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Abstract

We propose a unified framework to solve
general low-rank plus sparse matrix recov-
ery problems based on matrix factorization,
which covers a broad family of objective func-
tions satisfying the restricted strong convex-
ity and smoothness conditions. Based on
projected gradient descent and the double
thresholding operator, our proposed generic
algorithm is guaranteed to converge to the
unknown low-rank and sparse matrices at a
locally linear rate, while matching the best-
known robustness guarantee (i.e., tolerance
for sparsity). At the core of our theory is a
novel structural Lipschitz gradient condition
for low-rank plus sparse matrices, which is
essential for proving the linear convergence
rate of our algorithm, and we believe is of
independent interest to prove fast rates for
general superposition-structured models. We
illustrate the application of our framework
through two concrete examples: robust ma-
trix sensing and robust PCA. Empirical ex-
periments corroborate our theory.

1 INTRODUCTION

Low-rank matrix recovery has received considerable
attention in machine learning and high-dimensional
statistical inference in the past decades [9, 10, 45, 26,
25, 37, 1, 38, 55, 16, 27, 24, 23, 17, 22, 4, 49, 50, 54].
One important question is whether low-rank matrix
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estimation algorithms are robust to arbitrarily sparse
corruptions, which motivates the problem of low-rank
plus sparse matrix recovery, such as robust matrix
sensing [51, 30], robust PCA [7, 52, 56], robust co-
variance matrix estimation [2] and robust multi-task
regression [37, 53]. Following this line of research, we
consider the general problem of low-rank plus sparse
matrix recovery, where the objective is to recover an
unknown model parameter matrix that can be decom-
posed as the sum of a low-rank matrix X∗ ∈ Rd1×d2
and a sparse matrix S∗ ∈ Rd1×d2 , from a set of n
observations generated from the model. More specifi-
cally, let Ln : Rd1×d2 → R be the sample loss function
derived from some statistical model, which measures
the goodness of fit to the observations with respect
to any given low-rank matrix X and sparse matrix S.
Then the general low-rank plus sparse matrix recov-
ery problem can be cast into the following nonconvex
optimization problem

minX,S∈Rd1×d2 Ln(X + S),

subject to X ∈ C, rank(X) ≤ r, ‖S‖0 ≤ s,
(1.1)

where C is a constraint set such that X∗ ∈ C (see
Section 3 for more details), r denotes the rank of X∗,
‖S‖0 denotes the number of nonzero entries in S, and
s denotes the number of nonzero entries in S∗.

A long line of research has been proposed to study
how to recover the unknown decomposition via con-
vex relaxation [52, 7, 14, 25, 2, 16, 55, 29]. How-
ever, convex relaxation based algorithms usually in-
volve a time-consuming singular value decomposition
(SVD) step in each iteration, which is computation-
ally very expensive for large scale high-dimensional
data. In order to solve low-rank plus sparse ma-
trix recovery problems more efficiently, recent studies
[30, 41, 17, 21, 56] proposed to use nonconvex opti-
mization algorithms such as alternating minimization
and gradient descent. Although these nonconvex opti-
mization based approaches improve the computational
efficiency upon convex relaxation based methods, they
still suffer from either unsatisfied robustness guarantee
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and/or limitations to specific models.

In this paper, we aim to develop a unified framework to
recover both the low-rank and the sparse matrices from
generic statistical models. Following [6], we reparame-
terize the low-rank matrix as the product of two small
factor matrices, i.e., X = UV> where U ∈ Rd1×r and
V ∈ Rd2×r, and propose to solve the following non-
convex optimization problem

minU,V,S Ln(UV> + S),

subject to U ∈ C1, V ∈ C2, ‖S‖0 ≤ s,
(1.2)

where C1 ⊆ Rd1×r, C2 ⊆ Rd2×r are the corresponding
rotation invariant constraint sets induced by C (see
Section 3 for more details). Due to Burer-Monteiro
factorization [6], i.e., the reformulation X = UV>,
the rank constraint is automatically satisfied in (1.2),
which gets rid of the computationally inefficient SVD
step. In order to solve (1.2), we propose a projected
gradient descent algorithm, along with a unified theory
that integrates both optimization-theoretic and statis-
tical analyses. We further summarize our main contri-
butions as follows:

1. Compared with existing work, our generic frame-
work can be applied to a larger family of loss functions
satisfying the restricted strong convexity and smooth-
ness conditions [39, 37, 29]. We demonstrate the supe-
riority of our framework through two concrete exam-
ples: robust matrix sensing and robust PCA.

