A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery

A Additional Experiments

In this section, we present additional experimental results to verify the linear convergence rate, sample complexity,
and statistical rate of our proposed algorithm.

A.1 Robust Matrix Sensing

Our data are generated from the same procedure as described before. In addition, we study the same experimental
setting as before except we choose « = r,v =1, =0.1. FiguresuAmmarized the experimental results for robust
matrix sensing. Figure and illustrate the relative error ||X — X*||%/||X*||% in log scale versus number
of iterations. Note that, we only lay out results under setting d; = dy = 100, = 3 with number of observations
n = 0.2 x d1ds to avoid redundancy. These plots demonstrate the linear rate of convergence of our algorithm.
Figure demonstrates the sample complexity requirement to achieve exact recovery for low-rank structure in
the noiseless setting. Note that we say X achieves exact recovery if || X — X*|| /|| X*|| < 1073. It confirms our
theoretical results regarding the sample complexity. The statistical error for the low-rank matrix is demonstrated
in Figure which is consistent with our result O(rd/n).
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Figure 2: Experimental results for robust matrix sensing. (a),(c) Relative error in log scale vs. number of
iterations in the noiseless and noisy settings respectively. (b) Recovering probability of low-rank matrix vs.

scaled sample size in the noiseless setting. (d) Relative error vs. scaled sample size in the noisy setting.

A.2 Robust PCA

We generate the data according to the same procedure as before. Furthermore, we consider the same experimental
settings as robust_matrix sensing except. The experimental results for robust PCA are summarized in Figure
In detail, Figures and report the squared estimation error || X —X* |%./(d1d2) in log scale versus number
of iterations. Note that we only lay out the results under fully observed model with setting dy = dy = 200,r = 5,
because other settings will give us similar plots, and we leave them out for simplicity. The results verify the
linear convergence rate of our algorithm. In the noiseless setting, the sample complexity for achieving exactly
recovery of the low-rank matrix is illustrated in Figure The result of recovery probability indicates the
sample complexity requirement n = O(rdlogd) for robust PCA. Finally, Figuredemonstrates the statistical
error for the low-rank matrix, which is at the order O(rdlogd/n). Although our theoretical results suggest
O(r?dlog d) sample complexity and O(r?dlogd) statistical error, the simulation results indicate that both the
sample complexity and the statistical error scale linearly with rd.
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Figure 3: Experimental results for robust PCA. (a),(c) Squared estimation error in log scale vs. number of
iterations in the noiseless and noisy settings respectively. (b) Recovering probability of low-rank matrix vs.
scaled sample size in the noiseless setting. (d) Squared relative error vs. scaled sample size in the noisy setting.
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B Proof of the Main Theory

In this section, we establish the proof of our main theory. Before proceeding any further, we introduce the
following notations. For any index set Q C [di] x [da], let ©Q; , and €, ; be the i-th row and j-th column of Q
respectively. Denote the column and row space of A by col(A) and row(A) respectively. Let the top dy x r and
bottom dy x r matrices of any matrix A € R(41+42)X" be Ay and Ay respectively. Let the nuclear norm of any
matrix A be ||A|l.. Denote Z = [U; V] € R(41#42)x7 then according to (3.3), we reformulate the regularized
objective function as follows

~ 1
F.(Z,S) = F,(U,V,8) =L, (UV' +8) + g||UTU ~VV|3. (B.1)

Therefore, the corresponding gradient regarding to Z is as follows

Vul,(UVT +8)+1iUuU'U-VTV)

Vzn(Z,S) = [vvﬁn(UvT +8)+ IVUTU - VTV

B.1 Proof of Theorem 4.6

In order to prove Theorem [£.6] we need to make use of the following lemmas. Since both low-rank and sparse
structures exist in our model, it is necessary to derive the convergence results for both structures. Lemma
proved in Section characterizes the convergence of the low rank structure, while Lemma proved in
Section corresponds to the convergence of the sparse structure.

Lemma B.1 (Convergence for Low-Rank Structure). Suppose the sample loss function £,, satisfies Conditions
and Recall that X* = U*V*T is the unknown rank-r matrix that satisfies , S* is the unknown
s-sparse matrix with at most S-fraction nonzero entries per row and column. There exist constants ¢y, cs and c3
such that if Z* € B(co/0,) with co < min{1/4,/p}/[10(L1 + 1+ 8/u2)]}, and we set the step size n = ¢1 /01
with ¢; < min{1/32, u1/(192L%)}, then the output of Algorithm [1| Z! = [U*; V] satisfies

(2, 27) < pud(2,2%) = TE|X! = X} 4 T[S = S*[F + Do VxLa (X + 893,

provided that S < 1/(csark) with cg > 720(y 4+ 1)pa/p}, where contraction parameter p; = 1 — nufo,/40,
wy = min{uq,2}, T1 = 48n%(1 + K)?01 + n(pe + 4K?/p1), and Ty = 48n2roy + 2n(8r/pu1 +r/L1).

Lemma B.2 (Convergence for Sparse Structure). Suppose the sample loss function £,, satisfies Conditions
and [£4] Recall that X* is the unknown rank-r matrix, S* is the unknown s-sparse matrix. If we set the step
size 7 < 1/(3L2) and choose appropriate parameters -y, ', then the output of Algorithm |1 satisfies

ST — S*[[5 < p2|S* — S*|[F + s || X" — X*||F + Dy [H || + Is || Vs Lo (X" + S%) |5 oo
Here, po is the contraction parameter satisfying po = C(v,7') - (1 — pa7/4) < 1, where C(v,7’) is defined in
Theorem [£.6] and I';,I'y and T's are constants satisfying

47K? )
ty= i) (T a0 s k), =y TR,
K2 112
dr(y +1
Is=C(v,7)- <W + 37229 + 1)s>.
2

Now we are ready to prove Theorem [£.0]

Proof of Theorem[].6, Given a fixed step size T, we set ,7’ such that 7/ > 1+ 256/(u37%) and v > max{5, 1 +
642 /(uo7)?}, then we obtain

2 2 2 UaT UoT
=(1 — ) |1t =] 1) <1 - —
= (55 (=) () =
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Consider iteration stage t. According to Lemmas [B-1] and [B:2] we have
2(rgt+1 g« L i1 *|2 Iy 2yt rpx 1 t *12
d*(Z az)+;1||s =8r < P1+;1 'd(Z,Z)+a(P2+F101)'\\S - 8"|®

r * * r * *
(= T X X T Tl (X7 4 )+ VL (X +87) e

Recall the formula of I'y and I's, I'y from Lemmas and respectively. Note that under condition n = ¢1 /o1
and B = c3/(ark), we can set ¢z to be sufficiently small such that

(v + 1)Baroy < cLpyoy

Ty=C(v.+)- =
4 (v,7") o <%0

where p} = min{yuy,2}, which implies that p; + Ty/o1 < 1 — nujo,/80. Besides, under condition that K is
sufficiently small, we can set ¢; < min{us/50,7/96} such that the following inequality holds

2 2 4K? > piaT
Iop =48¢i(1+ K)* + ¢ T + po | <50c¢f 4 2¢1 e < 3use; < R (B.3)
1
Finally, consider the formula of I's. Note that similarly we can set K to be small enough such that
ATK?

M2

F3:C(’y7f‘)//)~ ( +372<1+K)2> §47'27

thus as long as 7 is sufficiently small, there exist ¢; such that 1672/ < ¢; < min{us/50,7/96}, which implies
I3 < ¢p1/4 while ensuring (B.3)) holds as well. Therefore, we obtain

1 nuyo 1 HoT
d2 Zt+1 VA - St+1 _ S* 2 < 1— 1¥r . d2 Zt Al — (1= . St _ S* 2
@,27) + | < (1- 20 ) @@z + - (1- 50 ) st - sl
* r * *
T2 VxLa(X" + 85 + Vs La(X 4875

For simplicity, we denote D(Z!,S") = d*(Z',Z*) + ||S" — S*||% /o1, and p = max {1 — nu}0,/80,1 — ps7/32} €
(0,1), then we have

r
D(Z'!,8") < pD(Z',8") + T2 Vx Lo (X" + 83 + 2| VsLn (X" +87)
1

I3
00,00°*

Recall the formula of I'y and I's in Lemmas and respectively. Under Condition we can always set
the sample size n to be large enough such that

r r
Dol VX La (X" + 873+ VS Ln(X" + 85 oo < Taed(n,0) + €30, 8) < (1= p)coy

holds with probability at least 1 — §. Thus as long as D(Z°,S%) < cZ0,, we have by induction D(Z!,S") < 3o,
for any ¢ > 0, which implies Z! € B(c2./0,.), for any ¢ > 0. Hence, we obtain

r
[ VxLa (X + 873 +

DZt7St < otD ZO,SO + 5
(2.8 < o' Dz’ $) + o

Vs Lo (X" + 873

00,007

which completes the proof. O

B.2 Proof of Theorem |4.8

In order to prove Theorem [4.8] we need to make use of the following lemma. Lemma[B.3|characterizes a variation
of regularity condition for the sample loss function £, with respect to the sparse structure, which is proved in
Section
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Lemma B.3. Suppose the sample loss function £,, satisfies Condition [f:3] Given a fixed rank-r matrix X, for
any sparse matrices S1, Sy € R%*% with cardinality at most 7's, we have

(VsLn(X +81) — VsLn(X + S5),S; — So) > %Hs1 ~S,|I2

1
- Q—LQHPQ (VSLn(X +S1) — VSLu(X +S2)) || 5,

where Q C [dy] X [d2] is an index set with cardinality at most § such that supp(S1) C  and Pq is the projection
operator onto ).

