
A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery

A Additional Experiments

In this section, we present additional experimental results to verify the linear convergence rate, sample complexity,
and statistical rate of our proposed algorithm.

A.1 Robust Matrix Sensing

Our data are generated from the same procedure as described before. In addition, we study the same experimental
setting as before except we choose α = r, ν = 1, β = 0.1. Figure 2 summarized the experimental results for robust
matrix sensing. Figure 2(a) and 2(c) illustrate the relative error ‖X̂−X∗‖2F /‖X∗‖2F in log scale versus number
of iterations. Note that, we only lay out results under setting d1 = d2 = 100, r = 3 with number of observations
n = 0.2 ∗ d1d2 to avoid redundancy. These plots demonstrate the linear rate of convergence of our algorithm.
Figure 2(b) demonstrates the sample complexity requirement to achieve exact recovery for low-rank structure in

the noiseless setting. Note that we say X̂ achieves exact recovery if ‖X̂−X∗‖F /‖X∗‖F ≤ 10−3. It confirms our
theoretical results regarding the sample complexity. The statistical error for the low-rank matrix is demonstrated
in Figure 2(d), which is consistent with our result O(rd/n).
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Figure 2: Experimental results for robust matrix sensing. (a),(c) Relative error in log scale vs. number of
iterations in the noiseless and noisy settings respectively. (b) Recovering probability of low-rank matrix vs.
scaled sample size in the noiseless setting. (d) Relative error vs. scaled sample size in the noisy setting.

A.2 Robust PCA

We generate the data according to the same procedure as before. Furthermore, we consider the same experimental
settings as robust matrix sensing except. The experimental results for robust PCA are summarized in Figure 3.
In detail, Figures 3(a) and 3(c) report the squared estimation error ‖X̂−X∗‖2F /(d1d2) in log scale versus number
of iterations. Note that we only lay out the results under fully observed model with setting d1 = d2 = 200, r = 5,
because other settings will give us similar plots, and we leave them out for simplicity. The results verify the
linear convergence rate of our algorithm. In the noiseless setting, the sample complexity for achieving exactly
recovery of the low-rank matrix is illustrated in Figure 3(b). The result of recovery probability indicates the
sample complexity requirement n = O(rd log d) for robust PCA. Finally, Figure 3(d) demonstrates the statistical
error for the low-rank matrix, which is at the order O(rd log d/n). Although our theoretical results suggest
O(r2d log d) sample complexity and O(r2d log d) statistical error, the simulation results indicate that both the
sample complexity and the statistical error scale linearly with rd.
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Figure 3: Experimental results for robust PCA. (a),(c) Squared estimation error in log scale vs. number of
iterations in the noiseless and noisy settings respectively. (b) Recovering probability of low-rank matrix vs.
scaled sample size in the noiseless setting. (d) Squared relative error vs. scaled sample size in the noisy setting.
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B Proof of the Main Theory

In this section, we establish the proof of our main theory. Before proceeding any further, we introduce the
following notations. For any index set Ω ⊆ [d1] × [d2], let Ωi,∗ and Ω∗,j be the i-th row and j-th column of Ω
respectively. Denote the column and row space of A by col(A) and row(A) respectively. Let the top d1 × r and
bottom d2 × r matrices of any matrix A ∈ R(d1+d2)×r be AU and AV respectively. Let the nuclear norm of any
matrix A be ‖A‖∗. Denote Z = [U; V] ∈ R(d1+d2)×r, then according to (3.3), we reformulate the regularized
objective function as follows

F̃n(Z,S) = Fn(U,V,S) = Ln(UV> + S) +
1

8
‖U>U−V>V‖2F . (B.1)

Therefore, the corresponding gradient regarding to Z is as follows

∇ZF̃n(Z,S) =

[
∇ULn(UV> + S) + 1

2U(U>U−V>V)
∇VLn(UV> + S) + 1

2V(U>U−V>V)

]
. (B.2)

B.1 Proof of Theorem 4.6

In order to prove Theorem 4.6, we need to make use of the following lemmas. Since both low-rank and sparse
structures exist in our model, it is necessary to derive the convergence results for both structures. Lemma B.1,
proved in Section C.1 characterizes the convergence of the low rank structure, while Lemma B.2, proved in
Section C.2 corresponds to the convergence of the sparse structure.

Lemma B.1 (Convergence for Low-Rank Structure). Suppose the sample loss function Ln satisfies Conditions
4.2 and 4.4. Recall that X∗ = U∗V∗> is the unknown rank-r matrix that satisfies (3.1), S∗ is the unknown
s-sparse matrix with at most β-fraction nonzero entries per row and column. There exist constants c1, c2 and c3
such that if Zt ∈ B(c2

√
σr) with c2 ≤ min{1/4,

√
µ′1/[10(L1 + 1 + 8/µ2)]}, and we set the step size η = c1/σ1

with c1 ≤ min{1/32, µ1/(192L2
1)}, then the output of Algorithm 1 Zt = [Ut; Vt] satisfies

d2(Zt+1,Z∗) ≤ ρ1d
2(Zt,Z∗)− ηµ1

4
‖Xt −X∗‖2F + Γ1‖St − S∗‖2F + Γ2‖∇XLn(X∗ + S∗)‖22,

provided that β ≤ 1/(c3αrκ) with c3 ≥ 720(γ + 1)µ2/µ
′
1, where contraction parameter ρ1 = 1 − ηµ′1σr/40,

µ′1 = min{µ1, 2}, Γ1 = 48η2(1 +K)2σ1 + η(µ2 + 4K2/µ1), and Γ2 = 48η2rσ1 + 2η(8r/µ1 + r/L1).

Lemma B.2 (Convergence for Sparse Structure). Suppose the sample loss function Ln satisfies Conditions 4.3
and 4.4. Recall that X∗ is the unknown rank-r matrix, S∗ is the unknown s-sparse matrix. If we set the step
size τ ≤ 1/(3L2) and choose appropriate parameters γ, γ′, then the output of Algorithm 1 satisfies

‖St+1 − S∗‖2F ≤ ρ2‖St − S∗‖2F + Γ3‖Xt −X∗‖2F + Γ4‖Ht‖2F + Γ5‖∇SLn(X∗ + S∗)‖2∞,∞.

Here, ρ2 is the contraction parameter satisfying ρ2 = C(γ, γ′) · (1 − µ2τ/4) < 1, where C(γ, γ′) is defined in
Theorem 4.6, and Γ3,Γ4 and Γ5 are constants satisfying

Γ3 = C(γ, γ′) ·
(

4τK2

µ2
+ 3τ2(1 +K)2

)
, Γ4 = C(γ, γ′) · τ(γ + 1)βαrσ1

µ2
,

Γ5 = C(γ, γ′) ·
(

4τ(γ′ + 1)s

µ2
+ 3τ2(2γ′ + 1)s

)
.

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. Given a fixed step size τ , we set γ, γ′ such that γ′ ≥ 1 + 256/(µ2
2τ

2) and γ ≥ max{5, 1 +
642/(µ2τ)2}, then we obtain

ρ2 =

(
1 +

√
2

γ − 1

)2

·
(

1 +
2√
γ′ − 1

)
·
(

1− µ2τ

4

)
≤ 1− µ2τ

16
.
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Consider iteration stage t. According to Lemmas B.1 and B.2, we have

d2(Zt+1,Z∗) +
1

σ1
‖St+1 − S∗‖2F ≤

(
ρ1 +

Γ4

σ1

)
· d2(Zt,Z∗) +

1

σ1
(ρ2 + Γ1σ1) · ‖St − S∗‖2F

+

(
− ηµ1

4
+

Γ3

σ1

)
· ‖Xt −X∗‖2F + Γ2‖∇XLn(X∗ + S∗)‖22 +

Γ5

σ1
‖∇XLn(X∗ + S∗)‖2∞,∞.

Recall the formula of Γ1 and Γ3,Γ4 from Lemmas B.1 and B.2 respectively. Note that under condition η = c1/σ1

and β = c3/(αrκ), we can set c3 to be sufficiently small such that

Γ4 = C(γ, γ′) · τ(γ + 1)βαrσ1

µ2
≤ c1µ

′
1σr

80
,

where µ′1 = min{µ1, 2}, which implies that ρ1 + Γ4/σ1 ≤ 1 − ηµ′1σr/80. Besides, under condition that K is
sufficiently small, we can set c1 ≤ min{µ2/50, τ/96} such that the following inequality holds

Γ1σ1 = 48c21(1 +K)2 + c1

(
4K2

µ1
+ µ2

)
≤ 50c21 + 2c1µ2 ≤ 3µ2c1 ≤

µ2τ

32
. (B.3)

Finally, consider the formula of Γ3. Note that similarly we can set K to be small enough such that

Γ3 = C(γ, γ′) ·
(

4τK2

µ2
+ 3τ2(1 +K)2

)
≤ 4τ2,

thus as long as τ is sufficiently small, there exist c1 such that 16τ2/µ1 ≤ c1 ≤ min{µ2/50, τ/96}, which implies
Γ3 ≤ c1µ1/4 while ensuring (B.3) holds as well. Therefore, we obtain

d2(Zt+1,Z∗) +
1

σ1
‖St+1 − S∗‖2F ≤

(
1− ηµ′1σr

80

)
· d2(Zt,Z∗) +

1

σ1

(
1− µ2τ

32

)
· ‖St − S∗‖2F

+ Γ2‖∇XLn(X∗ + S∗)‖22 +
Γ5

σ1
‖∇SLn(X∗ + S∗)‖2∞,∞.

For simplicity, we denote D(Zt,St) = d2(Zt,Z∗) + ‖St − S∗‖2F /σ1, and ρ = max
{

1− ηµ′1σr/80, 1− µ2τ/32
}
∈

(0, 1), then we have

D(Zt+1,St+1) ≤ ρD(Zt,St) + Γ2‖∇XLn(X∗ + S∗)‖22 +
Γ5

σ1
‖∇SLn(X∗ + S∗)‖2∞,∞.

Recall the formula of Γ2 and Γ5 in Lemmas B.1 and B.2 respectively. Under Condition 4.5, we can always set
the sample size n to be large enough such that

Γ2‖∇XLn(X∗ + S∗)‖22 +
Γ5

σ1
‖∇SLn(X∗ + S∗)‖2∞,∞ ≤ Γ2ε

2
1(n, δ) +

Γ5

σ1
ε22(n, δ) ≤ (1− ρ)c22σr

holds with probability at least 1− δ. Thus as long as D(Z0,S0) ≤ c22σr, we have by induction D(Zt,St) ≤ c22σr
for any t ≥ 0, which implies Zt ∈ B(c2

√
σr), for any t ≥ 0. Hence, we obtain

D(Zt,St) ≤ ρtD(Z0,S0) +
Γ2

1− ρ
‖∇XLn(X∗ + S∗)‖22 +

Γ5

(1− ρ)σ1
‖∇SLn(X∗ + S∗)‖2∞,∞,

which completes the proof.

B.2 Proof of Theorem 4.8

In order to prove Theorem 4.8, we need to make use of the following lemma. Lemma B.3 characterizes a variation
of regularity condition for the sample loss function Ln with respect to the sparse structure, which is proved in
Section C.3.
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Lemma B.3. Suppose the sample loss function Ln satisfies Condition 4.3. Given a fixed rank-r matrix X, for
any sparse matrices S1,S2 ∈ Rd1×d2 with cardinality at most γ′s, we have

〈∇SLn(X + S1)−∇SLn(X + S2),S1 − S2〉 ≥
µ2

2
‖S1 − S2‖2F

+
1

2L2

∥∥PΩ

(
∇SLn(X + S1)−∇SLn(X + S2)

)∥∥2

F
,

where Ω ⊆ [d1]× [d2] is an index set with cardinality at most s̃ such that supp(S1) ⊆ Ω and PΩ is the projection
operator onto Ω.

Proof of Theorem 4.8. Consider a fixed iteration ` in Algorithm 2. As for the sparse structure, we have

S`+1 = Hλs(S` − τ ′∇SLn(X` + S`)).