2. The gradient descent phase of our proposed algo-
rithm matches the best-known robustness guarantee
O(1/r) [25, 16]. Compared with existing robust PCA
algorithms [56, 18], our algorithm achieves improved
computational complexity O

(
r3d log d log(1/ε)

)
, while

matching the optimal sample complexity O(r2d log d)
for Burer-Monteiro factorization-based low-rank ma-
trix recovery [57] under the incoherence condition.

3. To ensure the linear convergence rate, from the
algorithmic perspective, we construct a double thresh-
olding operator, which integrates both hard thresh-
olding [5] and truncation operators [56]; in terms of
technical proof, we propose a novel structural Lipschitz
gradient condition for low-rank plus sparse matrices.
We believe both the double thresholding operator and
the structural Lipschitz gradient condition are of in-
dependent interest for other superposition-structured
models to prove faster convergence rates.

Notation Denote [d] to be the index set {1, . . . , d}.
For any matrix A ∈ Rd1×d2 , let Ai,∗, A∗,j be the i-th
row and the j-th column of A respectively, and let Aij
be its (i, j)-th entry. Let the k-th largest singular value
of A be σk(A), and let SVDr(A) be the rank-r SVD
of matrix A. For any d-dimensional vector x, the `q
vector norm of x is denoted by ‖x‖q = (Σdi=1|xi|q)1/q,

where 1 ≤ q < ∞, and we use ‖x‖0 to represent the
number of nonzero entries of x. For any d1-by-d2 ma-
trix A, we use ‖A‖2 and ‖A‖F to denote the spectral
norm and Frobenius norm respectively. And we use
‖A‖∞,∞ to denote the elementwise infinity norm. In
addition, we denote the number of nonzero entries in
A by ‖A‖0, and use ‖A‖2,∞ to represent the largest
`2-norm of its rows. For any two sequences {an} and
{bn}, if there exists a constant 0 < C < ∞ such that
an ≤ Cbn, then we write an = O(bn).

2 RELATED WORK

In recent years, there has been a large body of liter-
ature [13, 51, 15, 7, 14, 25, 30, 2, 16, 55, 29] focusing
on the matrix recovery problems with low-rank plus
sparse structures. For instance, [51, 30] studied the
problem of robust matrix sensing, where they aim to
recover both the low-rank matrix and the sparse ma-
trix from compressive measurements. [15] analyzed
the robust multi-task learning, where they charac-
terize the task relationships using a low-rank struc-
ture, and simultaneously identify the outlier tasks us-
ing a sparse structure. The most widely studied low-
rank plus sparse matrix recovery problem is robust
PCA [7, 14, 25, 16, 29], where the goal is to recover
the unknown low-rank matrix from corrupted obser-
vations. In the context of robust PCA, [7] proved
that under random corruption model, their algorithm
enables exact recovery with constant fraction of cor-
ruptions. Meanwhile, [14] considered the determinis-
tic corruption model and showed that the tolerance of
row/column sparsity for exact recovery is in the order
ofO(1/r

√
d), which was further improved toO(1/r) by

[25, 16]. Instead of considering specific models, unified
analysis framework was proposed to cover more gen-
eral low-rank plus sparse matrix recovery problems. In
particular, [2] proposed to analyze a class of estima-
tors for noisy matrix decomposition based on convex
optimization with decomposable regualrizer. [55] con-
sidered a general class of M -estimators and provided
a unified framework for superposition-structured sta-
tistical models.

However, most of the aforementioned work are based
on convex relaxation, which involves a computation-
ally expensive SVD step in each iteration. To address
such computational barrier, various nonconvex opti-
mization algorithms [41, 17, 21, 56, 18] have been car-
ried out to solve low-rank plus sparse matrix recovery
with provable guarantees. For example, [41] proposed
alternating projection to simultaneously estimate the
low-rank and sparse structure, while [17] showed that
projected gradient descent based algorithm will lin-
early converge to the unknown matrix decomposition
under suitable initialization procedure. The most re-
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lated work to ours is [56], which proposed a fast gra-
dient descent algorithm based on a novel truncation
operator to recover the unknown low-rank matrix for
robust PCA. Their approach allows for O(1/r1.5) spar-
sity with improved computational efficiency upon pre-
vious work. Most recently, [18] further improved the
existing work in terms of robustness guarantee from
O(1/r1.5) to O(1/r). It is worth noting that these sev-
eral pieces of work are limited to robust PCA, thus un-
able to deal with more general problem settings, such
as robust matrix sensing.