Proof of Theorem[{.8 Consider a fixed iteration ¢ in Algorithm 2] As for the sparse structure, we have
Sey1 = Has(Se — 7'Vs L (Xy 4 Sp)).

Denote ' = supp(S*) U supp(S¢) U supp(Se+1), then we have As < [ < (2X + 1)s. We further denote
S¢r1 = Pay (S[ —7'VsL,(Xe+ Sg)), then we obtain Syy1 = Hxs(Se+1). Thus, according to Lemma 3.3 in [35],
we have

1Sers — S*1% < (1+ >'||§e+1 s (B.4)

AN =1
Therefore, it is sufficient to upper bound [|Sy1 — S*||» for the sparse structure. We have
ISes1 = S*|[p = ||Se — 8" — 7P (VsLn(Xe +S0)) | »
< IS¢ = S* — 7'Po (VsLy(Xe + Sp) — Vs L, (X + S%))
Iy
+ 7' |[Pa (Vs Ln(Xe + 8*) = VSLy(X* + 8%)) |p +7" | Par (VS L (X* + 8)) || r, (B.5)

Iy I3

I

where the second inequality follows from the triangle inequality. As for the first term I; in (B.5]), according to
Lemma [B23] we have

7_l

1< () 8= ST = (L = 7)) - [Por (Vs (K4 80) = VeL(Xe +87)
2
< (1= par) - ISe — 872, (B.6)
provided that 7/ < 1/Ls. Consider the second term I in (B.5)). Note that || < (2X\ + 1)s, thus according to
the definition of Frobenius norm, we have

I, = sup <PQ/ (VSEH(XK =+ S*) — VSEH(X* + S*)),W>
([W]lr<1

< o {00 X P (W) KX =X - [Por (W)l
W r<1

<X = X loc,00 - [Par (W)l11 + K[ Xe = XF[[p < ACVAs + K[ X — X7, (B.7)

where the first inequality follows from Condition the second inequality holds because [(A,B)| < |[A|11 -
IB|loc,00 and [|Po (W) ||r < ||[W]||r < 1, and the last inequality is due to the fact that || X|loo,co < ¢*, |X*[loo,00 <
¢* and the triangle inequality. And for the third term I3, we have

Is <A+ 1D)s - [|[VsLn (X" + 5] 00,00- (B.8)
Therefore, plugging , and (B.8) into (B.5)), we obtain

ISe1 = S*|lF < V1= pat’ - ||S¢ — S*||p + 7K X, — X*||p +27¢C* /5
7 SENF D5 - [V Ln (X" + S| me. (B.9)
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Hence, combining (B.4) and , we obtain the following result for sparse structure

2
801 -l < (14 2= ) - (V=77 - I8¢ = 8°ll + KX = Xl)

+T/(1+ >-(4g*\/ﬁ+\/%- [V L (X* + S%)|oo,00)- (B.10)

2
Vi—1
Next, let us consider the low-rank structure. According to Algorithm [2] we have

Xpp1 =P+ (X — 'V Lo (X + Sy)),
where the projection operator Py ¢~ is defined as

,PA/,C*(X) = argmin Y — X||p, for any X € Rd1xd2
rank(Y) <A 7, || Yoo, 00 <C*

Y — — — 01T
Let the singular value decomposition of Xy, Xy41 be X, = U >V and X1 =U —HEZ‘HV i respectively.

Define the following subspace spanned by the column vectors of ﬁ*,ﬁé and U " as

span(U) = span{ﬁ*7ﬁe,ﬁ£+l} = col(T") + col(ﬁe) + col(ﬁ”l),

where each column vector of U is a basis vector of the above subspace. Similarly, we define the subspace spanned
~* 54 7
by the column vectors of V , V and V 1 oas

1

Hl} = col(V") + col(ve) + col(VH ),

span({/) = span{v* , Ve, AY

Note that X* has rank r, X, and X4, has rank at most A'r, thus both U and V have at most (2X + 1)r
columns. Moreover, we further define the following subspace

A={A e Rh*® | row(A) C span(V) and col(A) C span(U)}.

Let IT4 be the projection operator onto A, then for any X € R%4*92 we have I 4(X) = UUTXVVT. Note that
for any X € R%*%2 we have rank(I14(X)) < (2X" 4 1)r, since rank(AB) < min{rank(A),rank(B)}. Besides,
we denote

Xg_;,_l =Xy — UIHA(VX[:»“(X@ + Sg))

Similar to the proof of Theorem 5.9 in [49], we have X1 is actually the best rank-A'r approximation of 5{(4,_1
satisfying the infinity norm constraint, or in other words, Xy41 = Par ¢« (X¢41). Note that Py ¢+ (X*) = X*,
thus according to Lemma 3.18 in [35], we obtain

1Xepr = X3 = [Pae- (Resn) - X3 < (1 T R — X (B.11)

)

Thus, it suffices to bound the term ||Xg+1 — X*||p. Note that X* € A, thus according to the triangle inequality,
we have

1Xps1 — X |p < ||Xe = X5 = ' TLa(VxLn(Xe + Se) — Vx Lo (X +S0)) |-
I
+ 0 AV L (X* +Sy) = VxLo(X* +8))||r +0 TaA(VXLn(X* +8%)][F.  (B.12)

I I

Consider I in (B.12) first. According to Lemma B.2 in [50], we have

2 < —n'm)- | Xe — X%, (B.13)
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provided that ' < 1/L;. As for the second term I} in (B.12]), by the definition of Frobenius norm, we have
I = sup (Ha,, (VxLn(X*+8S;) — VxL,(X* 4+ 8%)), W)
IWilr<1
SA+K)-[Se=S"[p- [MaW)[lr < (14 K)-[[Se — 87|, (B.14)
where the first inequality holds because of Condition As for Ij, we have

< A/N + D) [[TTg(VxLn (X +S) |2 < VN 4+ D)r - [[VxLn(X* + S)|l2. (B.15)

Therefore, plugging (B.13]), (B.14) and (B.15) into (B.12)), we obtain

X1 = X |lp < V1= [Xe = X7 |p + 0 (L4 K) - I8¢ = S*|[p + 7' V3| Vx Lo (X + 872 (B.16)
Finally, combining (B.11)) and (B.16]), we obtain the following result for low rank structure
Xop1 — X lr < (14 1— X —=X*lp+7n'(1+K)-[|S;—S*
Xees =X < (1 <2 ) - (VI X = X /(1K) - 81— 57l

2
+7 14+ ——— | - V3N7||Vx L (X* + S%)]s. B.17
n( e ) VIV (X 4 5l B.17

Hence, combining (B.10) and ( , we obtain

X1 = X5 |F + [[Sea = S™[|p < P1IIXe = X[ 7 + p5]ISe = 8™ 7 + 4\57/(1 +

Z 1) e
T VRLn (X" + 89+ Do Vs Ln(X* + 5 oomes (B.18)

where I'y = /(1 +2/v N — 1)V3Nr, Te =7/ (1 + 2/VA )\/% and contraction parameter p}, ph are defined
in Theorem [4.8] Note that we set n = 1/(6p1) < 1/L1, 7/ = 3/(4p2) < 1/Lo, and we assume iy > 1/3. Then
with sufficient large A and X and structural Lipschitz gradient parameter K small enough, we could guarantee
P4, p5 € (0,19/20). Plugging in the definition of (* = cpark/+/dida, we complete the proof by induction. O

B.3 Proof of Theorem

Proof. To prove Theorem [4.9] it is sufficient to verify the assumption D(Z° S°) < c3o, in Theorem Thus,
according to Theorem [4.8] it is sufficient to make sure the right hand side of (4.2)) is small enough.

As for the optimization error, i.e., the first term on the R.H.S. of (4.2)), we can perform L > log{co,/(2||X*||r +
2||S*||7}/log(p’) iterations in Algorithm [2| to make sure the optimization error is sufficiently small such that
Lo(IX* | F + IS*]|F) < co,/2, where ¢ = min{1/2,cq4/4}.

On the other hand, for the statistical error, i.e., the last three terms on the R.H.S. of 7 we assume s <
cdids /(a?r?K?%), where ¢ is a small enough constant, and sample size n is sufficiently large such that T'y/re; (n, §)+
I2v/s€a(n,d) < co,. /4. Putting pieces together, we arrive at | X°? — X*||p +[|S° — S*||r < ¢ 0. Finally, based on
Lemma 5.14 in [46], the initial assumption that D(Z°,S%) < c2o, in Theorem is satisfied, which completes
the proof. O

C Proofs of Technical Lemmas

C.1 Proof of Lemma

In order to prove Theorem we need to make use of the following lemmas. Lemma characterizes a local
curvature property of the low-rank structure, which gives us the lower bound of the inner product term. We
provide its proof in Section Lemma proved in Section characterizes a local smoothness property
of the low-rank structure and gives us an upper bound of the Frobenius term.