Denote Ω′ = supp(S∗) ∪ supp(S`) ∪ supp(S`+1), then we have λs ≤ |Ω′| ≤ (2λ + 1)s. We further denote

S̃`+1 = PΩ′
(
S` − τ ′∇SLn(X` + S`)

)
, then we obtain S`+1 = Hλs(S̃`+1). Thus, according to Lemma 3.3 in [35],

we have

‖S`+1 − S∗‖2F ≤
(

1 +
2√
λ′ − 1

)
· ‖S̃`+1 − S∗‖2F . (B.4)

Therefore, it is sufficient to upper bound ‖S̃`+1 − S∗‖F for the sparse structure. We have

‖S̃`+1 − S∗‖F =
∥∥S` − S∗ − τ ′PΩ′

(
∇SLn(X` + S`)

)∥∥
F

≤ ‖S` − S∗ − τ ′PΩ′
(
∇SLn(X` + S`)−∇SLn(X` + S∗)

)∥∥
F︸ ︷︷ ︸

I1

+ τ ′ ‖PΩ′
(
∇SLn(X` + S∗)−∇SLn(X∗ + S∗)

)
‖F︸ ︷︷ ︸

I2

+τ ′ ‖PΩ′
(
∇SLn(X∗ + S∗)

)
‖F︸ ︷︷ ︸

I3

, (B.5)

where the second inequality follows from the triangle inequality. As for the first term I1 in (B.5), according to
Lemma B.3, we have

I2
1 ≤ (1− µ2τ

′) · ‖S` − S∗‖2F −
(
τ ′

L2
− τ ′2

)
· ‖PΩ′

(
∇SLn(X` + S`)−∇SLn(X` + S∗)

)
‖2F

≤ (1− µ2τ
′) · ‖S` − S∗‖2F , (B.6)

provided that τ ′ ≤ 1/L2. Consider the second term I2 in (B.5). Note that |Ω′| ≤ (2λ + 1)s, thus according to
the definition of Frobenius norm, we have

I2 = sup
‖W‖F≤1

〈
PΩ′

(
∇SLn(X` + S∗)−∇SLn(X∗ + S∗)

)
,W

〉
≤ sup
‖W‖F≤1

{
|〈X` −X∗,PΩ′(W)〉|+K‖X` −X∗‖F · ‖PΩ′(W)‖F

}
≤ ‖X` −X∗‖∞,∞ · ‖PΩ′(W)‖1,1 +K‖X` −X∗‖F ≤ 4ζ∗

√
λs+K‖X` −X∗‖F , (B.7)

where the first inequality follows from Condition 4.4, the second inequality holds because |〈A,B〉| ≤ ‖A‖1,1 ·
‖B‖∞,∞ and ‖PΩ′(W)‖F ≤ ‖W‖F ≤ 1, and the last inequality is due to the fact that ‖X`‖∞,∞ ≤ ζ∗, ‖X∗‖∞,∞ ≤
ζ∗ and the triangle inequality. And for the third term I3, we have

I3 ≤
√

(2λ+ 1)s · ‖∇SLn(X∗ + S∗)‖∞,∞. (B.8)

Therefore, plugging (B.6), (B.7) and (B.8) into (B.5), we obtain

‖S̃`+1 − S∗‖F ≤
√

1− µ2τ ′ · ‖S` − S∗‖F + τ ′K‖X` −X∗‖F + 2τ ′ζ∗
√
s

+ τ ′
√

(2λ+ 1)s · ‖∇SLn(X∗ + S∗)‖∞,∞. (B.9)



A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery

Hence, combining (B.4) and (B.9), we obtain the following result for sparse structure

‖S`+1 − S∗‖F ≤
(

1 +
2√
λ− 1

)
·
(√

1− µ2τ ′ · ‖S` − S∗‖F + τ ′K‖X` −X∗‖F
)

+ τ ′
(

1 +
2√
λ− 1

)
· (4ζ∗

√
λs+

√
3λs · ‖∇SLn(X∗ + S∗)‖∞,∞). (B.10)

Next, let us consider the low-rank structure. According to Algorithm 2, we have

X`+1 = Pλ′,ζ∗(X` − η′∇XLn(X` + S`)),

where the projection operator Pλ′,ζ∗ is defined as

Pλ′,ζ∗(X) = argmin
rank(Y)≤λ′r, ‖Y‖∞,∞≤ζ∗

‖Y −X‖F , for any X ∈ Rd1×d2 .

Let the singular value decomposition of X`,X`+1 be X` = U
`
Σ`V

`>
and X`+1 = U

`+1
Σ`+1V

`+1>
respectively.

Define the following subspace spanned by the column vectors of U
∗
,U

`
and U

`+1
as

span(Ũ) = span
{
U
∗
,U

`
,U

`+1}
= col(U

∗
) + col(U

`
) + col(U

`+1
),

where each column vector of Ũ is a basis vector of the above subspace. Similarly, we define the subspace spanned

by the column vectors of V
∗
,V

`
and V

`+1
as

span(Ṽ) = span
{
V
∗
,V

`
,V

`+1}
= col(V

∗
) + col(V

`
) + col(V

`+1
),

Note that X∗ has rank r, X` and X`+1 has rank at most λ′r, thus both Ũ and Ṽ have at most (2λ′ + 1)r
columns. Moreover, we further define the following subspace

A =
{
∆ ∈ Rd1×d2

∣∣ row(∆) ⊆ span(Ṽ) and col(∆) ⊆ span(Ũ)
}
.

Let ΠA be the projection operator onto A, then for any X ∈ Rd1×d2 , we have ΠA(X) = ŨŨ>XṼṼ>. Note that
for any X ∈ Rd1×d2 , we have rank

(
ΠA(X)

)
≤ (2λ′ + 1)r, since rank(AB) ≤ min{rank(A), rank(B)}. Besides,

we denote

X̃`+1 = X` − η′ΠA
(
∇XLn(X` + S`)

)
.

Similar to the proof of Theorem 5.9 in [49], we have X`+1 is actually the best rank-λ′r approximation of X̃`+1

satisfying the infinity norm constraint, or in other words, X`+1 = Pλ′,ζ∗(X̃`+1). Note that Pλ′,ζ∗(X∗) = X∗,
thus according to Lemma 3.18 in [35], we obtain

‖X`+1 −X∗‖2F = ‖Pλ′,ζ∗(X̃`+1)−X∗‖2F ≤
(

1 +
2√
λ′ − 1

)
· ‖X̃`+1 −X∗‖2F . (B.11)

Thus, it suffices to bound the term ‖X̃`+1−X∗‖F . Note that X∗ ∈ A, thus according to the triangle inequality,
we have

‖X̃`+1 −X∗‖F ≤ ‖X` −X∗ − η′ΠA(∇XLn(X` + S`)−∇XLn(X∗ + S`))‖F︸ ︷︷ ︸
I′1

+ η′ ‖ΠA(∇XLn(X∗ + S`)−∇XLn(X∗ + S∗))‖F︸ ︷︷ ︸
I′2

+η′ ‖ΠA(∇XLn(X∗ + S∗))‖F︸ ︷︷ ︸
I′3

. (B.12)

Consider I ′1 in (B.12) first. According to Lemma B.2 in [50], we have

I ′1
2 ≤ (1− η′µ1) · ‖X` −X∗‖2F , (B.13)
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provided that η′ ≤ 1/L1. As for the second term I ′2 in (B.12), by the definition of Frobenius norm, we have

I ′2 = sup
‖W‖F≤1

〈ΠA3r
(∇XLn(X∗ + S`)−∇XLn(X∗ + S∗)),W〉

≤ (1 +K) · ‖S` − S∗‖F · ‖ΠA(W)‖F ≤ (1 +K) · ‖S` − S∗‖F , (B.14)

where the first inequality holds because of Condition 4.4. As for I ′3, we have

I ′3 ≤
√

(2λ′ + 1)r · ‖ΠA(∇XLn(X∗ + S∗))‖2 ≤
√

(2λ′ + 1)r · ‖∇XLn(X∗ + S∗)‖2. (B.15)

Therefore, plugging (B.13), (B.14) and (B.15) into (B.12), we obtain

‖X̃`+1 −X∗‖F ≤
√

1− η′µ1 · ‖X` −X∗‖F + η′(1 +K) · ‖S` − S∗‖F + η′
√

3λr′‖∇XLn(X∗ + S∗)‖2. (B.16)

Finally, combining (B.11) and (B.16), we obtain the following result for low rank structure

‖X`+1 −X∗‖F ≤
(

1 +
2√
λ′ − 1

)
·
(√

1− η′µ1 · ‖X` −X∗‖F + η′(1 +K) · ‖S` − S∗‖F
)

+ η′
(

1 +
2√
λ′ − 1

)
·
√

3λ′r‖∇XLn(X∗ + S∗)‖2. (B.17)

Hence, combining (B.10) and (B.17), we obtain

‖X`+1 −X∗‖F + ‖S`+1 − S∗‖F ≤ ρ′1‖X` −X∗‖F + ρ′2‖S` − S∗‖F + 4
√
λτ ′
(

1 +
2√
λ− 1

)
· ζ∗
√
s

+ Γ1‖∇XLn(X∗ + S∗)‖2 + Γ2‖∇SLn(X∗ + S∗)‖∞,∞, (B.18)

where Γ1 = η′(1 + 2/
√
λ′ − 1)

√
3λ′r, Γ2 = τ ′(1 + 2/

√
λ− 1)

√
3λs, and contraction parameter ρ′1, ρ

′
2 are defined

in Theorem 4.8. Note that we set η′ = 1/(6µ1) ≤ 1/L1, τ ′ = 3/(4µ2) ≤ 1/L2, and we assume µ1 ≥ 1/3. Then
with sufficient large λ and λ′ and structural Lipschitz gradient parameter K small enough, we could guarantee
ρ′1, ρ

′
2 ∈ (0, 19/20). Plugging in the definition of ζ∗ = c0αrκ/

√
d1d2, we complete the proof by induction.

B.3 Proof of Theorem 4.9

Proof. To prove Theorem 4.9, it is sufficient to verify the assumption D(Z0,S0) ≤ c24σr in Theorem 4.6. Thus,
according to Theorem 4.8, it is sufficient to make sure the right hand side of (4.2) is small enough.

As for the optimization error, i.e., the first term on the R.H.S. of (4.2), we can perform L ≥ log{cσr/(2‖X∗‖F +
2‖S∗‖F }/ log(ρ′) iterations in Algorithm 2 to make sure the optimization error is sufficiently small such that
ρ′L · (‖X∗‖F + ‖S∗‖F ) ≤ cσr/2, where c = min{1/2, c4/4}.

On the other hand, for the statistical error, i.e., the last three terms on the R.H.S. of (4.2), we assume s ≤
cd1d2/(α

2r2κ2), where c is a small enough constant, and sample size n is sufficiently large such that Γ1
√
rε1(n, δ)+

Γ2
√
sε2(n, δ) ≤ cσr/4. Putting pieces together, we arrive at ‖X0−X∗‖F +‖S0−S∗‖F ≤ c ·σr. Finally, based on

Lemma 5.14 in [46], the initial assumption that D(Z0,S0) ≤ c24σr in Theorem 4.6 is satisfied, which completes
the proof.

C Proofs of Technical Lemmas

C.1 Proof of Lemma B.1

In order to prove Theorem B.1, we need to make use of the following lemmas. Lemma C.1 characterizes a local
curvature property of the low-rank structure, which gives us the lower bound of the inner product term. We
provide its proof in Section D.1. Lemma C.2, proved in Section D.2, characterizes a local smoothness property
of the low-rank structure and gives us an upper bound of the Frobenius term.

Lemma C.1 (Local Curvature Property for Low-Rank Structure). Suppose the sample loss function Ln satisfies
Conditions 4.2 and 4.4. Recall that X∗ = U∗V∗> is the unknown rank-r matrix that satisfies (3.1), and S∗ is
the unknown s-sparse matrix. Let Z ∈ R(d1+d2)×r be any matrix with Z = [U; V], where U ∈ Rd1×r, V ∈ Rd2×r
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satisfy ‖U‖2,∞ ≤ 2
√
αrσ1/d1 and ‖V‖2,∞ ≤ 2

√
αrσ1/d2. Let S ∈ Rd1×d2 be any matrix with at most β′-

fraction nonzero entries per row and column and satisfying ‖S‖0 ≤ s′ ≤ s̃. Denote the optimal rotation with

respect to Z by R = argminR̃∈Qr ‖Z− Z∗R̃‖F , and H = Z− Z∗R, then we have

〈∇ZF̃n(Z,S),H〉 ≥ µ1

4
‖X−X∗‖2F +

1

16
‖Z̃>Z‖2F +

(
µ′1
20
σr − C

)
· ‖H‖2F −

(
L1 + 1

8
+

1

µ2

)
· ‖H‖4F

−
(
µ2

2
+

2K2

µ1

)
· ‖S− S∗‖2F −

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22,

where X = UV>, µ′1 = min{µ1, 2}, and C = 18(β′ + β)αrσ1/µ2.