3 THE PROPOSED ALGORITHM

Recall that our objective is to recover both unknown
low-rank matrix X∗ ∈ Rd1×d2 with rank-r and un-
known sparse matrix S∗ ∈ Rd1×d2 with s nonzero en-

tries simultaneously. Let U
∗
Σ∗V

∗>
be the SVD of

X∗, where U
∗
,V
∗

are the left and right singular ma-
trices respectively, and Σ∗ denotes a r-by-r diagonal
matrix with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0. Denote
the condition number of X∗ by κ = σ1/σr.

Intuitively speaking, in order to distinguish between
low-rank and sparse structures, the unknown low-rank
matrix X∗ cannot be too sparse. For instance, if X∗ is
equal to zero in nearly all elements, the recovery task
is impossible unless all of the entries are sampled [19].
Therefore, we impose the following incoherence condi-
tion [9] on X∗ to avoid such identifiability issue. More

specifically, let the SVD of X∗ be X∗ = U
∗
Σ∗V

∗>
,

then we assume X∗ is α-incoherent

‖U∗‖2,∞ ≤
√
αr/d1 and ‖V∗‖2,∞ ≤

√
αr/d2, (3.1)

where α ≥ 1 denotes the incoherence parameter.
Thus, we let the constraint set C in (1.1) be the set
of α-incoherent matrices. In addition, suppose S∗ has
at most β-fraction nonzero entries for each row and
column [14], or in other words S∗ ∈ K, where K is
defined as follows

K =
{
S ∈ Rd1×d2

∣∣ ‖S‖0 ≤ s, ‖Si,∗‖0 ≤ βd2,

∀i ∈ [d1]; ‖S∗,j‖0 ≤ βd1,∀j ∈ [d2]
}
.

Here, β ∈ (0, 1) represents the sparsity tolerance pa-
rameter. Recall (1.2), we define two constraint sets
C1, C2 for U,V respectively. Here, we provide the def-
initions of C1, C2 as follows

C1 =
{
U ∈ Rd1×r

∣∣‖U‖2,∞ ≤√αr/d1‖Z0‖2
}
,

C2 =
{
V ∈ Rd2×r

∣∣‖V‖2,∞ ≤√αr/d2‖Z0‖2
}
,

(3.2)

where Z0 = [U0; V0] represents the initial solution of
Algorithm 1, and we will further demonstrate in the

theoretical analysis that U∗ ∈ C1,V∗ ∈ C2. Further-
more, in order to guarantee the uniqueness of the opti-
mal solution to optimization problem (1.2), following
[46, 57, 42], we impose an additional regularizer to pe-
nalize the scale difference between U and V. In other
words, we aim to estimate the unknown parameter set
(U∗,V∗,S∗) by minimizing the following regularized
objective function with constraints

Fn(U,V,S) := Ln(UV> + S) + ‖U>U−V>V‖2F /8,
subject to U ∈ C1,V ∈ C2,S ∈ K. (3.3)

Next, we present our proposed generic gradient de-
scent algorithm for solving (3.3), as displayed in Algo-
rithm 1. For low-rank structure, we perform gradient
descent on U and V respectively, followed by projec-
tion onto the corresponding constraint sets C1 and C2.
For sparse structure, we perform double thresholding,
which integrates both the hard thresholding operator
in [5] and the truncation operator in [56], to ensure
the output estimator St is sparse and has at most β-
fraction nonzero entries per row and column as well.

Algorithm 1 Gradient Descent Phase

Input: Sample loss function Ln; step size τ, η; to-
tal number of iterations T ; parameters γ, γ′; initial
solution (U0,V0,S0).

Z0 = [U0; V0]; Let C1, C2 be defined in (3.2).
for: t = 0, 1, 2, . . . , T − 1 do

St+1 = Tγβ ◦ Hγ′s
(
St − τ∇SLn(UtVt> + St)

)
Ut+1 = PC1

(
Ut − η∇ULn(UtVt> + St)

− 1
2ηU

t(Ut>Ut −Vt>Vt)
)

Vt+1 = PC2
(
Vt − η∇VLn(UtVt> + St)

− 1
2ηV

t(Vt>Vt −Ut>Ut)
)

end for
Output: (UT ,VT , ST )

In Algorithm 1, we let PCi be the projection opera-
tor onto the constraint set Ci, where i = 1, 2. We
define Hk : Rd1×d2 → Rd1×d2 as the hard threshold-
ing operator, which keeps the largest k elements in
terms of absolute value (i.e., magnitude) and sets the
remaining entries as 0. In addition, we define Tθ :
Rd1×d2 → Rd1×d2 as the truncation operator with pa-
rameter θ ∈ (0, 1) as follows: for all (i, j) ∈ [d1]× [d2],
we have

[Tθ(S)]ij :=

{
Sij , if |Sij | ≥ |S(θd2)

i,∗ | and |Sij | ≥ |S(θd1)
∗,j |,

0, otherwise,

where S
(k)
i,∗ and S

(k)
∗,j denote the k-th largest magnitude

entries of Si,∗ and S∗,j respectively.

