig.[§] The extra requirement
of a learning a linear mapping makes this experiment
harder than experiment 1. The secondary datasets are
leveraged when learning this linear mapping.

The accuracies averaged across five random partitions
of training and testing subjects on planum temporale
(PT) are reported in Fig. [§] (other ROIs in Sup. Mat.).
k values are selected with cross-validations. We ob-
serve that MDMS outperforms related methods, but
MDDL also performs comparably on greeneyes. The
results show that the secondary datasets in this harder
task help the analysis of the primary dataset and the
potential of using secondary datasets in bridging fMRI
feature space and semantic embedding space.

Experiment 3: Complete Transfer Learning
We now explore transfer learning from secondary
datasets to a completely left-out primary dataset. Only
secondary datasets are used during the learning phase.
We then test generalization of the learned subject-
specific bases to the primary dataset. This is done by
conducting a time segment matching experiment on
the shared subjects in the primary dataset. We focus
on MDMS from this point forward since it consistently
performs well in the previous experiments.

We compare the generalizability of the subject bases
when these are learned using one versus two secondary
datasets. We also test generalizability when a small
secondary dataset is used as a bridge between the
primary and another larger secondary dataset. We
do not expect the small secondary dataset alone to
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Figure 8: Experiment 2. See Exp. 2 for full details. Top
(First): Learn a linear map  from shared response to
text embedding space. Top (Second): Perform scene
classification by using 2 to map a scene in shared space
to semantic space, then find the best matching of scene in
semantic space. Bottom: fMRI-data to text embedding
classification accuracy. Results on other ROIs in Supp.
Mat. Chance accuracy: greeneyes: 0.14; sherlock: 0.04. k
selected based on 4-fold cross-validation. MNI is anatomical
alignment only. Mean and standard error computed using
5 random partitions of training and testing subjects.

yield a good transfer learning. We are interested to
see if the small dataset can be used as a bridge to
incorporate the information in the larger secondary
dataset. For this purpose, we use three datasets of
different sizes, milky, greeneyes, and sherlock. For each
primary dataset, the first secondary dataset is small
but has many shared subjects with the primary dataset.
The second secondary dataset is larger but may have
few or no shared subjects with the primary dataset.
Prediction accuracy is computed with and without the
larger dataset. We observe increased accuracies after
adding the larger dataset (see Fig. E[) This shows
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Figure 9: Experiment 3. Complete transfer learning. Time
segment matching accuracy on prm. dataset using subject
bases learned only from sec. datasets. Results on other
ROIs in Supp. Mat. Chance accuracy: greeneyes: 0.0025;
milky: 0.004; sherlock: 0.0005. k same as in exp. 1. Mean
and st. error computed using shared subjects.
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that we can effectively transfer the information from a
secondary dataset, which has few or no shared subjects
with the primary dataset, by using another secondary
dataset as a bridge.

Experiment 4: Number of Shared Subjects Fi-
nally, we investigate how the number of shared subjects
in a secondary dataset impacts fitting the model to
the primary dataset. To evaluate this, we only use one
secondary dataset. Let the independent subjects be
those in the secondary, but not the primary dataset and
the shared subjects be those in both datasets. This is
illustrated in Fig. [I0] We use the accuracy of the time
segment matching experiment on the primary dataset
to measure the effectiveness of integrating information
from the secondary dataset. Experiment 1 indicates
that small datasets have more headroom for improve-
ment. Hence we focus on this situation. All subjects in
the primary dataset are included in the basis-learning
phase. The primary dataset is partitioned into two
halves in time, and test accuracy is computed using
the left-out half of the primary dataset.

We start with a training set containing all independent
subjects in the secondary dataset, then add the shared
subjects one by one. Results from two pairs of primary
and secondary datasets are summarized in Fig.
Accuracy is averaged over both folds of the dataset.
We observe significant improvement in accuracy as the
number of shared subjects increases. This verifies that
more shared subjects in the secondary dataset helps
to learn better bases for time segment matching in
the primary dataset. We also explored the role of
independent subjects. More independent subjects in
a single secondary dataset do not necessarily help the
learning in the primary dataset (see Supp. Mat.).

5 DISCUSSION AND CONCLUSION

By assuming a fixed basis for each subject and a com-
mon feature representing the stimulus for each dataset,

we pose an approach that enables multi-dataset multi-
subject modeling. Following this approach, we have
extended two multi-subject models into a multi-dataset
setting. We observed improved performance on the
primary dataset in various setups. MDMS has con-
sistently outperformed other comparison methods in
experiments. We also demonstrated that secondary
datasets could be more helpful with more shared sub-
jects with the primary dataset.

These are particularly useful in various aspects. First,
the improved accuracy in predictive tasks facilitates
analysis to identify important signals from the primary
dataset. Second, if we are conducting a series of exper-
iments and a subject is missing from an experiment,
we provide a way to still leverage the subject’s existing
data in the primary analysis. Third, it reduces the cost
of doing science. Collecting a large dataset is expensive.
Even though there have been many efforts in collect-
ing large datasets [47H49], they might not be directly
aligned with our scientific question. We envision a sce-
nario that there are many large datasets with stimuli
provided online. For our research, we will have some
subjects receiving stimuli from both the online datasets
and our own designed experiment. Using these subjects
to bridge the primary dataset and the online datasets
as secondary datasets has the potential to improve
statistical sensitivity in the analysis on the primary
dataset, hence reduce the amount of data that we need
to collect and result in reduced cost on data collection.
Lastly, with the spirit of ensuring our research is pub-
licly available and easily reproducible, we will release
code for our implementation and experiments.
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