Lemma C.2 (Local Smoothness Property for Low-Rank Structure). Suppose the sample loss function Ln sat-
isfies Conditions 4.2 and 4.4. Recall that X∗ is the unknown rank-r matrix and S∗ is the unknown s-sparse
matrix. For any matrix Z = [U; V] ∈ R(d1+d2)×r and S ∈ Rd1×d2 with at most s′ nonzero entries satisfying
s′ ≤ s̃, we have

‖∇ZF̃n(Z,S)‖2F ≤
(

12L2
1‖X−X∗‖2F + 12(1 +K)2 · ‖S− S∗‖2F + ‖U>U−V>V‖2F

)
· ‖Z‖22

+ 12r‖∇XLn(X∗ + S∗)‖22 · ‖Z‖22,

where X = UV>.

Proof of Lemma B.1. Recall Z∗ = [U∗; V∗] and X∗ = U∗V∗>, where U∗ = U
∗
(Σ∗)1/2,V∗ = V

∗
(Σ∗)1/2, we

have ‖Z∗‖2 =
√

2σ1. According to our initial ball assumption Z0 ∈ B(
√
σr/4), there exists an orthogonal matrix

R ∈ Rr×r such that ‖Z0 − Z∗R‖F ≤
√
σr/4, thus we obtain

√
σ1 ≤ ‖Z∗‖2 − ‖Z0 − Z∗R‖2 ≤ ‖Z0‖2 ≤ ‖Z∗‖2 + ‖Z0 − Z∗R‖F ≤ 2

√
σ1.

Recall (3.1) and the definition of C1, C2 in (3.2), then it is obvious that U∗ ∈ C1 and V∗ ∈ C2. Consider a fixed
iteration stage t, we denote

Ũt+1 = Ut − η∇ULn(UtVt> + St)− 1

2
ηUt(Ut>Ut −Vt>Vt),

Ṽt+1 = Vt − η∇VLn(UtVt> + St)− 1

2
ηVt(Vt>Vt −Ut>Ut).

Denote Z̃t+1 = [Ũt+1; Ṽt+1], and Zt = [Ut; Vt], for any iteration stage t, then according to (B.2), we have

Z̃t+1 = Zt − η∇ZF̃n(Zt,St). Besides, according to Algorithm 1, we obtain

Ut+1 = PC1(Ũt+1) and Vt+1 = PC2(Ṽt+1).

Recall Z∗ = [U∗; V∗], and Rt = argminR∈Qr ‖Z
t −Z∗R‖F , for any t. Denote Ht = Z−Z∗Rt . Since C1, C2 are

both rotation-invariant constraint sets, and U∗ ∈ C1, V∗ ∈ C2, we have

d2(Zt+1,Z∗) ≤ ‖Zt+1 − Z∗Rt‖2F
≤ ‖Zt − η∇ZF̃n(Zt,St)− Z∗Rt‖2F
= d2(Zt,Z∗)− 2η〈∇ZF̃n(Zt,St),Ht〉+ η2‖∇ZF̃n(Zt,St)‖2F , (C.1)

where the first inequality follows from Definition 4.1, and the second inequality is due to the nonexpansive
property of projection PCi onto Ci, where i ∈ {1, 2}. Therefore, it suffices to lower bound the inner product term

〈∇ZF̃n(Zt,St),Ht〉 and upper bound the term ‖∇ZF̃n(Zt,St)‖2F , respectively. According to Algorithm 1, we
have (Ut,Vt) satisfies the condition of (U,V) in Lemma C.1, and St has at most γβ-fraction nonzero entries
per row and column with ‖S‖0 ≤ γ′s ≤ s̃. Denote Xt = UtVt>, then according to Lemma C.1, we obtain

〈∇ZF̃n(Zt,St),Ht〉 ≥ µ1

4
‖Xt −X∗‖2F +

1

16
‖Ut>Ut −Vt>Vt‖2F +

(
µ′1
20
σr − C

)
· ‖Ht‖2F

−
(
L1 + 1

8
+

1

µ2

)
· ‖Ht‖4F −

(
µ2

2
+

2K2

µ1

)
· ‖St − S∗‖2F −

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22,
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where µ′1 = min{µ1, 2}, and C = 18(γ + 1)βαrσ1/µ2. Besides, according to Lemma C.2, we have

‖∇ZF̃n(Zt,St)‖2F ≤
(

12L2
1‖Xt −X∗‖2F + 12(1 +K)2 · ‖St − S∗‖2F + ‖Ut>Ut −Vt>Vt‖2F

)
· ‖Zt‖22

+ 12r‖∇XLn(X∗ + S∗)‖22 · ‖Zt‖22.

Note that under the assumption of Zt ∈ B(c2
√
σr), where c2 ≤ 1/4, we have ‖Zt‖2 ≤ ‖Z∗Rt‖2 +‖Zt−Z∗Rt‖2 ≤

2
√
σ1, since ‖Z∗‖22 = 2σ1. Thus, if we set the step size η = c1/σ1, where c1 ≤ min{1/32, µ1/(192L2

1)}, and we
assume β ≤ 1/(c3αrκ) with c3 large enough such that c3 ≥ 720(γ + 1)µ2/µ

′
1, we have

−2η〈∇ZF̃n(Zt,St),Ht〉+ η2‖∇ZF̃n(Zt,St)‖2F ≤ −
ηµ1

4
‖Xt −X∗‖2F −

ηµ′1σr
20
‖Ht‖2F

+ η

(
L1 + 1

4
+

2

µ2

)
· ‖Ht‖4F + C1‖St − S∗‖2F + C2‖∇XLn(X∗ + S∗)‖22,

where C1 = 48η2(1 +K)2σ1 + η(µ2 + 4K2/µ1), and C2 = 48η2rσ1 + 2η(8r/µ1 + r/L1). Note that according to
our assumption, ‖Ht‖2F ≤ c22σr with c22 ≤ µ′1/[10(L1 + 1 + 8/µ2)], thus by (C.1), we obtain

d2(Zt+1,Z∗) ≤
(

1− ηµ′1σr
40

)
d2(Zt,Z∗)− ηµ1

4
‖Xt −X∗‖2F + C1‖St − S∗‖2F + C2‖∇XLn(X∗ + S∗)‖22,

which completes the proof.

C.2 Proof of Lemma B.2

In order to prove Lemma B.2, we need to utilize the following lemma. Inspired by [56], we present Lemma
C.3, which characterizes a nearly non-expansiveness property of the truncation operator Tθ, as long as θ is large
enough. We provides its proof in Section D.3 for completeness.

Lemma C.3. Suppose S∗ ∈ Rd1×d2 is the unknown sparse matrix with at most β-fraction nonzero entries per
row and column. For any matrix S ∈ Rd1×d2 , we have

‖Tγβ(S)− S∗‖2F ≤
(

1 +

√
2

γ − 1

)2

· ‖S− S∗‖2F ,

where γ > 1 is a parameter.

Now we are ready to prove Lemma B.2.

Proof of Lemma B.2. Consider a fixed iteration stage t. For the sparse structure, according to Algorithm 1, we
have

St+1 = Tγβ ◦ Hγ′s
(
St − τ∇SLn(UtVt> + St)

)
.

Denote S̄t+1 = Hγ′s
(
St − τ∇SLn(UtVt> + St)

)
, then we have St+1 = Tγβ(S̄t+1). To begin with according to

Lemma C.3, we have

‖St+1 − S∗‖2F = ‖Tγβ(S̄t+1)− S∗‖2F ≤
(

1 +

√
2

γ − 1

)2

· ‖S̄t+1 − S∗‖2F . (C.2)

Moreover, denote Ω = Ω∗ ∪Ωt ∪Ωt+1, where Ω∗ = supp(S∗), Ωt = supp(St) and Ωt+1 = supp(S̄t+1). Obviously,

the cardinality of Ω satisfies γ′s ≤ |Ω| ≤ (2γ′ + 1)s. Based on Ω, we define S̃t+1 as follows

S̃t+1 = PΩ

(
St − τ∇SLn(UtVt> + St)

)
= St − τPΩ

(
∇SLn(UtVt> + St)

)
, (C.3)

where PΩ is the projection operator onto the index set Ω. Note that Ωt+1 ⊆ Ω, thus we have S̄t+1 = Hγs(S̃t+1).
According to Lemma 3.3 in [35], we have

‖S̄t+1 − S∗‖2F ≤
(

1 +
2√
γ′ − 1

)
· ‖S̃t+1 − S∗‖2F . (C.4)
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Therefore, it is sufficient to upper bound ‖S̃t+1 − S∗‖2F . By (C.3), we have

‖S̃t+1 − S∗‖2F = ‖St − S∗‖2F − 2τ 〈∇SLn(Xt + St),St − S∗〉︸ ︷︷ ︸
I1

+τ2 ‖PΩ

(
∇SLn(Xt + St)

)
‖2F︸ ︷︷ ︸

I2

, (C.5)

where the equality holds because 〈PΩ(A),B〉 = 〈A,PΩ(B)〉. In the following discussions, we are going to bound
I1 and I2 respectively. Consider the term I1 first, we have

I1 = 〈∇SLn(Xt + St)−∇SLn(Xt + S∗),St − S∗〉︸ ︷︷ ︸
I11

+ 〈∇SLn(Xt + S∗)−∇SLn(X∗ + S∗),St − S∗〉︸ ︷︷ ︸
I12

+ 〈∇SLn(X∗ + S∗),St − S∗〉︸ ︷︷ ︸
I13

. (C.6)

As for the first term I11 in (C.6), according to Lemma B.3, we have

I11 ≥
µ2

2
‖St − S∗‖2F +

1

2L2

∥∥PΩ

(
∇SLn(Xt + St)−∇SLn(Xt + S∗)

)∥∥2

F
. (C.7)

Note that we have supp(St−S∗) ⊆ Ωt∪Ω∗, where Ωt∪Ω∗ has at most (γ+ 1)β-fraction nonzero entries per row
and column. Denote Rt as the optimal rotation with respect to Zt = [Ut; Vt], and Ht = Zt −Z∗Rt. According
to Condition 4.4, we obtain the bound of I12 in (C.6)

|I12| ≤ |〈Xt −X∗,St − S∗〉|+K‖Xt −X∗‖F · ‖St − S∗‖F
≤ ‖PΩt∪Ω∗(X

t −X∗)‖F · ‖St − S∗‖F +K‖Xt −X∗‖F · ‖St − S∗‖F
≤
√

18(γ + 1)βαrσ1‖Ht‖F · ‖St − S∗‖F +K‖Xt −X∗‖F · ‖St − S∗‖F , (C.8)

where the second inequality holds because |〈A,B〉| ≤ ‖A‖F · ‖B‖F , and the last inequality follows from Lemma
14 in [56]. As for the last term I13 in (C.6), we have

|I13| ≤ ‖∇SLn(X∗ + S∗)‖∞,∞ · ‖St − S∗‖1,1 ≤
√

(γ′ + 1)s · ‖∇SLn(X∗ + S∗)‖∞,∞ · ‖St − S∗‖F , (C.9)

where the first inequality holds because |〈A,B〉| ≤ ‖A‖∞,∞ · ‖B‖1,1, and the second inequality follows from the
fact that St − S∗ has at most (γ′ + 1)s nonzero entries. Therefore, plugging (C.7), (C.8) and (C.9) into (C.6),
we obtain the lower bound of I1

I1 ≥
µ2

8
‖St − S∗‖2F +

1

2L2

∥∥PΩ

(
∇SLn(Xt + St)−∇SLn(Xt + S∗)

)∥∥2

F
− 2K2

µ2
‖Xt −X∗‖2F

− 36(γ + 1)βαrσ1

µ2
‖Ht‖2F −

2(γ′ + 1)s

µ2
‖∇SLn(X∗ + S∗)‖2∞,∞. (C.10)