Lemma C.1 (Local Curvature Property for Low-Rank Structure). Suppose the sample loss function £,, satisfies
Conditions 4.2 and . Recall that X* = U*V*T is the unknown rank-r matrix that satisfies (3.1), and S* is
the unknown s-sparse matrix. Let Z € R(41+92)X7 be any matrix with Z = [U; V], where U € R&XT Y ¢ Ré2%T
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satisfy ||U|l2,00 < 2¢/aro1/d; and ||[V|2,00 < 2y/aroi/da. Let S € R¥1*% be any matrix with at most 3-
fraction nonzero entries per row and column and satisfying [|S|lo < s’ < S. Denote the optimal rotation with
respect to Z by R = argming o, [|Z — Z*R||p, and H = Z — Z*R, then we have

o
20 3

L2 2K2> 112 <8r r) v coer 112
(22 s stz - (L D) Ok La (X 4 ST,
(2420 g5 -8 - (S + L) I9La(X” +87)1

~ H1 « 1, ~ ,U/ L1 +1 1
(V2Fo(@8)H) 2 BIX - X+ o272l + (hor - €) - h - (220 L) e

where X = UV pf = min{u,2}, and C = 18(8' + B)aroy /.

Lemma C.2 (Local Smoothness Property for Low-Rank Structure). Suppose the sample loss function £,, sat-
isfies Conditions and Recall that X* is the unknown rank-r matrix and S* is the unknown s-sparse
matrix. For any matrix Z = [U; V] € R(©+d2)x7 and § € R4 ¥ with at most s’ nonzero entries satisfying
s’ <3, we have

IV2Fa(Z,S)|IF < (12LfX — X+ 12(1+ K)?-||S - S*[F + [UTU ~ VTVllfw) 1113
+12r]|Vx L (X* + 873 - 1|23,
where X = UV,
Proof of Lemma[B.1 Recall Z* = [U*; V*] and X* = U*V*T, where U* = U (ZH)Y2, v = V(292 we

have || Z*||2 = v/2071. According to our initial ball assumption Z° € B(,/0,./4), there exists an orthogonal matrix
R € R™*" such that ||Z° — Z*R||r < /0, /4, thus we obtain

Vo <||ZF 2 = |2° = Z*R |2 < ||Z°(|2 < [|Z*]|2 + |Z° — Z'R|[r < 2//01.
Recall (3.1) and the definition of C;,Cs in (3.2)), then it is obvious that U* € C; and V* € Cy. Consider a fixed
iteration stage t, we denote
~ 1
Ut—‘rl _ Ut _ ’I’]VUEn(UtVtT + St) _ §ﬂUt(UtTUt _ ‘ft—r\/t)7
~ 1
Vt—‘rl — Vt _ nvvﬁn(UtvtT + St) _ 5,',/\/t(‘/'tT‘[t _ UtTUt).

Denote Z!™! = [U1; Vi+1] and Z' = [U'; V'], for any iteration stage ¢, then according to (B.2)), we have
Z't =7t —nVzF,(Z!,S"). Besides, according to Algorithm [1, we obtain

U = Pe, (U) and VI =P, (VH),
Recall Z* = [U*; V*], and R = argming o _|Z* — Z*R/||p, for any t. Denote H* = Z — Z*R' . Since Cy, C; are

both rotation-invariant constraint sets, and U* € C;, V* € Cs, we have
P2 < |2 - TR
< |2 —9V2F.(2", ") - 2R}
= d*(Z",2") = 2(V2F,(Z",8"), H') + *| V2 F,(Z", 8" |, (C.1)
where the first inequality follows from Definition and the second inequality is due to the nonexpansive
property of projection P¢, onto C;, where i € {1,2}. Therefore, it suffices to lower bound the inner product term
(VzF,(Z!,S"),H") and upper bound the term ||VzF,(Z!, S")||%, respectively. According to Algorithm (1} we

have (U?, V!) satisfies the condition of (U, V) in Lemma and S’ has at most yS-fraction nonzero entries
per row and column with ||S||o < +'s < 5. Denote X! = U*V*" then according to Lemma we obtain

~ M1 . 1 11
<VZF7L(Zt7St)7Ht> Z Z”Xt -X H%‘ + E”UtTUt - VtTVt”%‘ + <2607‘ - C) : ||Ht||%‘

Li+1 1> i </L2 2K2> ‘ 9 (8r 7‘) 9
- ) EE - (P22 st e st - (g D) ok (X 4 S92,
(Bt ) i - (2 20 ) gt —soi - (5 L) I9talx + 8913
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where pf = min{uq,2}, and C = 18(y + 1)Baroy/uz2. Besides, according to Lemma we have
IVaFu(Z!, SY% < (m%nxf CXU3 412014 KPSt - §*3 4+ [UTU v”vtn%) AL

+ 120 Vx Lo (X7 + 875 - | Z2°13.

Note that under the assumption of Z* € B(c2,/0,), where ¢o < 1/4, we have ||Z*||s < ||Z*R||2+||Z" — Z*R'||]> <
2,/01, since ||Z*||3 = 20;. Thus, if we set the step size = ¢1 /01, where ¢; < min{1/32, 1 /(192L%)}, and we
assume 8 < 1/(csark) with ¢z large enough such that ¢ > 720(y + 1)p2/p}, we have

=7t Qt t 2 &t Qty))2 TIHL | <t 2 MEATT e
(Vo F (2 S), B 4o [V F(2, S5 < Xt X - O
Li+1 2 N . N
(4 2 )+ St - S + Cal T (X7 +57) B

where Cy = 48n2(1 + K)%a1 + n(u2 + 4K?/uy), and Cy = 48n*roy + 2n(8r/p1 + 7/L1). Note that according to
our assumption, |[H?||% < c3o, with ¢ < u}/[10(L1 + 1 + 8/u2)], thus by (C.1)), we obtain

!
(2, Z7) < (1 - W)d?(zt,z*) = LR X[} + C1lIS" = 87} + Cal| Vx Lo (X7 + 87) 3,

which completes the proof. O

C.2 Proof of Lemma

In order to prove Lemma we need to utilize the following lemma. Inspired by [56], we present Lemma
[C:3] which characterizes a nearly non-expansiveness property of the truncation operator 7g, as long as 6 is large
enough. We provides its proof in Section [D-3] for completeness.

Lemma C.3. Suppose S* € R4 %% ig the unknown sparse matrix with at most 3-fraction nonzero entries per
row and column. For any matrix S € R4 *%  we have

* 2 2 *
1709 -8l < (14/25) - 15 -°I,

Now we are ready to prove Lemma,

where v > 1 is a parameter.

Proof of Lemma[B-4 Consider a fixed iteration stage ¢. For the sparse structure, according to Algorithm [T} we
have

S = T 0 My (S — VL, (U'V'T +8Y).

Denote S' = 7/, (S* — 7VsL,(U'V'T + 8%)), then we have S™™! = T,5(S**!). To begin with according to
Lemma we have

2
* Q * 2 S *
I8 = 8*[[F = [ T5(8") = S™[1% < (1 + \/Z) (87 - 87I% (C.2)

Moreover, denote 2 = Q* UQUQT! where Q* = supp(S*), Q = supp(S?) and Q! = supp(S**1). Obviously,
the cardinality of Q satisfies v's < || < (29' + 1)s. Based on €2, we define S'*! as follows

S = Py (St — 7V L, (UV!T 4 8Y) = St — 7P (Vs L, (UV!T +8Y)), (C.3)

where Pg, is the projection operator onto the index set 2. Note that Q! C Q, thus we have S+ = . (St+1).
According to Lemma 3.3 in [35], we have

IS5 - 8|2 < (1 n ) 8 - s (C.4)

2
vy =1
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Therefore, it is sufficient to upper bound ||S*+! — 8*||2.. By (C.3)), we have

STt — 87| = [IS" — 87||% — 27 (VsLn(X' +87), 8" — §%) +77 | Pa(VsLa(X' +81)|7 (C.5)

11 12

where the equality holds because (Pq(A), B) = (A, Pq(B)). In the following discussions, we are going to bound
I; and I, respectively. Consider the term I first, we have

I = (VsL, (X' +8') — VgL, (X' +8%),8" — §*) + (Vs L, (X' + S8*) — Vs L, (X* + S*),S" — S*)
111 112
(VLo (X* +8%),8! — §%). (C.6)

I3

As for the first term I1; in (C.6), according to Lemma [B.3] we have

1
I > %Hst —S*|1% + 2—L2||PQ (VsLn(X' +8') — VsL, (X' +8%)) ||§. (C.7)

Note that we have supp(S! —S*) C Q' UQ*, where Qf UQ* has at most (y+ 1)3-fraction nonzero entries per row
and column. Denote R’ as the optimal rotation with respect to Z* = [U*; V'], and H' = Z' — Z*R". According
to Condition we obtain the bound of I in (C.6)

[lz| < (X' = X", 8" = §%) + K| X' = X" -[|S' ~ S*||r
< [Porugr (X! = X7)||e - 18" = S*|lr + KIIX* = X7|| - [I8" = S*|1r
18(y + 1)Bara||H' || - |S* = 8[| p + K[ X' = X*|[p-[|S" = 7|, (C.8)

where the second inequality holds because [(A,B)| < ||A||r - |B]|F, and the last inequality follows from Lemma
14 in [56]. As for the last term Iy3 in (C.6)), we have

|Lis] < IVSLn (X" +8)lloc,0 + 18" = 8™[[11 < V(7 + Ds - [VSLn(X" +8")[oo,00 - 8" = S*[lr,  (C.9)

where the first inequality holds because [(A, B)| < [|A| 0,00 - ||B]l1,1, and the second inequality follows from the
fact that S* — S* has at most (7' + 1)s nonzero entries. Therefore, plugging (C.7), (C.8) and (C.9) into (C.6),

we obtain the lower bound of I

* 1 * 2 2K* *
I > E2I8t - 8712 4 [P (Vs La(X! +8Y) — Vs Lo (X! +89)||5 — T |X! — X*[|3
8 2L2 H2
36(y + 1)Baroy
-—|
H2
Next, consider the term I in (C.5). We have