It will be shown in later analysis that Algorithm 1
is guaranteed to converge to the unknown true pa-
rameters (U∗,V∗,S∗), as long as the initial solution
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(U0,V0,S0) is close enough to (U∗,V∗,S∗). There-
fore, motivated by gradient hard thresholding [5] and
singular value projection [26], we propose a novel ini-
tialization algorithm in Algorithm 2 to ensure the
condition on the initial solutions. Based on singular
value projection operator, we add an additional infin-
ity norm constraint for low-rank structure. Specifi-
cally, we use Pλ′,ζ∗ : Rd1×d2 → Rd1×d2 to denote the
constrained projection operator such that

Pλ′,ζ∗(X) = argminrank(Y)≤r, ‖Y‖∞,∞≤ζ∗ ‖Y −X‖F ,

where ζ∗ is defined as ζ∗ = c0αrκ/
√
d1d2, with c0

as a predetermined upper bound of σr(X
∗). Accord-

ing to (3.1), we have ‖X∗‖∞,∞ ≤ ‖U
∗‖2,∞ · σ1(X∗) ·

‖V∗‖2,∞ ≤ ζ∗. In practice, we can use Dykstra’s alter-
nating projection algorithm [3] to solve the projection
operator Pλ′,ζ∗ . According to [33] and [32], the alter-
nating projection achieves a local R-linear convergence
rate. In our experiments, we only perform one step al-
ternating projection, which is sufficient to derive the
fast convergence rate of Algorithm 1. We believe this
alternating projection step is efficient, and will further
investigate it theoretically.

Algorithm 2 Initialization Phase

Input: Sample loss function Ln; step size τ ′, η′;
total number of iterations L; parameters λ, λ′.

X0 = S0 = 0
for: ` = 0, 1, 2, . . . , L− 1 do

S`+1 = Hλs(S` − τ ′∇SLn(X` + S`))
X`+1 = Pλ′,ζ∗(X` − η′∇XLn(X` + S`))

end for
[U

0
,Σ0,V

0
] = SVDr(XL)

U0 = U
0
(Σ0)1/2,V0 = V

0
(Σ0)1/2,S0 = SL

Output: (U0,V0,S0)

4 MAIN THEORY

Let U∗ = U
∗
(Σ∗)1/2, V∗ = V

∗
(Σ∗)1/2 and Z∗ =

[U∗; V∗] be the unknown matrix parameters we aim
to estimate. Following [28, 46, 57], we introduce the
following distance metric.

Definition 4.1. For any Z ∈ R(d1+d2)×r, define the
distance metric between Z and Z∗ with respect to
the optimal rotation as d(Z,Z∗) such that d(Z,Z∗) =
minR∈Qr‖Z− Z∗R‖F , where Qr denotes the set of r-
by-r orthonormal matrices.

Next, we lay out the restricted strong convexity (RSC)
and restricted strong smoothness (RSS) conditions [39,
36] regarding Ln. Note that our problem includes both
low-rank and sparse structures, thus we assume the

restricted strong smoothness and convexity conditions
hold for one structure given the other.

Condition 4.2 (Low Rank Structure). For all fixed
sparse matrix S ∈ Rd1×d2 with at most s̃ nonzero en-
tries, we assume Ln is restricted strongly convex with
parameter µ1 and restricted strongly smooth with pa-
rameter L1 with respect to the low-rank structure,
such that for all matrices X1,X2 ∈ Rd1×d2 with rank
at most r̃, we have

Ln(X2 + S) ≥ Ln(X1 + S) + 〈∇XLn(X1 + S),X2 −X1〉
+ (µ1/2)‖X2 −X1‖2F ,

Ln(X2 + S) ≤ Ln(X1 + S) + 〈∇XLn(X1 + S),X2 −X1〉
+ (L1/2)‖X2 −X1‖2F .

Here, r̃, s̃ satisfy r ≤ r̃ ≤ Cr and s ≤ s̃ ≤ Cs, where
C ≥ 1 is a universal constant to be determined.