Next, consider the term I2 in (C.5). We have

I2 ≤ 3‖PΩ

(
∇SLn(Xt + St)−∇SLn(Xt + S∗

)
‖2F + 3‖PΩ

(
∇SLn(Xt + S∗)−∇SLn(X∗ + S∗

)
‖2F

+ 3‖PΩ

(
∇SLn(X∗ + S∗)‖2F (C.11)

As for the second term in (C.11), according to the definition of Frobenius norm, we have

‖PΩ

(
∇SLn(Xt + S∗)−∇SLn(X∗ + S∗)

)
‖F = sup

‖W‖≤1

〈PΩ

(
∇SLn(Xt + S∗)−∇SLn(X∗ + S∗)

)
,W〉

= sup
‖W‖≤1

〈∇SLn(Xt + S∗)−∇SLn(X∗ + S∗),PΩ(W)〉

≤ (1 +K) · ‖Xt −X∗‖F · ‖PΩ(W)‖F
≤ (1 +K) · ‖Xt −X∗‖F , (C.12)

where the second equality holds because 〈PΩ(A),B〉 = 〈A,PΩ(B)〉, and the first inequality holds because of
Condition 4.4. As for the last term in (C.11), note that |Ω| ≤ (2γ′ + 1)s, thus we have

‖PΩ

(
∇SLn(X∗ + S∗)‖2F ≤ (2γ′ + 1)s‖∇SLn(X∗ + S∗)‖2∞,∞. (C.13)
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Therefore, plugging (C.12) and (C.13) into (C.11), we obtain the upper bound of I2

I2 ≤ 3‖PΩ

(
∇SLn(Xt + St)−∇SLn(Xt + S∗

)
‖2F + 3(1 +K)2 · ‖Xt −X∗‖2F

+ 3(2γ′ + 1)s‖∇SLn(X∗ + S∗)‖2∞,∞. (C.14)

If we set the step size τ ≤ 1/(3L2), then by plugging (C.10) and (C.14) into (C.5), we have

‖S̃t+1 − S∗‖2F ≤
(

1− µ2τ

4

)
· ‖St − S∗‖2F + C3‖Xt −X∗‖2F + C4‖Ht‖2F + C5‖∇SLn(X∗ + S∗)‖2∞,∞, (C.15)

where C3 = 4τK2/µ2 + 3τ2(1 +K)2, C4 = 72τ(γ + 1)βαrσ1/µ2 and C5 = 4τ(γ′ + 1)s/µ2 + 3τ2(2γ′ + 1)s. Thus
combining (C.2), (C.4) and (C.15), we obtain

‖St+1 − S∗‖2F ≤ ρ‖St − S∗‖2F + C(γ, γ′) ·
(
C3‖Xt −X∗‖2F + C4‖Ht‖2F + C5‖∇SLn(X∗ + S∗)‖2∞,∞

)
,

which completes the proof.

C.3 Proof of Lemma B.3

In order to proof Lemma B.3, we need to make use of the following lemma, which can be derived following the
standard proof of Lipschitz continuous gradient property [40].

Lemma C.4. Suppose the sample loss function Ln satisfies Conditions 4.3. Given a fixed rank-r matrix X ∈
Rd1×d2 , then for any sparse matrices S1,S2 ∈ Rd1×d2 with cardinality at most s̃, we have

Ln(X + S1) ≥ Ln(X + S2) +
〈
∇SLn(X + S2),S1 − S2

〉
+

1

2L2

∥∥PΩ

(
∇SLn(X + S1)−∇SLn(X + S2)

)∥∥2

F
,

where Ω ⊆ [d1]× [d2] is an index set with cardinality at most s̃ such that supp(S1) ⊆ Ω and PΩ is the projection
operator onto Ω.

Now we are ready to prove Lemma B.3.

Proof of Lemma B.3. Since the sample loss function Ln satisfies the restricted strong convexity Condition 4.3,
we have

Ln(X + S2) ≥ Ln(X + S1) + 〈∇SLn(X + S1),S2 − S1〉+
µ2

2
‖S2 − S1‖2F . (C.16)

According to Lemma C.4, we have

Ln(X + S1) ≥ Ln(X + S2) +
〈
∇SLn(X + S2),S1 − S2

〉
+

1

2L2

∥∥PΩ

(
∇SLn(X + S1)−∇SLn(X + S2)

)∥∥2

F
. (C.17)

Therefore, combining (C.16) and (C.17), we obtain

〈∇SLn(X + S1)−∇SLn(X + S2),S1 − S2〉 ≥
µ2

2
‖S1 − S2‖2F

+
1

2L2

∥∥PΩ

(
∇SLn(X + S1)−∇SLn(X + S2)

)∥∥2

F
,

which completes the proof.
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D Proofs of Auxiliary Lemmas in Appendix C

To begin with, we introduce the following notations for simplicity. Consider Z ∈ R(d1+d2)×r, for U ∈ Rd1×r and
V ∈ Rd2×r, and X = UV>, we let Z = [U; V]. Let R = argminR̃∈Qr ‖Z − Z∗R̃‖F be the optimal rotation

regarding to Z, and H = Z− Z∗R = [HU ; HV ] with HU ∈ Rd1×r and HV ∈ Rd2×r.

Besides, we introduce the following projection metrics, which are essential for proving the following lemmas.
Denote by U1,U2,U3 the left singular matrices of X,U,HU respectively. Let Ũ be the matrix spanned by the
column vectors of U1,U2 and U3, i.e.,

col(Ũ) = span
{
U1,U2,U3

}
= col(U1) + col(U2) + col(U3). (D.1)

It is easy to show that Ũ is an orthonormal matrix with at most 3r columns. Here, the sum of two subspaces is
defined as U1 + U2 = {u1 + u2 |u1 ∈ U1,u2 ∈ U2}. Similarly, denote by V1,V2,V3 the right singular matrices

of X,V,HV respectively. Again, let Ṽ be the matrix spanned by the column of V1,V2 and V3, i.e.,

col(Ṽ) = span
{
V1,V2,V3

}
= col(V1) + col(V2) + col(V3), (D.2)

where the rank of Ṽ is at most 3r.

D.1 Proof of Lemma C.1

Proof. Recall Z = [U; V]. We denote Z̃ = [U;−V] ∈ R(d1+d2)×r, then we can rewrite the regularization term

‖U>U−V>V‖2F as ‖Z̃>Z‖2F and its gradient with respect to Z as ∇Z(‖U>U−V>V‖2F ) = 4Z̃Z̃>Z. According

to the formula of ∇F̃n(Z,S) in (B.2), we have

〈∇ZF̃n(Z,S),H〉 = 〈∇ULn(UV> + S),HU 〉+ 〈∇VLn(UV> + S),HV 〉︸ ︷︷ ︸
I1

+
1

2
〈Z̃Z̃>Z,H〉︸ ︷︷ ︸

I2

, (D.3)

where Z̃ = [U;−V], and HU ,HV denote the top d1 × r and bottom d2 × r submatrices of H respectively. Note
that ∇ULn(UV> + S) = ∇XLn(X + S)V, and ∇VLn(UV> + S) = [∇XLn(X + S)]>U. Consider the term I1
in (D.3) first, we have

I1 = 〈∇XLn(X + S),UV> −U∗V∗> + HUH>V 〉
= 〈∇XLn(X∗ + S∗),X−X∗ + HUH>V 〉︸ ︷︷ ︸

I11

+ 〈∇XLn(X∗ + S)−∇XLn(X∗ + S∗),X−X∗ + HUH>V 〉︸ ︷︷ ︸
I12

+ 〈∇XLn(X + S)− Ln(X∗ + S),X−X∗ + HUH>V 〉︸ ︷︷ ︸
I13

. (D.4)

In the following discussions, we are going to bound I11, I12 and I13 respectively. For the first term I11 in (D.4),
we have

|I11| ≤ ‖∇XLn(X∗ + S∗)‖2 ·
(
‖X−X∗‖∗ + ‖HUH>V ‖∗

)
≤ ‖∇XLn(X∗ + S∗)‖2 ·

(√
2r‖X−X∗‖F +

√
r‖HUHV ‖F )

≤ µ1

16
‖X−X∗‖2F +

L1

16
‖H‖4F +

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22, (D.5)

where the first inequality holds because of Von Neumann trace inequality, the second inequality is due to X−X∗

has rank at most 2r and HUH>V has rank at most r, and the last inequality holds because ‖HUH>V ‖F ≤
‖HU‖ · ‖HV ‖F ≤ ‖H‖2F /2 and 2ab ≤ ta2 + b2/t, for any t > 0. As for the second term I12 in (D.4), note that
X − X∗ + HUH>V has rank at most 3r, thus according to the structural Lipschitz gradient Condition 4.4, we
have

|I12| ≤ |〈S− S∗,X−X∗ + HUH>V 〉|+K‖X−X∗ + HUH>V ‖F · ‖S− S∗‖F
≤ |〈S− S∗,X−X∗〉|+ ‖S− S∗‖F · ‖HUH>V ‖F +K‖X−X∗ + HUH>V ‖F · ‖S− S∗‖F

≤ |〈S− S∗,X−X∗〉|+ 1 +K

2
‖S− S∗‖F · ‖H‖2F +K‖X−X∗‖F · ‖S− S∗‖F , (D.6)
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where the second inequality follows from triangle inequality and the fact that |〈A,B〉| ≤ ‖A‖F · ‖B‖F , and
the last inequality is due to triangle inequality and the fact that ‖HUH>V ‖F ≤ ‖HU‖F · ‖HV ‖F ≤ ‖H‖2F /2.
Therefore, it suffices to bound the first term |〈S − S∗,X − X∗〉|. Denote the support of S − S∗ by Ω, then
according to our assumption, Ω has at most β′ + β fraction nonzero entries per row and column. By Lemma 14
in [56], we further obtain

|I12| ≤ ‖S− S∗‖F · ‖PΩ(UV> −UV∗)‖F +
1 +K

2
‖S− S∗‖F · ‖H‖2F +K‖X−X∗‖F · ‖S− S∗‖F

≤
√

18(β′ + β)αrσ1‖H‖F · ‖S− S∗‖F +
1 +K

2
‖S− S∗‖F · ‖H‖2F +K‖X−X∗‖F · ‖S− S∗‖F

≤ µ1

8
‖X−X∗‖2F +

(
µ2

2
+

2K2

µ1

)
· ‖S− S∗‖2F +

18(β′ + β)αrσ1

µ2
‖H‖2F +

(1 +K)2

4µ2
‖H‖4F , (D.7)

where the first inequality holds because |〈A,PΩ(B)〉| ≤ ‖PΩ(A)‖F · ‖B‖F , and the second inequality is due to
Lemma 14 in [56], and the last inequality holds because 2ab ≤ ta2 + b2/t, for any t > 0. Finally, we consider the

last term I13 in (D.4). Recall the orthonormal projection matrices Ũ and Ṽ in (D.1) and (D.2). According to
Lemma B.2 in [50], we have

〈∇XLn(X + S)−∇XLn(X∗ + S),X−X∗〉 ≥ 1

4L1
‖Ũ>(∇XLn(X + S)−∇XLn(X∗ + S))‖2F

+
1

4L1
‖(∇XLn(X + S)−∇XLn(X∗ + S))Ṽ‖2F +

µ1

2
‖X−X∗‖2F . (D.8)

As for the remaining term in I13, we have

|〈∇XLn(X + S)−∇XLn(X∗ + S),HUH>V 〉| = |〈∇XLn(X + S)−∇XLn(X∗ + S), ŨŨ>HUH>V 〉|

≤ 1

2

∥∥Ũ>(∇XLn(X + S)−∇XLn(X∗ + S)
)
‖F · ‖H‖2F

≤ 1

2L1

∥∥Ũ>(∇XLn(X + S)−∇XLn(X∗ + S)
∥∥2

F
+
L1

8
‖H‖4F , (D.9)

where the equality is due to the fact that col(U3) ⊆ col(Ũ), where U3 is the left singular matrix of HU , which

implies that ŨŨ>HU = HU , the first inequality holds because |〈A,BC〉| ≤ ‖A‖F ·‖BC‖F ≤ ‖A‖F ·‖B‖2 ·‖C‖F
and ‖Ũ‖2 = 1, and the last inequality holds because 2ab ≤ ta2 + b2/t, for any t > 0. Similarly, we have

|〈∇XLn(X + S)−∇XLn(X∗ + S),HUH>V 〉| ≤
1

2

∥∥(∇XLn(X + S)−∇XLn(X∗ + S)
)
Ṽ‖F · ‖H‖2F

≤ 1

2L1

∥∥(∇XLn(X + S)−∇XLn(X∗ + S)
)
Ṽ‖2F +

L1

8
‖H‖4F . (D.10)