H'|[% -

2(v' +1)s . .
0D 90, (X" + 87 o e (©10)

Ir < 3|[Pa(VsLn(X' +8") — VsLy (X' + 8%) || + 3| Pa (Vs Ln (X! +8%) — Vs L, (X* + 8*) |7
+ 3| Pa(VsLn(X* + 89|13 (C.11)

As for the second term in (C.11]), according to the definition of Frobenius norm, we have
H’PQ(VsEn(Xt +S%) = Vs L, (X" + S*))||F = sup (Pq (Vsﬁn(Xt +S%) = Vs L, (X" + S*)),W)

IWi<1

= sup <Vs£n(Xt + S*) — Vsﬁn(x* + S*),PQ(W)>
IWi<1

<+ E) - X =X ||p - [Pa(W)|r

< (14 K) - X = X7, (C.12)

where the second equality holds because (Pq(A),B) = (A, Pq(B)), and the first inequality holds because of
Condition As for the last term in (C.11)), note that || < (29’ + 1)s, thus we have

IPa(VsLn(X* + 8|7 < (29 + 1)s]| Vs La (X" + 8713 oo (C.13)
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Therefore, plugging (C.12)) and (C.13)) into (C.11)), we obtain the upper bound of I

I < 3||Pa(VsLy(X! +8') — Vs L,(X" +8*) % + 3(1 + K)? - | X! — X*||%,
+3(29 4+ 1)s]| Vs Ln (X" +8")[1% - (C.14)

If we set the step size 7 < 1/(3L2), then by plugging (C.10) and (C.14)) into (C.5|), we have

00,00

Qo * 2T * * * *

8441 = 573 < (1= 27 ) 18" = S°I + Call X — X[+ CUlEE + ColVaalX” +8) s (€19
where C3 = 47K?/ps + 372(1 + K)?, Cy = 727(y + 1)Barcy /pa and Cs = 47(y' + 1)s/p2 + 37%(29' + 1)s. Thus
combining (C.2)), (C.4) and (C.15)), we obtain

IS = 8*[[7 < plIS" = S*[[F + C(7,7") - (CsIX* = X[ + Cal H|[F: + C5 [ Vs Lo (X + 8712 ),

which completes the proof. O

C.3 Proof of Lemma

In order to proof Lemma [B.3] we need to make use of the following lemma, which can be derived following the
standard proof of Lipschitz continuous gradient property [40].

Lemma C.4. Suppose the sample loss function £,, satisfies Conditions Given a fixed rank-r matrix X €
R%1 %42 then for any sparse matrices S;, Sy € R4 *% with cardinality at most 5, we have

Lo(X+81) > Ly(X+8S2) +(VsLn(X+82),S1 — S2)

1
+ 5 [Po(TsLa(X +81) = Vsl (X + S2))|[7

where Q C [d;] x [d] is an index set with cardinality at most § such that supp(S;) C Q and Pq is the projection
operator onto 2.

Now we are ready to prove Lemma

Proof of Lemma[B-3 Since the sample loss function £,, satisfies the restricted strong convexity Condition
we have

£a(X+85) > Lu(X+81) + (Vs £a(X +81),8; — S1) + 228, - 8, . (C.16)
According to Lemma [C.4] we have

L(X+81) > Ln(X+82) + (VsLy(X +8S2),S1 —Sz)
1
+ 57, [Pa(VsLa(X +81) — VsLo(X +S2)) |5 (C.17)

Therefore, combining (C.16)) and (C.17)), we obtain

(VsL,(X+8S1) — VsL,(X +S3),S1 — Sg) > %Hsl - So| %

1
+ 2—L2{|7>Q (VsLa(X +S1) — VsLu(X +S2)) |2,

which completes the proof. O
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D Proofs of Auxiliary Lemmas in Appendix

To begin with, we introduce the following notations for simplicity. Consider Z € Rﬁdl""h)w, for U € R %" and
V e R2X" and X = UV, we let Z = [U;V]. Let R = argming , [|Z — Z*R||p be the optimal rotation

)

regarding to Z, and H = Z — Z*R = [Hy; Hy] with Hy € R1*" and Hy € R%*".

Besides, we introduce the following projection metrics, which are essential for proving the following lemmas.
Denote by Uy, Uy, Us the left singular matrices of X, U, Hy respectively. Let U be the matrix spanned by the
column vectors of Uy, Uy and Usg, i.e.,

col(U) = span{U;, Us, Uz} = col(T1) + col(Ty) + col(Ts). (D.1)

It is easy to show that U is an orthonormal matrix with at most 3r columns. Here, the sum of two subspaces is

defined as Uy + Uy = {u; +us |u; € Uy, uy € Uy}, Similarly, denote by V1, Vg, V3 the right singular matrices
of X, V,Hy respectively. Again, let V be the matrix spanned by the column of Vi, Vy and V3, i.e.,

col(V) = span{ V1, Va, V3} = col(V1) + col(Vy) + col(V3), (D.2)
where the rank of V is at most 3r.
D.1 Proof of Lemma

Proof. Recall Z = [U; V]. We denote Z = [U; —V] € R(#1+92)%7 then we can rewrite the regularization term
[UTU-VTV|Z% as |ZTZ||% and its gradient with respect to Z as Vz(||[UT U~V ' V||%) = 4ZZ"Z. According
to the formula of VF,(Z,S) in (B.2)), we have
~ 1 ~~
(VzF,(Z,8),H) = (VuL,(UV'" +8),Hy) + (VvL,(UVT +8), Hy) +5 (ZZ'Z,H), (D.3)

Il I2

where Z = [U; —V], and Hy, Hy denote the top dy x 7 and bottom ds x r submatrices of H respectively. Note
that VuL,(UVT +8) = Vx£L,(X +S)V, and Vv £,(UVT +8) = [VxL, (X + S)]"U. Consider the term I;

in first, we have
I = (VxL,(X+8), UV’ —U*V*T + HyH},)
= (VxL,(X*+8),X — X* + HyH{,) + (Vx L, (X* +8S) — Vx L, (X* +S%),X — X* + HyH{,)
I 112
+ (VxLpy(X+8) - L,(X* +8),X - X* + HyHY,) . (D.4)

I3
In the following discussions, we are going to bound I11, I12 and I3 respectively. For the first term I1; in (D.4]),
we have
[L1] < IV La(XF + 87|z - (IIX = X*||« + [HuHy )
< [V La(X* + 872 - (V2r[IX = X¥[|F + V| HuHy | )

M1 %112 Ll 4 8r r * *\ 12
Myx - x “LiH I L(XF S92, D.
X XU+ e+ (5 + £ ) V(X + 5B (D.5)

IN

where the first inequality holds because of Von Neumann trace inequality, the second inequality is due to X — X*
has rank at most 2r and HyH{, has rank at most 7, and the last inequality holds because |HyH{||r <
[Hy| - [Hy||p < [|H||%/2 and 2ab < ta® + b? /¢, for any ¢ > 0. As for the second term I2 in (D.4)), note that
X - X* 4+ HUHJ has rank at most 3r, thus according to the structural Lipschitz gradient Condition we
have

2| <[(S = 8" X = X"+ HyHy)| + K[ X — X"+ HyHy||p - [S — 87| »

<|{S =8 X ~X")|+ IS =S| [[HyH} [|r + K[| X - X* + HyH} || |S — S*[|r

<SS =8 X=X+ —— I8 = S"[r- [HF + KX = X" - [IS = 87| (D.6)
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where the second inequality follows from triangle inequality and the fact that [(A,B)| < ||A]lF - ||B|lr, and
the last inequality is due to triangle inequality and the fact that |HyH{||r < |[Hyllr - [Hv|r < |H||%/2.
Therefore, it suffices to bound the first term [(S — S*, X — X*)|. Denote the support of S — S* by Q, then
according to our assumption, € has at most 5’ + 3 fraction nonzero entries per row and column. By Lemma 14
in [56], we further obtain

1+ K

Lo <[IS = S*[|r - [Po(UVT —UV*)|r + —5 I5=8"r [H[% + KX = X[z - IS =S|
7 * 1+K * * *
< VI8(B + B)aror|H|r - IS = 8%|[r + ——IS = S7[r - IH||% + K[| X = X*|[p - [|S = S*||r
M1 *(12 M2 2K? ) *12 (ﬂ —|—ﬂ)0&’)"0’1 2 (1+K)
<Mx-x +< T s sz BUERaroy gy BEE) g D.7
Al 52 > | 2 o [Hz + " =7 (D.7)

where the first inequality holds because |(A, Pq(B))| < ||Po(A )||F ||BHF7 and the second inequality is due to
Lemma 14 in [56] and the last inequality holds because 2ab < ta? + b?/t, for any t > O Finally, we consider the

last term [;3 in . Recall the orthonormal projection matrices U and V in and - According to
Lemma B.2 in [50], we have

1~
1
1 ~
| (VXLa(X +8) = VxLo(X* +8))VI[F + X - X7F. (D)
As for the remaining term in I3, we have