Therefore, combining (D.8), (D.9) and (D.10), we obtain the lower bound of I13

I13 ≥
µ1

2
‖X−X∗‖2F −

L1

8
‖H‖4F . (D.11)

Hence, combining (D.5), (D.7) and (D.11), we further obtain the lower bound of I1 in (D.3)

I1 ≥
3µ1

8
‖X−X∗‖2F −

18(β′ + β)αrσ1

µ2
‖H‖2F −

(
L1

8
+

(1 +K)2

4µ2

)
· ‖H‖4F

−
(
µ2

2
+

2K2

µ1

)
· ‖S− S∗‖2F −

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22. (D.12)

Besides, according to Lemma C.1 in [49], we obtain the following lower bound regarding I2 in (D.3)

I2 ≥
1

2
‖Z̃>Z‖2F −

1

2
‖Z̃>Z‖F · ‖H‖2F ≥

1

4
‖Z̃>Z‖2F −

1

4
‖H‖4F . (D.13)
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Note that K ∈ (0, 1), by plugging (D.12) and (D.13) into (D.3), we have

〈∇ZF̃n(Z,S),H〉 ≥ 3µ1

8
‖X−X∗‖2F +

1

8
‖Z̃>Z‖2F −

18(β′ + β)αrσ1

µ2
‖H‖2F −

(
L1 + 1

8
+

1

µ2

)
· ‖H‖4F

−
(
µ2

2
+

2K2

µ1

)
· ‖S− S∗‖2F −

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22. (D.14)

Furthermore, denote Z̃∗ = [U∗;−V∗], then we obtain the following result

‖Z̃>Z‖2F = 〈ZZ> − Z∗Z∗>, Z̃Z̃> − Z̃∗Z̃∗>〉+ 〈Z∗Z∗>, Z̃Z̃>〉+ 〈ZZ>, Z̃∗Z̃∗>〉

≥ 〈ZZ> − Z∗Z∗>, Z̃Z̃> − Z̃∗Z̃∗>〉
= ‖UU> −U∗U∗>‖2F + ‖VV> −V∗V∗>‖2F − 2‖X−X∗‖2F , (D.15)

where the first equality follows from Z̃∗>Z∗ = 0, and the inequality is due to the fact that 〈AA>,BB>〉 =
‖A>B‖2F ≥ 0. Therefore, by (D.15), we obtain

4‖X−X∗‖2F + ‖Z̃>Z‖2F = ‖ZZ> − Z∗Z∗>‖2F ≥ 4(
√

2− 1)σr‖H‖2F , (D.16)

where the inequality follows from Lemma 5.4 in [46] and the fact that σ2
r(Z∗) = 2σr(X

∗) = 2σr. Denote
µ′1 = min{µ1, 2}, then by plugging (D.16) into (D.14), we obtain

〈∇ZF̃n(Z,S),H〉 ≥ µ1

4
‖X−X∗‖2F +

1

16
‖Z̃>Z‖2F +

(
µ′1
20
σr −

18(β′ + β)αrσ1

µ2

)
· ‖H‖2F

−
(
L1 + 1

8
+

1

µ2

)
· ‖H‖4F −

(
µ2

2
+

2K2

µ1

)
· ‖S− S∗‖2F −

(
8r

µ1
+

r

L1

)
· ‖∇XLn(X∗ + S∗)‖22,

which completes the proof.

D.2 Proof of Lemma C.2

Proof. According to the formula of ∇ZF̃n(Z,S) in (B.2), we have

‖∇ZF̃n(Z,S)‖2F ≤ 2‖∇ULn(UV> + S)‖2F + 2‖∇VLn(UV> + S)‖2F + ‖U>U−V>V‖2F · ‖Z‖22, (D.17)

where the inequality follows from the fact that ‖A + B‖2F ≤ 2‖A‖2F + 2‖B‖2F , ‖AB‖F ≤ ‖A‖2 · ‖B‖F , and
max{‖U‖2, ‖V‖2} ≤ ‖Z‖2. Consider the first term ‖∇ULn(UV> + S)‖2F . Denote X = UV>, then we have

‖∇ULn(UV> + S)‖2F ≤ 3
∥∥(∇XLn(X + S)−∇XLn(X∗ + S)

)
V
∥∥2

F︸ ︷︷ ︸
I1

+ 3
∥∥(∇XLn(X∗ + S)−∇XLn(X∗ + S∗)

)
V
∥∥2

F︸ ︷︷ ︸
I2

+3
∥∥∇XLn(X∗ + S∗)V

∥∥2

F︸ ︷︷ ︸
I3

, (D.18)

where the inequality holds because ∇ULn(UV>+S) = ∇XLn(X+S)V and ‖A+B+C‖2F ≤ 3(‖A‖2F +‖B‖2F +
‖C‖2F ). In the following discussion, we are going to upper bound I1,I2 and I3 separately. As for I1, according to

the orthonormal projection matrix Ṽ defined in (D.2), we have

I1 =
∥∥(∇XLn(X + S)−∇XLn(X∗ + S)

)
ṼṼ>V

∥∥2

F

≤
∥∥(∇XLn(X + S)−∇XLn(X∗ + S)

)
Ṽ
∥∥2

F
· ‖Ṽ>V‖22

≤
∥∥(∇XLn(X + S)−∇XLn(X∗ + S)

)
Ṽ
∥∥2

F
· ‖V‖22, (D.19)

where the equality holds because col(V) ⊆ col(Ṽ), which implies that ṼṼ>V = V, the first inequality is due
to the fact that ‖AB‖F ≤ ‖A‖F · ‖B‖2, and the last inequality holds because ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 and the
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fact that Ṽ is orthonormal. Moreover, consider the second term I2 in (D.18). According to the definition of
Frobenius norm, we have∥∥(∇XLn(X∗ + S)−∇XLn(X∗ + S∗)

)
V
∥∥
F

= sup
‖W‖F≤1

〈
(
∇XLn(X∗ + S)−∇XLn(X∗ + S∗)

)
V,W〉

≤ sup
‖W‖F≤1

(1 +K) · ‖S− S∗‖F · ‖WV>‖F

≤ (1 +K) · ‖S− S∗‖F · ‖V‖2, (D.20)

where the first inequality follows from the structural Lipschitz gradient Condition 4.4 and the fact that |〈A,B〉| ≤
‖A‖F · ‖B‖F , and the second one holds because ‖AB‖F ≤ ‖A‖F · ‖B‖2 and ‖W‖F ≤ 1. Finally, consider the
last term I3 in (D.18), we have

I3 ≤ ‖∇XLn(X∗ + S∗)‖22 · ‖V‖2F ≤ r‖∇XLn(X∗ + S∗)‖22 · ‖V‖22. (D.21)

Thus, combining (D.19), (D.20) and (D.21), we obtain

‖∇ULn(UV> + S)‖2F ≤ 3
∥∥(∇XLn(X + S)−∇XLn(X∗ + S)

)
Ṽ
∥∥2

F
· ‖V‖22

+ 3(1 +K)2 · ‖S− S∗‖2F · ‖V‖22 + 3r‖∇XLn(X∗ + S∗)‖22 · ‖V‖22. (D.22)

As for the second term ‖∇VLn(UV> + S)‖2F in (D.17), based on similar techniques, we obtain

‖∇VLn(UV> + S)‖2F ≤ 3
∥∥Ũ>(∇XLn(X + S)−∇XLn(X∗ + S)

)∥∥2

F
· ‖U‖22

+ 3(1 +K)2 · ‖S− S∗‖2F · ‖U‖22 + 3r‖∇XLn(X∗ + S∗)‖22 · ‖U‖22, (D.23)

where Ũ is an orthonormal matrix defined in (D.1). According to Lemma C.1 in [50] and Condition 4.2, we have

I =
∥∥(∇XLn(X∗ + S)−∇XLn(X + S)

)
Ṽ
∥∥2

F
+
∥∥Ũ>(∇XLn(X∗ + S)−∇XLn(X + S)

)∥∥2

F

≤ 4L1

(
Ln(X∗ + S)− Ln(X + S)− 〈∇XLn(X + S),X∗ −X〉

)
≤ 2L2

1 · ‖X−X∗‖2F . (D.24)

Therefore, plugging (D.22), (D.23) and (D.24) into (D.17), we obtain

‖∇ZF̃n(Z,S)‖2F ≤
(

12L2
1‖X−X∗‖2F + 12(1 +K)2 · ‖S− S∗‖2F + ‖U>U−V>V‖2F

)
· ‖Z‖22

+ 12r‖∇XLn(X∗ + S∗)‖22 · ‖Z‖22,

where the inequality holds because max{‖U‖2, ‖V‖2} ≤ ‖Z‖2. Thus, we finish the proof.

D.3 Proof of Lemma C.3

Proof. Denote the support of S∗ and Tγβ(S) by Ω∗ and Ω respectively. According to the definition of the
truncation operator Tα, we have

‖Tγβ(S)− S∗‖2F = ‖PΩ(Tγβ(S)− S∗)‖2F + ‖PΩ∗\Ω(Tγβ(S)− S∗)‖2F
= ‖PΩ(S− S∗)‖2F + ‖PΩ∗\Ω(−S∗)‖2F , (D.25)

where the second inequality holds because [Tγβ(S)]i,j = Si,j if (i, j) ∈ Ω, and [Tγβ(S)]i,j = 0 otherwise. For any
(i, j) ∈ Ω∗ \ Ω, we claim

∣∣(S− S∗ + S∗)i,j
∣∣ ≤ max

{ ∣∣(S− S∗)
(γβd2−βd2)
i,∗

∣∣︸ ︷︷ ︸
I1

,
∣∣(S− S∗)

(γβd1−βd1)
∗,j

∣∣︸ ︷︷ ︸
I2

}
, (D.26)

where we denote the k-th largest element in magnitude of (S−S∗)i,∗ by (S−S∗)
(k)
i,∗ , and the k-th largest element

in magnitude of (S − S∗)∗,j by (S − S∗)
(k)
∗,j . In the following discussion, we are going to prove claim (D.26) by
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contradiction. Suppose
∣∣(S− S∗ + S∗)i,j

∣∣ = |Si,j | > max{I1, I2}, where (i, j) ∈ Ω∗ \Ω. Noticing S∗ has at most
β-fraction nonzero entries per row and column, we have

I1 ≥
∣∣S(γβd2−βd2)
i,∗

∣∣ and I2 ≥
∣∣S(γβd1−βd1)
∗,j

∣∣.
Thus we have |Si,j | ≥ max

{∣∣S(γβd2−βd2)
i,∗

∣∣, ∣∣S(γβd1−βd1)
∗,j

∣∣}, which contradicts with the fact that (i, j) ∈ Ω∗ \ Ω.
Therefore, based on (D.26), we obtain

‖PΩ∗\Ω(S− S∗ + S∗)‖2F =
∑

(i,j)∈Ω∗\Ω

∣∣(S− S∗ + S∗)i,j
∣∣2

≤
∑

(i,j)∈Ω∗\Ω

‖(S− S∗)i,∗‖22
(γ − 1)βd2

+
∑

(i,j)∈Ω∗\Ω

‖(S− S∗)∗,j‖22
(γ − 1)βd1

≤ 2

γ − 1
‖S− S∗‖2F , (D.27)

where the first inequality is due to (D.26), and the second inequality holds because for each row and column of
Ω∗, it has at most β-fraction nonzero elements. Thus we obtain

‖PΩ∗\Ω(−S∗)‖2F = ‖PΩ∗\Ω(S− S∗)− PΩ∗\Ω(S− S∗ + S∗)‖2F

≤ (1 + c) · ‖PΩ∗\Ω(S− S∗)‖2F +

(
1 +

1

c

)
· ‖PΩ∗\Ω(S− S∗ + S∗)‖2F

≤ (1 + c) · ‖PΩ∗\Ω(S− S∗)‖2F +
c+ 1

c
· 2

γ − 1
‖S− S∗‖2F , (D.28)

where the second inequality holds because ‖A + B‖2F ≤ (1 + c) · ‖A‖2F + (1 + 1/c) · ‖B‖2F , for any c > 0, and the
second inequality is due to (D.27). Therefore, plugging in (D.28) into (D.25), we have

‖Tγβ(S)− S∗‖2F ≤ ‖PΩ(S− S∗)‖2F + (1 + c) · ‖PΩ∗\Ω(S− S∗)‖2F +
c+ 1

c
· 2

γ − 1
‖S− S∗‖2F

≤
(

1 + c+
2(c+ 1)

c(γ − 1)

)
· ‖S− S∗‖2F

=

(
1 +

2

γ − 1
+ 2

√
2

γ − 1

)
· ‖S− S∗‖2F ,

where we set c =
√

(γ − 1)/2 in the last step. Thus we complete the proof.

E Proofs of Specific Models

In this section, we provide proofs for specific models. In the following discussions, we let d = max{d1, d2}.

E.1 Proofs of Robust Matrix Sensing

For matrix sensing, recall that we have the linear measurement operator A with each sensing matrix Ai sampled
independently from Σ-Gaussian ensemble, where vec(Ai) ∼ N(0,Σ). In particular, we consider Σ = I and here
vec(Ai) denotes the vectorization of matrix Ai. In order to prove the results for matrix sensing, we first lay out
several lemmas, which are essential to prove the results for robust matrix sensing. The first lemma is useful to
verify the restricted strong convexity and smoothness conditions in Condition 4.2.

Lemma E.1. [37] Suppose we have the linear measurement operator A with each sensing matrix Ai sampled
independently from I-Gaussian ensemble, then there exists constants c0, c1 such that for all ∆ ∈ Rd1×d2 with
rank at most 2r̃, it holds with probability at least 1− exp(−c0n) that∣∣∣∣‖A(∆)‖22

n
− 1

2

∥∥vec(∆)
∥∥2

2

∣∣∣∣ ≤ c1 r̃dn ∥∥∆∥∥2

F
. (E.1)

The second lemma is useful to verify the restricted strong convexity and smoothness conditions in Condition 4.3.
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Lemma E.2. [43] For any random matrix A ∈ Rn×d1d2 , which is drawn from the Σ-Gaussian ensemble, and
the cardinalities of all vector s ∈ Rd1d2 satisfy |s| ≤ s̃. If we have sample size n ≥ c2s̃ log d, then the following
inequality holds with probability at least 1− c3 exp(−c4n)

c5‖Σ1/2s‖22 − c6
log d

n
‖s‖1 ≤

‖As‖22
n

≤ c7‖Σ1/2s‖22 + c8
log d

n
‖s‖1,

where {ci}8i=2 are universal constants.

The next lemma verifies the structural Lipschitz gradient condition in Condition 4.4.

Lemma E.3. Consider robust matrix sensing with objective loss function defined in section 4.2. There exist
constants C0, C1 such that the following inequality holds with probability at least 1− exp(−C0d)

|〈∇XLn(X∗ + S)−∇XLn(X∗ + S∗),X〉 − 〈S− S∗,X〉| ≤ K‖X‖F · ‖S− S∗‖F ,
|〈∇SLn(X + S∗)−∇SLn(X∗ + S∗),S〉 − 〈X−X∗,S〉| ≤ K‖X−X∗‖F · ‖S‖F ,

for all low-rank matrices X,X∗ with rank at most r̃ and all sparse matrices S,S∗ with sparsity at most s̃, where
r̃, s̃ are defined in Condition 4.2, and the structural Lipschitz gradient parameter K = C1

√
(rd+ s) log d/n.

The last lemma verifies the condition in Condition 4.5 for robust matrix sensing.

Lemma E.4. Consider robust matrix sensing, suppose each sensing matrix Ai is sampled independently from
I-Gaussian ensemble and each element of noise vector ε follows i.i.d. sub-Gaussian distribution with parameter
ν. Then we have the following inequalities hold with probability at least 1−C2/d in terms of spectral norm and
infinity norm respectively∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
2

≤ C3ν

√
d

n
and

∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
∞,∞

≤ C4ν

√
log d

n
,

where C2, C3, C4 are universal constants.

Now, we are ready to prove Corollary 4.11.

Proof of Corollary 4.11. In order to prove Corollary 4.11, we only need to verify the restricted strong convex
and smoothness conditions in Conditions 4.2 and 4.3, the structural Lipschitz gradient condition in Condition
4.4, and the condition in Condition 4.5.

Recall that we have the sample loss function for robust matrix sensing as Ln(X + S) := ‖y−An(X + S)‖22/(2n).
Therefore, for all given sparse matrices S, we have the following holds for all matrices X1,X2 with rank at most
r̃

Ln(X1 + S)− Ln(X2 + S)− 〈∇XLn(X2 + S),X2 −X1〉 =
‖A(∆)‖22

n
,

where ∆ = X2 − X1. According to Lemma E.1, if we have n > c′1r̃d, where c′ is some constants. Then,
with probability at least 1 − exp(−c0n), we have the restricted strong convexity and smoothness conditions in
Condition 4.2 hold with parameter µ1 = 4/9 and L1 = 5/9. In addition, for all given low-rank matrices X, we
have the following holds for all matrices S1,S2 with sparsity at most s̃

Ln(X + S1)− Ln(X + S2)− 〈∇SLn(X + S2),S2 − S1〉 =
‖A(∆)‖22

n
,

where ∆ = S2−S1. Furthermore, we can obtain ‖A(∆)‖22 = ‖Aδ‖22, where we have A ∈ Rn×d1d2 with each row
Ai∗ = vec(Ai), and δ = vec(∆). Therefore, according to Lemma E.2, we have

c1‖δ‖22 − c2
log d

n
‖δ‖1 ≤

‖Aδ‖22
n

≤ c3‖δ‖22 + c4
log d

n
‖δ‖1.
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Thus provided that n > c5s̃ log d, with probability at least 1− c3 exp(−c4n), the restricted strong convexity and
smoothness conditions in Condition 4.3 hold with parameters µ2 = 4/9 and L2 = 5/9.

Next, according to Lemma E.3, with probability at least 1−exp(−C0d), we can establish the structural Lipschitz
gradient condition in Condition 4.5 with parameter K = C1

√
(rd+ s) log d/n.

Finally, we will verify the condition in Condition 4.5. By the definition of the objective loss function for robust
matrix sensing, we have ∇XLn(X∗ + S∗) =

∑n
i=1 εiAi/n and ∇SLn(X∗ + S∗) =

∑n
i=1 εiAi/n. Therefore,

according to Lemma E.4, with probability at least 1−C2/d, we can establish the condition in Condition 4.5 with
parameters ε1 = C3ν

√
d/n and ε2 = C4ν

√
log d/n. This completes the proof.

E.2 Proofs of Robust PCA

Note that since robust PCA under fully observed model is a special case of robust PCA under partially observed
model, thus we just lay out the proofs of robust PCA under partially observed model. To prove the results of
partially observed robust PCA, we need the following lemmas, which are essential to establish the restricted
strong convexity and smoothness conditions in Conditions 4.2 and 4.3. Note that the following lemmas only
work for robust PCA under noisy observation model.

Lemma E.5. [38] There exist universal constants {ci}4i=1 such that if the number of observations n ≥ c1rd log d,
and the following condition is satisfied for all ∆ ∈ Rd1×d2√

d1d2

r

‖∆‖∞,∞
‖∆‖F

· ‖∆‖∗
‖∆‖F

≤ 1

c2

√
n/(d log d), (E.2)

we have, with probability at least 1− c3/d, that the following holds∣∣∣∣‖A(∆)‖2√
n

− ‖∆‖F√
d1d2

∣∣∣∣ ≤ 1

10

‖∆‖F√
d1d2

(
1 +

c4
√
d1d2‖∆‖∞,∞√
n‖∆‖F

)
.

Lemma E.6. There exist universal constants {ci}5i=1 such that as long as n ≥ c1 log d, we have with probability
at least 1− c2 exp(−c3 log d) that∣∣∣∣‖A(∆)‖2√

n
− ‖∆‖F√

d1d2

∣∣∣∣ ≤ 1

2

‖∆‖F√
d1d2

+
c5‖∆‖∞,∞√

n
for all ∆ ∈ C(n), (E.3)

where we have the set C(n) as follows

C(n) =

{
∆ ∈ Rd1×d2 | ‖∆‖1,1

‖∆‖F
· ‖∆‖∞,∞
‖∆‖F

≤ c4
√

n

d1d2 log d

}
.

The next lemma verifies the structural Lipschitz gradient condition in Condition 4.4.

Lemma E.7. Consider partially observed robust PCA with objective loss function defined in section4.2. There
exist constants C0, C1 such that the following inequality holds with probability at least 1− exp(−C0d)

|〈∇XLn(X∗ + S)−∇XLn(X∗ + S∗),X〉 − 〈S− S∗,X〉| ≤ K‖X‖F · ‖S− S∗‖F ,
|〈∇SLn(X + S∗)−∇SLn(X∗ + S∗),S〉 − 〈X−X∗,S〉| ≤ K‖X−X∗‖F · ‖S‖F ,

for all low-rank matrices X,X∗ with rank at most r̃ and all sparse matrices S,S∗ with sparsity at most s̃, where
r̃, s̃ are defined in Condition 4.2, and the structural Lipschitz gradient parameter K = C1

√
(rd+ s) log d/n.

The last lemma verifies the condition in Condition 4.5 for partially observed robust PCA.

Lemma E.8. Consider partially observed robust PCA. If Ajk = eje
>
k is uniformly distributed on Ω, then for

i.i.d. zero mean random variables εjk with variance ν2, we have the following inequalities hold with probability
at least 1− C2/d in terms of spectral norm and infinity norm respectively∥∥∥∥1

p

∑
j,k∈Ω

εjkAjk

∥∥∥∥
2

≤ C3ν

√
d log d

p
and

∥∥∥∥1

p

∑
jk∈Ω

εjkAjk

∥∥∥∥
∞,∞

≤ C4ν

√
log d

p
,

where C2, C3, C4 are universal constants, and p = n/(d1d2).
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Now, we are ready to prove Corollary 4.15.

Proof of Corollary 4.15. To prove Corollary 4.15, we need to verify the restricted strong convexity and smooth-
ness conditions in Conditions 4.2 and 4.3, the structural Lipschitz gradient condition in Condition 4.4, and the
condition in Condition 4.5.

In the following discussion, we let Ajk = eje
>
k , where ei, ej are basis vectors with d1 and d2 dimensions, and we

let A be the corresponding transformation operator. In addition, let the number of observations to be |Ω| = n.
Therefore, the objective loss function for robust PCA in 4.2 can be rewritten as

Ln(X + S) :=
1

2p

∑
(j,k)∈Ω

(
〈Ajk,X + S〉 − Yjk

)2
.

Therefore, for all given sparse matrices S, we have the following holds for all matrices X1,X2 satisfying incoher-
ence condition with rank at most r̃

Ln(X1 + S)− Ln(X2 + S)− 〈∇XLn(X2 + S),X2 −X1〉 =
‖A(∆)‖22

p
,

where ∆ = X1 − X2, and p = n/(d1d2). Now, we are ready to prove the restricted strong convexity and
smoothness conditions in Condition 4.2.

Case 1: If ∆ not satisfies condition (E.2), then we have

‖∆‖2F ≤ C0

(√
d1d2‖∆‖∞

)
‖∆‖∗

√
d log d

nr

≤ 2C0α1

√
d1d2‖∆‖∗

√
d log d

nr

≤ 2C0α1

√
2r̃d1d2‖∆‖F

√
d log d

nr
,

where α̃ = αr/
√
d1d2 due to the incoherence condition of low rank matrices X1 and X2, and the last inequality

comes from rank(∆) ≤ 2r̃. Thus, by the definition of r̃, we can obtain

‖∆‖2F ≤ C1α
2σ2

1

r2d log d

n
. (E.4)

Case 2: If ∆ satisfies condition (E.2), then according to Lemma E.5, we have∣∣∣∣‖A(∆)‖2√
p

− ‖∆‖F
∣∣∣∣ ≤ ‖∆‖F10

(
1 +

C2

√
d1d2‖∆‖∞,∞√
n‖∆‖F

)
.