(VxLn(X +8) = VxLy (X" + 8) HuHy)| = (VxLn(X +8) — VxL,(X* +8), UU HyHY)|

1, ~
< SO (VXL (X +8) = VX La(X" +8))[|r - [[HI[%
I

1 = L
< 57 10T (VxLa(X +8) = VxLu(X* 4 S)[[; + LH[E (D.9)
1

where the equality is due to the fact that col(Us) C col(U), where Us is the left singular matrix of Hy, which
implies that UUTHy = Hy, the first inequality holds because |(A, BC)| < ||Al|r-|BC||r < |A]l#-||Bl2-ICllF
and ||U||2 = 1, and the last inequality holds because 2ab < ta® + b?/t, for any ¢ > 0. Similarly, we have

1 ~
{VKLn(X+S) — VxL,(X* + S),HUHT ) < f{| (VxLn(X +8) = VxLn,(X*+8)) V|- |H|F

. ~ L
< 2L [(VxL0(X +8) = VxLa(X™ +8)) V[F + — [H. (D.10)

Therefore, combining , and (D.10]), we obtain the lower bound of I3
iz > *llX XI5~ b HHH? (D.11)
Hence, combining (D.5| - ) and (| m, we further obtain the lower bound of I in

3/141 % 18(5/ + ﬂ)()é’f’O’l L1 (]. + K)2
Lz ==X =X |f - —————— | 5~ (o + ) [Hl%
H2 8 4po

L2 2 > 112 (87" r> . o112
(2 2N s sz o (3 ) e (X7 + 2. D.12
(2 [ ” ”F L I, ” X ( )HQ ( )

Besides, according to Lemma C.1 in [49], we obtain the following lower bound regarding I» in (D.3))

1.~ 1.~ 1.~ 1
I > EHZTZH% - §||ZTZHF HE = 127 Z)f - ZIIHH%- (D.13)
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Note that K € (0,1), by plugging (D.12) and (D.13)) into (D.3)), we have

~ 31 . 1, ~ 18(8' + B)araoy Li+1 1
(VaF(2,8). 1) > X e+ Lz - B O gy v ) e

|25 8 M2
1o 2K2> w12 (87" T) . (|2
(22 s stz - (4 D)k La(XT + 82 D.14
(22425 st - (4 L) I9xax +80)13 (0.14)

Furthermore, denote YA [U*; —V*], then we obtain the following result
|Z"Z||% = (22" — 2*2* ", 22" —Z*Z") + (Z*Z" ", ZZ") + (ZZ" , Z*Z*")
> <ZZT o Z>|<Z>¢<T7 ZZT o Z*z*T>
= U0 —U U T+ [[VVT = V'V L =2 X - X*||3, (D.15)

where the first equality follows from 777 = 0, and the inequality is due to the fact that (AAT BB') =
|ATB|% > 0. Therefore, by (D.15), we obtain

X - X5+ 12727 = 122" - 27277 ||F = 4(V2 - Do, |HI|F, (D.16)

where the inequality follows from Lemma 5.4 in [46] and the fact that 02(Z*) = 20,.(X*) = 20,. Denote
wy = min{pq, 2}, then by plugging (D.16)) into (D.14]), we obtain

~ 1 . 1.5 i 18(5" + B)aro;
(VaFo29). 1) > X - X[ + 612720 + (o - OO0
H2

Li+1 1> 4 (,ug 2K2> 9 <8r r> 9
- ) EE - (22 s st - (T D) ok L (X 4 892,
( 3 ) MBI F =) P =\ T 1) IVxEal )iz

which completes the proof. O
D.2 Proof of Lemma
Proof. According to the formula of VzF,(Z,$S) in (B.2)), we have

IV2Fn(Z,8)||F < 2(IVuLa(UVT + )5 +2VvL(UVT + S5+ [UTU-VTV|3-|Z]3,  (D.17)

where the inequality follows from the fact that ||A + B|% < 2||A||% + 2||B||%, |AB||r < ||A]2 - |B|r, and

max{||U|2, [|V]l2} < ||Z|2. Consider the first term |VyL,(UV T + S)||%. Denote X = UV T, then we have

VUL (UVT +8)|% < 3[|(VxLa(X +S) — VxLa(X* +8)) V][

Iy

+3[(VRLa(X* +8) — Vi Lo (X +87)) V|2 43 ||VxLo(X* + 89 V|2, (D.18)

Iz I3

where the inequality holds because Vy £, (UV T +8) = Vx£,(X+S)V and |[A+B+CJ||%2 < 3(|A[%Z +|B|% +
|C||%). In the following discussion, we are going to upper bound Iy,I5 and I3 separately. As for I1, according to
the orthonormal projection matrix V defined in (D.2)), we have
I = | (VxLa(X +8) = VxLu(X* +8))VVTV|?
* 112 \/
< (VxLa(X +8) = Vx Lo (X*+8)) V[, - [V VI3
. =12
< [(TxLa(X +8) — Vx£a(X" + ) V|- [VIE, (D.19)

where the equality holds because col(V) C col(\~7), which implies that VVTV = V, the first inequality is due
to the fact that ||[AB||r < ||A||F - |Bl2, and the last inequality holds because ||[AB||2 < ||A||2 - ||B||2 and the
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fact that V is orthonormal. Moreover, consider the second term I in (D.18). According to the definition of
Frobenius norm, we have

[(VxLn(X*4+8) = VL (X* +8")) V|, = sup ((VxLn(X*+8)—VxL,(X*+5%))V, W)

IWlr<1
< sup (L+K)-[S=S"|p [WVT|p

IWir<1
<1+ K)-[IS =S™[le - [V2 (D-20)

where the first inequality follows from the structural Lipschitz gradient Condition [£.4]and the fact that [(A, B)| <
|A]l7 - IB|lr, and the second one holds because ||[AB||r < ||A|/F - ||B]|2 and ||[W]|z < 1. Finally, consider the

last term I3 in (D.18)), we have
Iy < ||V La(X* + 893 [IVIF < rllVxLn(X + 83 V. (D.21)
Thus, combining (D.19)), (D.20) and (D.21f), we obtain

IVuLn(UVT +8)|% < 3[[(VxLa(X +S) — VxLa(X* +9) V% - [ VI3
+3(1+K)? - [[S = ™[5 - [ VI + 3r[[Vx La(X* +SY)3 - V][5 (D.22)

As for the second term ||V L, (UVT + 8)||% in (D.17)), based on similar techniques, we obtain

Vv L, (UVT +8)[% < 3]|[UT (VxLa(X +S) — Vx Lo (X* +9)) Hfm U3
+3(1+K)? |8 = S8*[|% - [[U13 + 3r[|[Vx La(X* + 873 - [U]3, (D.23)

where U is an orthonormal matrix defined in (D.1)). According to Lemma C.1 in [50] and Condition we have

I=|[(VXLn(X* +8S) = VxLa(X +9)) V|5 + [|[UT (VXL (X" +S) - VxLo(X +9))|[%
<AL (Lo(X*4+8) — Lo(X+8) — (Vx L, (X +8),X* — X)) <2LF - [|X — X*|3. (D.24)

Therefore, plugging (D.22)), (D.23) and (D.24)) into (D.17)), we obtain

V2P )% < (121X - X7+ 1200+ K 8 - S°I3 + [UTU - VTV ) - 213
+12r(|Vx L (X" +87)|3 - 1|23,
where the inequality holds because max{||U]||z, ||[V||2} < ||Z||2. Thus, we finish the proof. O

D.3 Proof of Lemma

Proof. Denote the support of 8* and T,5(S) by Q* and  respectively. According to the definition of the
truncation operator 7., we have

I755(8) = S*|I% = 1Pa(T55(S) = SY)IIF + [IPa-\a(Trs(S) — %)l
= [Pa(S — 8% + [Pa-\a(=S")II% (D.25)

where the second inequality holds because [T,5(S)];,; = Si ; if (¢,7) € ©, and [T,3(S)];,; = 0 otherwise. For any
(i,7) € Q*\ Q, we claim

(S —8"+8%),,] < max{ (S — 8%){1PR70R)| |(5 — g*)0Ph-hd)| } (D.26)
I I3

(k)

Bk )

in magnitude of (S — S*), ; by (S — S*)ikj) In the following discussion, we are going to prove claim (D.26]) by

where we denote the k-th largest element in magnitude of (S —S*); . by (S—S*);"/, and the k-th largest element
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contradiction. Suppose |(S — S* +S*); ;| = [S; ;| > max{I1, I}, where (i,7) € Q* \ Q. Noticing S* has at most
[B-fraction nonzero entries per row and column, we have

Il Z ’S;v*ﬁdzfﬁdz)’ and 12 Z ’Si7j-ﬁd175dl)|.

Thus we have |S; ;| > max{!SthZ_ﬂd?)L |S(7A6d1_5d1)|}7 which contradicts with the fact that (i,7) € Q*\ Q.