Thus if C2

√
d1d2‖∆‖∞,∞/(

√
n‖∆‖F ) ≥ C3, we have

‖∆‖2F ≤ C4
α̃2

p
.

Otherwise, if C2

√
d1d2‖∆‖∞,∞/(

√
n‖∆‖F ) ≤ C3, we have

8

9
‖∆‖2F ≤

‖A(∆)‖22
p

≤ 10

9
‖∆‖2F ,

which gives us the restricted strong convexity and smoothness conditions in Condition 4.2 with parameters
µ1 = 8/9, L1 = 10/9.

Next, we prove the restricted strong convexity and smoothness conditions in Condition 4.3. For all given low-rank
matrices X, we have the following holds for all matrices S1,S2 with at most s̃ nonzero entries and infinity norm
bound α1/

√
d1d2

Ln(X + S1)− Ln(X + S2)− 〈∇SLn(X + S2),S2 − S1〉 =
‖A(∆)‖22

p
,
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where ∆ = S1 − S2, and p = n/(d1d2).

Case 1: If ∆ /∈ C(n), then we can get

‖∆‖2F ≤ C5

(√
d1d2‖∆‖∞,∞

)
· ‖∆‖1,1

√
log d

n
≤ 2C5α1‖∆‖1,1

√
log d

n
,

where the last inequality is due to the fact that ‖∆‖∞ = ‖S1 − S2‖∞ ≤ 2α1/
√
d1d2. Therefore, we can obtain

‖∆‖2F ≤ 2C5

√
2s̃α1‖∆‖F

√
log d

n
,

where the inequality holds because ∆ has at most 2s̃ nonzero entries. Therefore, by the definition of s̃, we have

‖∆‖2F ≤ C6α
2
1

s log d

n
. (E.5)

Case 2: If ∆ ∈ C(n), we have∣∣∣∣‖A(∆)‖2√
p

− ‖∆‖F
∣∣∣∣ ≤ 1

2
‖∆‖F +

c5
√
d1d2‖∆‖∞,∞√
n‖∆‖F

,

If
√
n‖∆‖F ≤ C7

√
d1d2‖∆‖∞,∞, we can obtain ‖∆‖2F ≤ C ′7α

2
1/n. Otherwise, if we have

√
n‖∆‖F ≥

C7

√
d1d2‖∆‖∞,∞, according to Lemma E.6, we obtain

8

9
‖∆‖2F ≤

‖A(∆)‖22
p

≤ 10

9
‖∆‖2F ,

which implies the restricted strong convexity and smoothness conditions in Condition 4.3 hold with parameters
µ2 = 8/9, L2 = 10/9.

Next, according to Lemma E.7, with probability at least 1−exp(−C0d), we can establish the structural Lipschitz
gradient condition in Condition 4.5 with parameter K = C1

√
(rd+ s) log d/n.

Finally, we verify the condition in Condition 4.5. By the definition of the objective loss function for robust
PCA, we have ∇XLn(X∗ + S∗) =

∑
j,k∈Ω εjkAjk/p and ∇SLn(X∗ + S∗) =

∑
j,k∈Ω εjkAjk/p, where εjk are

i.i.d. Gaussian variables with variance ν2/(d1d2). Therefore, according to Lemma E.8, with probability at
least 1 − C ′8/d, we have ‖

∑
j,k∈Ω εjkAjk/p‖22 ≤ C8ν

2d log d/n. In addition, we have ‖
∑
jk∈Ω εjkAjk/p‖2∞,∞ ≤

C9ν
2 log d/n. Furthermore, we have additional estimation error bounds (E.4) and (E.5) when we derive the

restricted strong convexity and smoothness conditions. Therefore, we can establish the condition in Condition
4.5 with parameters ε21 = C8 max{α2

1, ν
2}d/n and ε22 = C9 max{α2

1, ν
2} log d/n. This completes the proof.

F Proofs of Technical Lemmas in Appendix E

F.1 Proof of Lemma E.3

Proof. In order to verify the structural Lipschitz gradient condition, we need to make use of the Bernstein-type
inequality for sub-exponential random variables in [47] as well as the corresponding covering arguments for
low-rank and sparse structures, respectively.

By the definition of the objective loss function of matrix sensing, we have

〈∇XLn(X∗ + S)−∇XLn(X∗ + S∗),X〉 =
1

n

n∑
i=1

〈Ai,S− S∗〉〈Ai,X〉 =
1

n

n∑
i=1

Yi,

where Yi = 〈Ai,S−S∗〉〈Ai,X〉. Note that 〈Ai,S−S∗〉, 〈Ai,X〉 follow i.i.d. normal distribution N(0, ‖S−S∗‖2F )
and N(0, ‖X‖2F ) respectively. Thus Yi follows i.i.d. chi-square distribution which is also sub-exponential. Besides,
E(Yi) = 〈S− S∗,X〉, and we have∥∥Yi − E[Yi]

∥∥
ψ1
≤ 2
∥∥Yi∥∥ψ1

≤ 2‖〈Ai,S− S∗〉‖ψ2
· ‖〈Ai,X〉‖ψ2

≤ 2C2‖S− S∗‖F · ‖X‖F = λ,
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where C is a universal constant. Thus, by applying Proposition 5.16 in [47], for Yi − E[Yi], we obtain

P
{∣∣∣∣ n∑

i=1

1

n
(Yi − E[Yi])

∣∣∣∣ ≥ t} ≤ 2 exp

[
− cmin

(
nt2

λ2
,
nt

λ

)]
.

According the covering argument for low-rank matrices Lemma 3.1 in [8] and covering number for sparse matrices
in [48], we have

P
{

sup
(S−S∗)∈N csε ,X∈N 3r

ε

∣∣∣∣ 1n
n∑
i=1

〈Ai,S− S∗〉〈Ai,X〉 − 〈S− S∗,X〉
∣∣∣∣ ≥ t}

≤ 2|N cs
ε ||N 3r

ε | exp

[
− c1 min

(
nt2

λ2
,
nt

λ

)]
≤ 2

(
9

ε

)(d1+d2+1)3r

·
(
c2d1d2

csε

)cs
· exp

[
− c1 min

(
nt2

λ2
,
nt

λ

)]
≤ exp

[
c3
(
rd log(1/ε) + smax{log d, log(1/ε)}

)
− c1 min

(
nt2

λ2
,
nt

λ

)]
≤ exp(−c′d), (F.1)

where c1, c2, c3 are constants, λ = 2C2, and the first inequality follows from union bound, the second inequality
is due to the covering arguments, and the last inequality holds by setting t = c4

√
(rd+ s) log d/

√
n. Besides,

note that for any X ∈ M3r, S ∈ S∗ +Mcs, there exists X1 ∈ N 3r
ε , S1 ∈ S∗ + N cs

ε such that ‖X −X1‖F ≤ ε
and ‖S− S1‖F ≤ ε. Thus, we have∣∣∣∣ 1n

n∑
i=1

〈Ai,S− S∗〉〈Ai,X〉 −
1

n

n∑
i=1

〈Ai,S1 − S∗〉〈Ai,X1〉
∣∣∣∣

≤
∣∣∣∣ 1n

n∑
i=1

〈Ai,S− S∗〉〈Ai,X−X1〉
∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

〈Ai,S− S1〉〈Ai,X1〉
∣∣∣∣

≤
√
L1L2‖S− S∗‖F · ‖X−X1‖F +

√
L1L2‖S− S1‖F · ‖X1‖F ≤ 2ε

√
L1L2, (F.2)

where the first inequality holds because of triangle inequality, and the second inequality follows from the restricted
strong smoothness condition for both low-rank and sparse structures. Similarly, we have

|〈S− S∗,X〉 − 〈S1 − S∗,X1〉| ≤ ‖S− S∗‖F · ‖X−X1‖F + ‖S− S1‖F · ‖X1‖F ≤ 2ε, (F.3)

Therefore, combining (F.1), (F.2) and (F.3), by triangle inequality, we obtain

sup
(S−S∗)∈Mcs,X∈M3r

∣∣∣∣ 1n
n∑
i=1

〈Ai,S− S∗〉〈Ai,X〉 − 〈S− S∗,X〉
∣∣∣∣ ≤ t+ 2ε

√
L1L2 + 2ε,

with probability at least 1 − exp(−c′d). We establish the incoherence condition by setting ε = t/(2
√
L1L2 + 2)

in (F.3). By similar techniques, we can prove the second inequality in Lemma E.3. Note that we obtain
K = C

√
(rd+ s) log d/n in Lemma E.3.

F.2 Proof of Lemma E.4

Proof. The first inequality in Lemma E.4 has been established in [37] Lemma 6. We provided the second
inequality using Bernstein-type inequality and Union Bound. Recall that, we have∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
∞,∞

= max
j,k

∣∣∣∣ 1n
n∑
i=1

εiA
i
jk

∣∣∣∣ = max
j,k

∣∣∣∣ 1n
n∑
i=1

Zijk

∣∣∣∣,
where we let Zijk = εiA

i
jk. Since Zijk are independent centered sub-exponential random variables for i = 1, . . . , n

with maxi ‖Zijk‖ψ1
≤ 2 maxi ‖εi‖ψ2

· ‖Aijk‖ψ2
≤ 2ν, according to Proposition 5.16 in [47], we have

P
{∣∣∣∣ 1n

n∑
i=1

Zijk

∣∣∣∣ ≥ t} ≤ 2 exp

(
− C ′nt

2

ν2

)
.
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Thus by union bound, we have

P
{

max
j,k

∣∣∣∣ 1n
n∑
i=1

Zijk

∣∣∣∣ ≥ t} ≤ 2d1d2 exp

(
− C ′nt

2

ν2

)
.

Let t = C2ν
√

log d/n, we have the following inequality holds with probability at least 1− C/d∥∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥∥
∞,∞

≤ C2ν

√
log d

n
.

Thus, we complete the proof.

F.3 Proof of Lemma E.6

The proof of this lemma is inspired by the proof of Theorem 1 in [38], and we extended it to the sparse case. In
order to prove Lemma E.6, we only need to prove the inequality (E.3) holds with high probability. Specifically,
we consider the following event

E =

{
∃ S ∈ C(n) |

∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≤ 1

2

‖S‖F√
d1d2

+
32‖S‖∞,∞√

n

}
.

Therefore, we want to establish the probability for event E, and we need the following lemmas.

Lemma F.1. Consider the robust PCA under observation model in section 4.2, for ` = 1, 2, . . ., we have

P(E`) ≤ exp(−c1nα2`µ2),

where we have

E` :=

{
∃ S ∈ B′(α`µ) |

∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≥ 5

12

α`µ√
d1d2

+
32‖S‖∞,∞√

n

}
,

and

B′(α`µ) =

{
S ∈ C(n, s) | ‖S‖F√

d1d2

≤ α`µ√
d1d2

}
.

Proof of Lemma E.6. The reminder of this proof is to derive the probability of the event E. In order to establish
the probability of the event E, we make use of the peeling argument of the Frobenius norm ‖S‖F . Let µ =
c
√

log d/n, and α = 6/5. For ` = 1, 2, . . ., we define the sets

S` :=

{
S ∈ C(n, s)

∣∣∣∣ α`−1µ√
d1d2

≤ ‖S‖F√
d1d2

≤ α`µ√
d1d2

}
.

Therefore, if the event E holds, there exist a matrix S that must belongs to S` for some ` = 1, 2, . . . such that∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≥ 1

2

‖S‖F√
d1d2

+
32‖S‖∞,∞√

n
≥ 1

2

α`−1µ√
d1d2

+
32‖S‖∞,∞√

n
=

5

12

α`µ√
d1d2

+
32‖S‖∞,∞√

n
,

where the last equality is due to the fact that α = 6/5.

Next, consider following events E`, for ` = 1, 2, . . .

E` :=

{
∃ S ∈ B′(α`µ) |

∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≥ 5

12

α`µ√
d1d2

+
32‖S‖∞,∞√

n

}
,

where we have the constraint set

B′(α`µ) =

{
S ∈ C(n, s) | ‖S‖F√

d1d2

≤ α`µ√
d1d2

}
.
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Since S ∈ S` implies that S ∈ B(α`µ), we can get E ⊂
⋃∞
`=1E`. Therefore, we only need to upper bound the

probability P(
⋃∞
`=1E`). In order to do so, we need upper bound the probability P(E`). According to Lemma

F.1, we have P(E`) ≤ exp(−c1nα2`µ2). Therefore, we can obtain

P(E) ≤ P
( ∞⋃
`=1

E`

)
≤
∞∑
`=1

P(E`) ≤
∞∑
`=1

exp(−c1nα2`µ2).

Thus according to the inequality a ≤ ea, we can obtain

P(E) ≤
∞∑
`=1

exp
(
− 2`c1nµ

2 logα
)
≤

exp
(
− 2c1nµ

2 logα
)

1− exp
(
− 2c1nµ2 logα

) =
exp(−c2 log d)

1− exp(−c2 log d)
,

where the last equality comes from the definition µ = c
√

log d/n, and this implies P(E) ≤ c3 exp(−c2 log d).

F.4 Proof of Lemma E.7

Proof. The proof of this Lemma is similar to the proof of Lemma E.3, using Proposition 5.16 in [47] and covering
number argument, with probability at least 1 − exp(−c1d), we can obtain the restricted Lipschitz gradient
condition in Condition 4.4 with parameter K = c2

√
(rd+ s) log d/n.

F.5 Proof of Lemma E.8

Proof. For the first inequality in Lemma E.8, it has been established in [38] Proposition 1. For the second
inequality in Lemma E.8, we use the similar proof as in the proof of Lemma E.4. By proposition 5.16 in [47] and
union bound, with probability at least 1− C/d, we can obtain the required inequality.

G Proof of Auxiliary Lemmas in Appendix F

In order to prove Lemma F.1, we need the following lemmas.

Lemma G.1. We have the following holds with probability at least 1− C exp(−C1nD
2)

max
k=1...,N(D/8)

∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣ ≤ D

8
√
d1d2

+
32‖S‖∞,∞√

n
.

Lemma G.2. We have the following holds

sup
∆∈D(δ)

‖A(∆)‖2√
n

≤ D

2
√
d1d2

,

where we have

D(δ) := {∆ ∈ Rd1×d2 | ‖∆‖F ≤ δ, ‖∆‖1,1 ≤ 2ρ(D), ‖∆‖0 ≤ 2s̃},

and ρ(D) ≤ D2/
(
c
√

log d/n
)
.

Proof of Lemma F.1. The proof of this lemma is inspired by the proof of Lemma 3 in [38]. Note that since
the definition of the constraint set C(n) and E is invariant to rescaling of S, we can assume w.l.o.g. that
‖S‖∞,∞ = 1/

√
d1d2. Therefore, it is equivalent to consider following events

E` :=

{
∃ S ∈ B(α`µ) |

∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≥ 3α`µ

4
√
d1d2

+
32√
nd1d2

}
where we have the constraint set

B(α`µ) =

{
S ∈ C(n, s) | ‖S‖∞,∞ ≤

1√
d1d2

,
‖S‖F√
d1d2

≤ α`µ√
d1d2

, ‖S‖1,1 ≤ ρ(α`µ)

}
,
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where ρ(α`µ) ≤ (α`µ)2/
(
c
√

log d/n
)
. Define

Zn(α`µ) := sup
S∈B(α`µ)

∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣.
For simplicity, we use D to denote α`µ in the following discussion. Therefore, we just need to prove the following
probability bound

P
(
Zn(D) ≥ 3D

4
√
d1d2

+
32√
nd1d2

)
≤ c3 exp(−c4nD2).

Suppose S1, . . . ,SN(δ) are a δ−covering of B(D) in terms of Frobenius norm. Therefore, for any S ∈ B(D), there
exist a matrix ∆ ∈ Rd1×d2 and some index k ∈ {1, . . . , N(δ)} satisfying S = Sk + ∆, where ‖∆‖F ≤ δ. Thus we
can obtain

‖A(S)‖2√
n

− ‖S‖F√
d1d2

=
‖A(Sk + ∆)‖2√

n
− ‖S

k + ∆‖F√
d1d2

≤ ‖A(Sk)‖2√
n

+
‖A(∆)‖2√

n
− ‖S

k‖F√
d1d2

+
‖∆‖F√
d1d2

≤
∣∣∣∣‖A(Sk)‖2√

n
− ‖S

k‖F√
d1d2

∣∣∣∣+
‖A(∆)‖2√

n
+

δ√
d1d2

.

In addition we can get∣∣∣∣‖A(S)‖2√
n

− ‖S‖F√
d1d2

∣∣∣∣ ≤ ∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣+
‖A(∆)‖2√

n
+

δ√
d1d2

.

Therefore, we have

Zn(D) ≤ δ√
d1d2

+ max
k=1...,N(δ)

∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣+ sup
∆∈D(δ)

‖A(∆)‖2√
n

, (G.1)

where we have D(δ) := {∆ ∈ Rd1×d2 | ‖∆‖F ≤ δ, ‖∆‖1,1 ≤ 2ρ(D), ‖∆‖0 ≤ 2cs}. We establish the high
probability bound of (G.1) with δ = D/8. First, according to Lemma G.1, we have

max
k=1...,N(D/8)

∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣ ≤ D

8
√
d1d2

+
32‖S‖∞,∞√

n
, (G.2)

holds with probability at least 1− c exp(−c1nD2).

Next, according to Lemma G.2, we have

sup
∆∈D(δ)

‖A(∆)‖2√
n

≤ D

2
√
d1d2

, (G.3)

holds with probability at least 1− c2 exp(−c3nD2).

Therefore, combining (G.2) and (G.3), we can get

Zn(D) ≤ D

8
√
d1d2

+
D

8
√
d1d2

+
D

2
√
d1d2

+
32‖S‖∞,∞√

n
≤ 3D

4
√
d1d2

+
32√
nd1d2

,

holds with probability at least 1− c3 exp(−c4nD2), and the last inequality comes from that ‖S‖∞,∞ ≤ 1/
√
d1d2.
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H Proofs of Auxiliary Lemmas in Appendix G

H.1 Proof of Lemma G.1

Proof. First, we prove that for a fixed matrix S, we have the following inequality holds

P
(∣∣∣∣‖A(S)‖2√

n
− ‖S‖F√

d1d2

∣∣∣∣ ≥ δ√
d1d2

+
32‖S‖∞,∞√

n

)
≤ C exp(−C1nδ

2).

Since we have

‖A(S)‖2√
n

=
1√
n

√∑
j,k∈Ω

〈Ajk,S〉2 =
1√
n

sup
‖w‖2=1

∑
j,k∈Ω

wi〈Ajk,S〉,

we consider √
d1d2

‖A(S)‖2√
n

=

√
d1d2√
n

√∑
j,k∈Ω

〈Ajk,S〉2 =
1√
n

sup
‖w‖2=1

∑
j,k∈Ω

wjk〈
√
d1d2Ajk,S〉

=
1√
n

sup
‖w‖2=1

∑
j,k∈Ω

wjkYjk,

where we have the random variables Yjk satisfying |Yjk| = |〈
√
d1d2Ajk,S〉| ≤

√
d1d2‖S‖∞,∞ = 1. Therefore,

according to lemma I.1, we have

P
(∣∣∣∣‖A(S)‖2√

n
− E

[
‖A(S)‖2√

n

]∣∣∣∣ ≥ δ√
d1d2

+
16√
nd1d2

)
≤ C exp(−C1nδ

2). (H.1)

In addition, we have∣∣∣∣ ‖S‖F√
d1d2

− E
[
‖A(S)‖2√

n

]∣∣∣∣ =

∣∣∣∣
√
E
[
‖A(S)‖22

n

]
− E

[
‖A(S)‖2√

n

]∣∣∣∣
≤

√
E
[
‖A(S)‖22

n

]
− E

([
‖A(S)‖2√

n

])2

≤ 16√
nd1d2

. (H.2)

Therefore, combining (H.1) and (H.2), we can obtain

P
(∣∣∣∣‖A(S)‖2√

n
− ‖S‖F√

d1d2

]∣∣∣∣ ≥ δ

d1d2
+

32√
nd1d2

)
≤ C exp(−C1nδ

2).

Next, according to Lemma 4 in [38], there exists a δ−covering of B(D) such that

logN(δ) ≤ C3(ρ(D)/δ)2 log d.

Therefore, we can get

P
[

max
k=1...,N(D/8)

∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣ ≥ δ√
d1d2

+
32√
nd1d2

]
≤ C exp(−C1nδ

2 + logN(δ))

≤ C exp(−C1nδ
2 + C3(ρ(D)/δ)2 log d).

Since we have δ = D/8 and ρ(D) = C4D
2/
√

log d/n, we can obtain

P
[

max
k=1...,N(D/8)

∣∣∣∣‖A(Sk)‖2√
n

− ‖S
k‖F√
d1d2

∣∣∣∣ ≥ δ√
d1d2

+
32‖S‖∞,∞√

n

]
≤ C exp(−C2nδ

2),

which complete the proof.
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H.2 Proof of Lemma G.2

Proof. According to Lemma 5 in [38], we have following results

P
[∣∣∣∣ sup

∆∈D(δ)

√
d1d2

‖A(∆)‖2√
n

− E
[

sup
∆∈D(δ)

√
d1d2

‖A(∆)‖2√
n

]∣∣∣∣ ≥ δ] ≤ C exp(−C1nδ
2), (H.3)

and (
E
[

sup
∆∈D(δ)

√
d1d2

‖A(∆)‖2√
n

])2

≤ 16
√
d1d2‖∆‖∞E

[
sup

∆∈D(δ)

1

n

∑
j,k∈Ω

ξjk〈Ajk,∆〉
]

+ δ2,

where ξjk are independent Rademacher variables. Furthermore, by the duality between norms, we can obtain

1

n

∑
j,k∈Ω

ξjk〈Ajk,∆〉 ≤
∥∥∥∥ 1

n

∑
j,k∈Ω

ξjkAjk

∥∥∥∥
∞
· ‖∆‖1,1 ≤ ρ(D)

∥∥∥∥ 1

n

∑
j,k∈Ω

ξjkAjk

∥∥∥∥
∞,∞

,

where the last inequality is due to the fact that ∆ ∈ D(δ). Finally, we have∥∥∥∥ 1

n

∑
j,k∈Ω

ξjkAjk

∥∥∥∥
∞,∞

≤ C
√

log d

n
. (H.4)

To prove this, we use Hoeffding’s inequality and Union Bound. By the definition of Ai, we can obtain∥∥∥∥ 1

n

n∑
i=1

ξiAi

∥∥∥∥
∞,∞

= max
j,k

∣∣∣∣ 1n
n∑
i=1

ξie
i
je
i
k

∣∣∣∣ = max
j,k

∣∣∣∣ 1n
n∑
i=1

Zijk

∣∣∣∣,
where we have Zijk = ξiAjk. Thus we can get |Zijk| ≤ |ξi| = 1, and we conclude that Zijk are independent
centered sub-Gaussian random variables for i = 1, . . . , n. Therefore, following the same procedure as in the proof
of Lemma E.4, we can obtain inequality (H.4). Therefore, we can obtain(

E
[

sup
∆∈D(δ)

‖A(∆)‖2√
n

])2

≤ C ‖∆‖∞,∞√
d1d2

ρ(D)

√
log d

n
+

δ2

d1d2
≤ C ′ D

2

d1d2
,

where the last inequality comes from the definition of ρ(D), δ and ‖∆‖∞,∞ ≤ 2/
√
d1d2. It implies that

E
[

sup
∆∈D(δ)

‖A(∆)‖2√
n

]
≤ C ′′ D√

d1d2

. (H.5)

Thus combining (H.3) and (H.5), we have

sup
∆∈D(δ)

‖A(∆)‖2√
n

≤ D

2
√
d1d2

holds with probability at least 1− C exp(−C1nD
2).

I Other Auxiliary Lemmas

Lemma I.1. [31] Consider independent random variables Y1, . . . , Yn such that ai ≤ Yi ≤ bi for i = 1, . . . , n. Let

Z := sup
t∈T

n∑
i=1

tiYi,

where T is a family of vectors t ∈ Rn such that σ = supt∈T
(∑n

i=1 t
2
i (bi − ai)2

)1/2 ≤ ∞. Then, for any r ≥ 0,
we have

P
(
|Z −mZ | ≥ r

)
≤ 4 exp

(
− r2

4σ2

)
,

where mZ is a median of Z. Furthermore, we have

|E(Z)−mZ | ≤ 4
√
πσ and Var(Z) ≤ 16σ2.