7,% *,7

Therefore, based on (D.26)), we obtain

IPoneS -8 +892 = > |(S—8"+89,[

(i,§)€Q"\Q
— Q*). 2 Qe 112
< ¥ ||((S Sl)zgd* 5 S ||((S Si);«(,ijﬂz
Gpeona T 2 Gpeonag T L
2 *
< ﬁHS - S*|1%, (D.27)

where the first inequality is due to (D.26)), and the second inequality holds because for each row and column of
Q*, it has at most -fraction nonzero elements. Thus we obtain

[Pa\a(=8)I% = [Pana(S = S*) = Pana(S — 8™+ 8%)|%
* 1 * *
<+ [PanalS - S+ (14 1) [PanialS - 8" + SV
c+1

* 2 *
< (1+c¢) - [Poaa(S—S9)%+ ﬁHS—S 1%, (D.28)

where the second inequality holds because |A +B||% < (14¢) - [|A]|% + (1 +1/c) - |B||%, for any ¢ > 0, and the

second inequality is due to (D.27)). Therefore, plugging in (D.28]) into (D.25)), we have

1 T25(S) = S* |7 < Pa(S = S")II5 + (1 +¢) - [|Pa-\a(S — 8)1F + v IS — s*[I%
2(c+ 1)) 9
<|(l4+c+—"—7%) S-S
(1+e+ Z550) 155718
2 2
(1+ 22/ 25) s -1,
where we set ¢ = y/(y — 1)/2 in the last step. Thus we complete the proof. O

E Proofs of Specific Models
In this section, we provide proofs for specific models. In the following discussions, we let d = max{d;, dz2}.
E.1 Proofs of Robust Matrix Sensing

For matrix sensing, recall that we have the linear measurement operator A with each sensing matrix A; sampled
independently from X-Gaussian ensemble, where vec(A;) ~ N(0,3). In particular, we consider ¥ =TI and here
vec(A;) denotes the vectorization of matrix A;. In order to prove the results for matrix sensing, we first lay out
several lemmas, which are essential to prove the results for robust matrix sensing. The first lemma is useful to
verify the restricted strong convexity and smoothness conditions in Condition

Lemma E.1. [37] Suppose we have the linear measurement operator A with each sensing matrix A; sampled
independently from I-Gaussian ensemble, then there exists constants cg,c; such that for all A € R%*% with
rank at most 27, it holds with probability at least 1 — exp(—con) that

AA)E 1 rd
AR 2 Jvec(a)]Z < e A2 (5.1)

The second lemma is useful to verify the restricted strong convexity and smoothness conditions in Condition
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Lemma E.2. [43] For any random matrix A € R"*%19 which is drawn from the ¥-Gaussian ensemble, and
the cardinalities of all vector s € R%1% satisfy |s| < 5. If we have sample size n > cz5logd, then the following
inequality holds with probability at least 1 — ¢35 exp(—cqn)

log d logd

As
e 151/28]3 — o6 22 o) < BASIE < o muvagyg 4 o 1B g

where {c;}5_, are universal constants.

The next lemma verifies the structural Lipschitz gradient condition in Condition [£.4}

Lemma E.3. Consider robust matrix sensing with objective loss function defined in section [£.2] There exist
constants Cp, C such that the following inequality holds with probability at least 1 — exp(—Cod)

(VX Ln(X*+8) = VxLn(X" +8%),X) = (S = 8", X)[ < K| X[ - ||S = S7||r,
[(VsLn(X +87) = Vs L, (X" +8%),8) — (X = X", S)[ < K[ X = X[ - [|S]

for all low-rank matrices X, X* with rank at most 7 and all sparse matrices S, S* with sparsity at most s, where
r,s are defined in Condition and the structural Lipschitz gradient parameter K = C1+/(rd + s)logd/n.

The last lemma verifies the condition in Condition [f25] for robust matrix sensing.

Lemma E.4. Consider robust matrix sensing, suppose each sensing matrix A, is sampled independently from
I-Gaussian ensemble and each element of noise vector € follows i.i.d. sub-Gaussian distribution with parameter
v. Then we have the following inequalities hold with probability at least 1 — C5/d in terms of spectral norm and

infinity norm respectively
d 1
< C’31/\/> and HZQA
5 n n

1 n

where Csy, C3, C4 are universal constants.

1
S C(ZJ:V Ogd7
n

00,00

Now, we are ready to prove Corollary

Proof of Corollary[{.11] In order to prove Corollary [£.11] we only need to verify the restricted strong convex
and smoothness conditions in Conditions [£.2] and [£.3] the structural Lipschitz gradient condition in Condition

4] and the condition in Condition [4

Recall that we have the sample loss function for robust matrix sensing as £, (X +S) := ||y — A.(X + S)||3/(2n).
Therefore, for all given sparse matrices S, we have the following holds for all matrices X, X5 with rank at most
F

A(A)))3
Lo(X14+8S)—L,(Xo+8S) = (VxL,(X2+8),Xs — X)) = w,
where A = X5 — X;. According to Lemma if we have n > ¢|7d, where ¢ is some constants. Then,
with probability at least 1 — exp(—con), we have the restricted strong convexity and smoothness conditions in
Condition hold with parameter pq = 4/9 and L; = 5/9. In addition, for all given low-rank matrices X, we
have the following holds for all matrices S1, S with sparsity at most 5

A 2
Lo(X +81) — Ln(X +S2) — (VsLn(X +S2),Ss — Sy) = w7

where A = S, —S;. Furthermore, we can obtain || A(A)||2 = [|Ad||%, where we have A € R"*%192 with each row
A;. = vec(A;), and § = vec(A). Therefore, according to Lemma [E.2] we have

log d log d

2
_1As)3 _
n

c1]|8]13 — 16l < < cs[|l3 + ca——]]1.
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Thus provided that n > ¢55logd, with probability at least 1 — c3 exp(—cyqn), the restricted strong convexity and
smoothness conditions in Condition hold with parameters po = 4/9 and Ly = 5/9.

Next, according to Lemma with probability at least 1 —exp(—Cyd), we can establish the structural Lipschitz
gradient condition in Condition |4.5| with parameter K = Cy+/(rd + s)logd/n.

Finally, we will verify the condition in Condition By the definition of the objective loss function for robust
matrix sensing, we have VxL,(X* + S*) = > "', A, /n and VsL,(X* +8*) = 31" | ¢;A;/n. Therefore,
according to Lemma ’ with probability at least 1 —C2/d, we can establish the condition in Condition {4.5( with
parameters €1 = Csvy/d/n and ea = Cqv/logd/n. This completes the proof. O

E.2 Proofs of Robust PCA

Note that since robust PCA under fully observed model is a special case of robust PCA under partially observed
model, thus we just lay out the proofs of robust PCA under partially observed model. To prove the results of
partially observed robust PCA, we need the following lemmas, which are essential to establish the restricted
strong convexity and smoothness conditions in Conditions [£:2] and [£:3] Note that the following lemmas only
work for robust PCA under noisy observation model.

Lemma E.5. [38] There exist universal constants {c; }%_, such that if the number of observations n > ¢irdlogd,
and the following condition is satisfied for all A € R *d2

didy |Allso,o 1A« _ 1
= < —+/n/(dlogd), (E.2)
Al (lAlls T e
we have, with probability at least 1 — ¢3/d, that the following holds

'IIA(A)IIQ Al | 1Al <1 . %Wldﬂmnm,m)
Vi V| = 10Vdd, VallAllr

Lemma E.6. There exist universal constants {¢;}7_; such that as long as n > ¢; log d, we have with probability
at least 1 — ¢y exp(—cs3logd) that

‘A(A)Iz |AlF
N

< LIAlle  eslAlle,
T 2/didy Vn

Vdids

where we have the set C(n) as follows

— A Rd1Xd2 H L, 5 < )
¢ { € Al 1Al =Y G logd

The next lemma verifies the structural Lipschitz gradient condition in Condition [£.4}

for all A € C(n), (E.3)

Lemma E.7. Consider partially observed robust PCA with objective loss function defined in sectionfd.2] There
exist constants Cp, Cy such that the following inequality holds with probability at least 1 — exp(—Coyd)
(VXLn(XT +8) = VXL, (X" +87),X) = (S = 8" X)| < K[ X[|r - [|S = 5" r,
(VsLa(X +8°) = VsLo(X* +8%),8) — (X — X*,8)| < KX — X |- IS]lr,

for all low-rank matrices X, X* with rank at most 7 and all sparse matrices S, S* with sparsity at most s, where
7,5 are defined in Condition and the structural Lipschitz gradient parameter K = C1+/(rd + s)logd/n.

The last lemma verifies the condition in Condition for partially observed robust PCA.

Lemma E.8. Consider partially observed robust PCA. If A, = eje] is uniformly distributed on Q, then for
i.i.d. zero mean random variables €;; with variance v, we have the following inequalities hold with probability
at least 1 — Cy/d in terms of spectral norm and infinity norm respectively

[dlogd 1
‘ < Csv 8 and H Z €Ak
p 2 p pjkGQ

1 logd
5> A g
where Cy, C3, Cy are universal constants, and p = n/(dyds).

S C441/ ’

00,00 p

7,keQ
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Now, we are ready to prove Corollary [4.15

Proof of Corollary[{.15 To prove Corollary £.15] we need to verify the restricted strong convexity and smooth-
ness conditions in Conditions and the structural Lipschitz gradient condition in Condition and the
condition in Condition [4.5

In the following discussion, we let A, = ejel,;'—7 where e;, e; are basis vectors with d; and d» dimensions, and we
let A be the corresponding transformation operator. In addition, let the number of observations to be |Q] = n.
Therefore, the objective loss function for robust PCA in[4.2) can be rewritten as

1
Lo(X+8) = o S (A X +8) - Vi)™
(3,k)eQ

Therefore, for all given sparse matrices S, we have the following holds for all matrices X1, Xo satisfying incoher-
ence condition with rank at most 7

A 2
Lo(X1+8) — L,(Xs+S) — (VxLn(Xs +8), X — X,) = ||A(p>”2,

where A = X; — Xo, and p = n/(d1ds). Now, we are ready to prove the restricted strong convexity and
smoothness conditions in Condition

Case 1: If A not satisfies condition (E.2)), then we have

dlogd
A% < Co(Vard Al AL 1%
dlogd
< 2Char v/ dida|| Al nf

_ dlog d
< 2C’oa1\/M||A||F\/?’

where @ = ar/+v/dids due to the incoherence condition of low rank matrices X; and Xs, and the last inequality
comes from rank(A) < 27. Thus, by the definition of 7, we can obtain

r2dlogd
Al < cla%fT. (E.4)

Case 2: If A satisfies condition (E.2)), then according to Lemma we have

NG 10 VilAllr

Thus if Cov/d1d2||Allse.c0/(V1]|AlF) > Cs, we have

~2

Q
A% < Cy—.
r p

Otherwise, if Cov/d1dz2||Allso.c0/(v/1]|AllF) < Cs, we have

s A _ 10
Slal < R < A,

which gives us the restricted strong convexity and smoothness conditions in Condition [{:2] with parameters
H1 = 8/9,L1 = 10/9

Next, we prove the restricted strong convexity and smoothness conditions in Condition[£:3} For all given low-rank
matrices X, we have the following holds for all matrices Sy, Sy with at most s nonzero entries and infinity norm

bound «y /v/d1ds

A 2
Lo(X+S1) — Ln(X +S2) — (VsLn(X +S2),S — ;) = ”v“(p)ﬂz’
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where A =Sy — So, and p = n/(d1ds).
Case 1: If A ¢ C(n), then we can get

logd
[A[F < Cs(Vdida||Allco,o) - [1A]1,14/

where the last inequality is due to the fact that || A|lcc = [|S1 — S2lleo < 2ai1/+/d1ds. Therefore, we can obtain

logd

)

logd
JAIE < 205 V5 Ay 22,

where the inequality holds because A has at most 25 nonzero entries. Therefore, by the definition of s, we have

2slogd

|A[f < Coad (E.5)

Case 2: If A € C(n), we have

A(A)[l2 5V d1da || A 00,00
VP volals

If Vol|Allr < CiVdidz||Allo,00, We can obtain [|A|% < Chai/n. Otherwise, if we have /n||Alp >
C7v/d1dz||Al|co,00, according to Lennna we obtain

1
—lAllr| < sllAlF+

8 |AA)Z _ 10
§||AH% < 72 < §||A||%,

which implies the restricted strong convexity and smoothness conditions in Condition hold with parameters
Mo = 8/9,L2 = 10/9

Next, according to Lernrna with probability at least 1 —exp(—Cod), we can establish the structural Lipschitz
gradient condition in Condition with parameter K = Cy+/(rd + s)logd/n.

Finally, we verify the condition in Condition By the definition of the objective loss function for robust
PCA, we have Vx L, (X* 4+ S8*) = Zj,keﬂ €ikAjk/p and VgL, (X* + 8*) = Zj,keQ €k A, /p, where ¢, are
ii.d. Gaussian variables with variance v?/(d;ds). Therefore, according to Lemma with probability at
least 1 — Cg/d, we have || 32, cq €jxAjk/pll5 < Cgv’dlogd/n. In addition, we have || > cq €jp A /Dl o0 <
Cov?logd/n. Furthermore, we have additional estimation error bounds and when we derive the
restricted strong convexity and smoothness conditions. Therefore, we can establish the condition in Condition

with parameters €3 = Cg max{a?,v?}d/n and €3 = Cy max{a?,v?}logd/n. This completes the proof. O

F Proofs of Technical Lemmas in Appendix
F.1 Proof of Lemma

Proof. In order to verify the structural Lipschitz gradient condition, we need to make use of the Bernstein-type
inequality for sub-exponential random variables in [47] as well as the corresponding covering arguments for
low-rank and sparse structures, respectively.

By the definition of the objective loss function of matrix sensing, we have

1 - 1
(VxLp(X* +8) — VxL,(X* 4+ 8%) - Z A;,S - 8)(A; X) =~ > v,

3

where Y; = (A;,S—S*)(A;,X). Note that (A;,S—S*), (A;, X) follow i.i.d. normal distribution N (0, ||S—S*||%)
and N (0, || X||%) respectively. Thus Y; follows i.i.d. chi-square distribution which is also sub-exponential. Besides,
E(Y;) = (S — S*,X), and we have

HE—EW

il <2[¥ill,, <20(A,S =Sy, - [{As X)lly, < 2C%(S = S*||p - [X][F = A
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where C' is a universal constant. Thus, by applying Proposition 5.16 in [47], for Y; — E[Y;], we obtain

IP’{ zn:%(yi —IE[Yi])‘ > t} < 2exp [—cmin (’;’f’?)]

i=1
According the covering argument for low-rank matrices Lemma 3.1 in [8] and covering number for sparse matrices
in [48], we have

]P’{ sup D (A5, S-S (AL X) - <s-s*,x>’ >t}
(S—S*)eNss, XeN3T 1

t2 nt
< 2N |INP | exp [— ¢, min (" n)]

A2
<9 9 (d1+dz+1)3r 62d1d2 CS o . Tlt2 nt
- . -exp | —cpmin | —, —
—\le cse Plma A2
. nt? nt
< exp |c3(rdlog(1/e) + smax{log d,log(1/€)}) — ¢; min SYADN < exp(—cd), (F.1)

where c1, ¢, c3 are constants, A = 2C2, and the first inequality follows from union bound, the second inequality
is due to the covering arguments, and the last inequality holds by setting ¢t = c44/(rd + s)logd/\/n. Besides,
note that for any X € Ms,, S € S* + M., there exists X; € N7, S; € S* + N such that |X — X4||p <€
and ||S — S1]|r < €. Thus, we have

n

1 1 —
- Ai7 - A27X - sz AZ7X
- > (A, 887 - ; S; — S*)( 1)

i=1

n

<

1 . 1 &
E;<Ai7s_s )AL X — X)) +’n ;<Aus_sl><AuX1>

<VIL1Lo||S — S*||F - |1 X = Xil|lr + VL1 L2||S — Si||lr - [|X1]|F < 2ey/L1 Lo, (F.2)

where the first inequality holds because of triangle inequality, and the second inequality follows from the restricted
strong smoothness condition for both low-rank and sparse structures. Similarly, we have

(S =8, X) = (S1 = 8" Xp)[ < [[S = 8™[|r - IX = Xq[[r + IS = S1lr - [X1l[r < 26 (F.3)
Therefore, combining (F.1J), (F.2) and (F.3)), by triangle inequality, we obtain

n

1
sup = Z<Ai’ S —S")A;,X)—(S—=S",X)| <t+2e\/L1Ls+ 2,

* n
(S—S*)eEMes, XEMs, |1 T

with probability at least 1 — exp(—c'd). We establish the incoherence condition by setting € = t/(2v/L1La + 2)
in . By similar techniques, we can prove the second inequality in Lemma E Note that we obtain

K= C\/ rd+ s)logd/n in Lemma O

F.2 Proof of Lemma
Proof. The first inequality in Lemma has been established in [37] Lemma 6. We provided the second
inequality using Bernstein-type inequality and Union Bound. Recall that, we have

n n

1 1
fE € :maxfg eAjk —max E
n < ik | T4
i=1 00,00 i=1
where we let Z¢, = ¢; A%, . Since Z%, are independent centered sub-exponential random variables for i = 1,...,n
jk jk* jk ) )

with max; || Z k||1/,1 < 2max; ||ez||¢2 ||Ajk||¢2 < 2v, according to Proposition 5.16 in [47], we have

— E exp | — > .
n P k 14
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Thus by union bound, we have

,nt2
max Z <2didsexp| — C'— )

Let t = Cyov/logd/n, we have the following inequality holds with probability at least 1 — C/d

1 « log d
HZQA < O/ 84
n =1 n

00,00

Thus, we complete the proof.
F.3 Proof of Lemma

The proof of this lemma is inspired by the proof of Theorem 1 in [38], and we extended it to the sparse case. In
order to prove Lemma we only need to prove the inequality (E.3)) holds with high probability. Specifically,
we consider the following event

[ASz _ lISl# | _ 1 HSIIF 32||S||o<>oo}
IS eln — < - + — 5.
{ a ‘ Vdidz |~ 2+/d vn

Therefore, we want to establish the probability for event E, and we need the following lemmas.

Lemma F.1. Consider the robust PCA under observation model in section for £ =1,2,..., we have
P(E¢) < exp(—cina® i?),

where we have

AS)ll2  [ISllF 5 ofp 328,00
={3SepB(af H - 2 35 + =0,
{ (@’p) | NG Vahdy | = 12 Vdid, NG
and
Ba) = {s e | Bl o2 |
dids — dldg

Proof of Lemma[E-6 The reminder of this proof is to derive the probability of the event E. In order to establish
the probability of the event E, we make use of the peeling argument of the Frobenius norm [|S||r. Let u =
cy/logd/n, and a = 6/5. For £ = 1,2, ..., we define the sets

¢

‘ i ISl o),
Vdidy — didy T Vdidy

Therefore, if the event F holds, there exist a matrix S that must belongs to Sy for some ¢ = 1,2, ... such that

S@::{SECTLS

JAS) s ISl [, LISl | 28l 10t 2S5 ot 52S
Vn Vdids 2 \/ddy Vvn T 2/dd, Vn 12 /dydy vnoo

where the last equality is due to the fact that « = 6/5.

Next, consider following events Ey, for £ =1,2,...

AS)[l2  ISllF 5 a‘u | 32||S]lso.00
E;:={38Se B ! - > + =2,
‘ { @u) | vn Vdidy | — 12 /dids vn
where we have the constraint set
S||r o’
B'(ap) = {s € C(n, ” < .
(a’p) (n,s) | TN
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Since S € S, implies that S € B(a‘y), we can get E C |J;2, E,. Therefore, we only need to upper bound the
probability P({J,2, E¢). In order to do so, we need upper bound the probability P(E,). According to Lemma
we have P(E;) < exp(—cina? u?). Therefore, we can obtain

o0 o0
< p( U Eg) ZP F) < 3 esp(eanay),
=1 = =1
Thus according to the inequality a < e, we can obtain

exp (—2cinp?loga)  exp(—cologd)

P(E) < Z ( — 20cynp® log a) 1—exp ( —2cinp?log a) T 1_exp(—calogd)’

{=1

where the last equality comes from the definition u = ¢y/logd/n, and this implies P(F) < c3gexp(—cologd). O

F.4 Proof of Lemma
Proof. The proof of this Lemma is similar to the proof of Lemmal[E.3] using Proposition 5.16 in [47] and covering
number argument, with probability at least 1 — exp(—ci1d), we can obtain the restricted Lipschitz gradient
condition in Condition With parameter K = co+/(rd + s)logd/n. O
F.5 Proof of Lemma

Proof. For the first inequality in Lemma it has been established in [38] Proposition 1. For the second
inequality in Lemma we use the similar proof as in the proof of Lemma By proposition 5.16 in [47] and
union bound, with probability at least 1 — C/d, we can obtain the required inequality. O

G Proof of Auxiliary Lemmas in Appendix
In order to prove Lemma we need the following lemmas.

Lemma G.1. We have the following holds with probability at least 1 — C exp(—CinD?)

AN 8
k=1...,N(D/8) vn Vdids

Lemma G.2. We have the following holds

D 32([8 00,00
= 8y/d1d> Jno

VUNTA
aepi)y Voo T 2y/didy’

where we have

D) = {A eR™® | |A]F <5,

and p(D) < D?/(cy/logd/n).

Proof of Lemma[F-1l The proof of this lemma is inspired by the proof of Lemma 3 in [38]. Note that since
the definition of the constraint set C(n) and E is invariant to rescaling of S, we can assume w.l.o.g. that
[IS]|s0,0c0 = 1/4/d1dz. Therefore, it is equivalent to consider following events

|’n S)o  ISle |, 3o 32 }
\/dldz 4\/d1d2 \/Tldldg

<2p(D), [|Aflo < 25},

{EISGB

where we have the constraint set

O T didy' didy T Vdidy

B(ap) = {S € C(n,s) |

< plas) .
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where p(a‘y) < (afu)?/(cy/logd/n). Define

IAGS)ll2— [1Sll»
Zn(afp) == sup - .
SeB(atu) \/ﬁ Vdids

For simplicity, we use D to denote oy in the following discussion. Therefore, we just need to prove the following
probability bound

3D 32
P( Z,(D) > + < —eynD?).
(24002 i + ) = vokewnd?

Suppose S!, ..., SV are a §—covering of B(D) in terms of Frobenius norm. Therefore, for any S € B(D), there
exist a matrix A € R4*% and some index k € {1,..., N(§)} satisfying S = S¥ + A, where |A||r < 6. Thus we
can obtain

IAS)l2  IISIle A +A)2  [S*+A|r

Vvn Vdidy Vn Vdids
~ JASYll2 n A2 [IS*Ilr | A]lr
T n Vn Vdide  /dids
< ’||«4(Sk)||2 CISFlE] L TAA) [l L5
N Vn Vdidsy Vn Vdids
In addition we can get
A2 lISllF | o ‘IIA(S'“)IIQ CISFlE] |, TAA) [l L
Vn Vdida| Vn Vdidz Vn Vdids
Therefore, we have
5 JASH2  IS*lr [A(A)]]2
Zn(D) < + — + sup ———-, G.1
(D) didy  k=1...N(5) Vn Vdids AEDIE(;) Vn (G-1)

where we have D(§) := {A € R4*% | |Alr < 6, |All11 < 2p(D), ||Allo < 2cs}. We establish the high
probability bound of (G.1]) with 6 = D/8. First, according to Lemma we have

JAS) > ISHe| . D 32l )
k=1....N(D/8) Vn Vdids |~ 8V/dids N
holds with probability at least 1 — cexp(—cinD?).
Next, according to Lemma[G.2} we have
A D
A _ -

sup < )
Aen(s) V1N 2v/d1ds

holds with probability at least 1 — cp exp(—cznD?).

Therefore, combining (G.2) and (G.3)), we can get

2.(D) < D N D N D +32||S||Oo,oo< 3D N 32
"N T8ddy  8Ydidy  2v/didy vn o T 4/didy  ndidy

holds with probability at least 1 — c3 exp(—cynD?), and the last inequality comes from that ||S||ec.co < 1/v/d1da.
O
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H Proofs of Auxiliary Lemmas in Appendix
H.1 Proof of Lemma

Proof. First, we prove that for a fixed matrix S, we have the following inequality holds

[AS)2 _ [ISlr g 32|S|oooo> < 2
— : —C1nd*).
( Vn didy| — Vdids " Vvn < Cop(~Cind’)

Since we have

A(S 1 1
IAS)z _ 1 Z(Ajk,S)Qz— sup sz ik S),

j,keQ f lwll2= 1] keQ

we consider

[AS)l2 _ Vdids 1
v/ dyd = E A, S)2=— E (vVdida A
1G2 \/ﬁ \/ﬁ j’keQ< gk > \f H‘Eth 1jkegw]k 1G2 ]k,

— sup w;k Yk,
fuwnz 1 2

J,keQ

where we have the random variables Y}, satisfying |Yji| = [(Vdid2A i, S)| < v/d1d2||S||so,00 = 1. Therefore,
according to lemma we have

P[4 _ LA

0 16
> +
vV d1d2 vV nd1d2

o

< e[S e[ s e o

Therefore, combining (H.1)) and (H.2|), we can obtain
( [AS)I2 ||S||F:|

) < Cexp(—C1nd?). (H.1)

In addition, we have

IS~ IA(S )Hz
\/d1d2 _]E|: TL

) 32
= +
\f vV d1d2 - d1d2 \/ndldg

Next, according to Lemma 4 in [38], there exists a —covering of B(D) such that

> < Cexp(—C1nd?).

log N(8) < C3(p(D)/8)? logd.
Therefore, we can get

JASHI2  [IS*Ir
Vvn Vididy

0 + 32
_\/d1d2 \/ndldz

< _ 2
L_le(D/s) }_Cexp( C1nd= +log N(9))

< Cexp(—Ciné* + Cs(p(D)/5)* log d).
Since we have § = D/8 and p(D) = C4yD?/+/logd/n, we can obtain

APz IS*Ir 6 328l
Jn Vdids| = Vdids Jn

which complete the proof. O

P _ g
[k—luwN(D/S) ]_CGXP( Cand®),
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H.2 Proof of Lemma

Proof. According to Lemma 5 in [38], we have following results

H sup V/didg HA ||2 - Vdida lAA ||2” > (5] < Cexp(—Cind?), (H.3)

AED(5) {AGD((S)

and

2
< [ sup +/dids lAA ”2]> <16\/d1d2|A||OOE{ sup Z Ein(Ajk, }4—(52

A€eD(5) AED() " ;ren
where ¢, are independent Rademacher variables. Furthermore, by the duality between norms, we can obtain

% Z (A, A) < H Z fgkAgk

J,keQ J,kEQ

)
00,00

1
Al < o )H” > GnAe
=

where the last inequality is due to the fact that A € D(4). Finally, we have

1 log d
Hn 42 EinAp, <C = (H.4)
7,keQ 00,00
To prove this, we use Hoeffding’s inequality and Union Bound. By the definition of A;, we can obtain
1 n
- zA - 7 —
n;g o max de el max Z
where we have Z;k = §Aj,. Thus we can get |Z;k| < |&] = 1, and we conclude that Z;k are independent
centered sub-Gaussian random variables for i = 1,...,n. Therefore, following the same procedure as in the proof
of Lemma we can obtain inequality (H.4). Therefore, we can obtain
IAA >||2]>2 |Allscce oy flogd & _ ., D
E|l su < C——=p(D + <C ,
< [Aeprz[s) Vn Vdids p(D) n dids dids
where the last inequality comes from the definition of p(D), ¢ and ||Al/cc,c0 < 2/+/d1d2. It implies that
A D
E[ sup [1ACA)ll2 )”2] <C'— (H.5)
AeD() VN Vdidy
Thus combining (H.3|) and ., we have
A D
1AL _
Aen(s) V1N 2y d1ds
holds with probability at least 1 — C exp(—C1nD?). O

I Other Auxiliary Lemmas

Lemma I.1. [3I] Consider independent random variables Y7, ...,Y, such that a; <Y; < b; fori=1,...,n. Let

t2(b; — ai)z)l ? < . Then, for any r > 0,

i=1"

where T is a family of vectors t € R™ such that o = sup,c (Y1
we have
2

r
P(|Z —mz| > 1) < dexp ( - @),
where myz is a median of Z. Furthermore, we have

|E(Z) —myz| <4y/mo and Var(Z) < 1602