Condition 4.3 (Sparse Structure). For all fixed rank-
r̃ matrix X ∈ Rd1×d2 , we assume Ln is restricted
strongly convex with parameter µ2 and restricted
strongly smooth with parameter L2 in terms of the
sparse structure, such that for all matrices S1,S2 ∈
Rd1×d2 with at most s̃ nonzero entries, we have

Ln(X + S2) ≥ Ln(X + S1) + 〈∇SLn(X + S1),S2 − S1〉
+ (µ2/2)‖S2 − S1‖2F

Ln(X + S2) ≤ Ln(X + S1) + 〈∇SLn(X + S1),S2 − S1〉
+ (L2/2)‖S2 − S1‖2F .

Moreover, we propose the following novel structural
Lipschitz gradient condition on the interaction term
between low-rank and sparse structures.

Condition 4.4 (Structural Lipschitz Gradient). Let
X∗,S∗ be the unknown low-rank and sparse matrices
respectively. For all low-rank matrices X ∈ Rd1×d2
with rank at most r̃ and sparse matrices S with at
most s̃ nonzero entries, we assume

|〈∇XLn(X∗ + S)−∇XLn(X∗ + S∗),X〉 − 〈S− S∗,X〉|
≤ K‖X‖F · ‖S− S∗‖F ,

|〈∇SLn(X + S∗)−∇SLn(X∗ + S∗),S〉 − 〈X−X∗,S〉|
≤ K‖X−X∗‖F · ‖S‖F ,

where K ∈ (0, 1) is the structural Lipschitz gradient
parameter depending on r, s, d1, d2 and n, which can
be a sufficiently small constant, as long as sample size
n is large enough.

Roughly speaking, Condition 4.4 defines a variant of
Lipschitz continuity on ∇Ln. Take the first inequality
for example, the gradient is taken with respect to the
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low-rank structure, while the Lipschitz continuity is
with respect to any s̃-sparse matrix S and S∗.

Finally, we assume that at X∗+S∗, the gradient of the
sample loss function ∇Ln is upper bounded in terms
of both matrix spectral and infinity norms.

Condition 4.5. For a given sample size n and toler-
ance parameter δ ∈ (0, 1), we let ε1(n, δ) and ε2(n, δ)
be the smallest scalars such that ‖∇XLn(X∗+S∗)‖2 ≤
ε1(n, δ) and ‖∇SLn(X∗ + S∗)‖∞,∞ ≤ ε2(n, δ).

4.1 Results For The Generic Model

Now we provide main results for our proposed algo-
rithms. The following theorem guarantees the linear
convergence rate of Algorithm 1 under proper condi-
tions. We introduce the following distance metric to
measure the estimation error of the output

D(Z,S) = d2(Z,Z∗) + ‖S− S∗‖2F /σ1. (4.1)

The parameter 1/σ1 comes from the scale difference
between X = UV> and Z = [U; V], or specifically,
‖X−X∗‖2F ≤ cσ1d

2(Z,Z∗) for some constant c.

Theorem 4.6. Let X∗ = U∗V∗> be the unknown
rank-r matrix that satisfies (3.1) and S∗ be the un-
known s-sparse matrix with at most β-fraction nonzero
entries per row/column. Suppose the sample loss
function Ln satisfies Conditions 4.2 - 4.5. There ex-
ist constants c1, c2, c3, c4 such that if set step size
η = c1/σ1, τ = c2/L2 and γ, γ′ large enough, un-
der condition β ≤ c3/(αrκ), for any initial estimator
(Z0,S0) satisfying D(Z0,S0) ≤ c24σr, with probability
at least 1− δ, the t-th iterate of Algorithm 1 satisfies

D(Zt,St) ≤ρtD(Z0,S0) +
Γ′1rε

2
1(n, δ) + Γ′2sε

2
2(ε, δ)

(1− ρ)σ1
,

where D(Z,S) is defined in (4.1), and ρ = max
{

1 −
ηµ1σr/80, 1−µ2τ/32

}
∈ (0, 1) denotes the contraction

parameter, provided that the sample size n is large
enough such that the structural Lipschitz parameter
K is sufficiently small and Γ′1rε

2
1(n, δ) + Γ′2sε

2
2(n, δ) ≤

(1− ρ)c22σ1σr. Here, Γ′1,Γ
′
2 are absolute constants de-

pending on µ1, µ2, L1, L2, γ and γ′.

Remark 4.7. Theorem 4.6 establishes the linear con-
vergence rate of Algorithm 1. The right hand side of
the contraction inequality consists of two terms: The
first term corresponds to the optimization error, while
the other term represents the statistical error. When
considering the noiseless case, only the optimization
error term exists. It is worth noting that our robust-
ness guarantee required for the gradient descent phase
matches the best-known results O(1/r) in [25, 16, 18].

The next theorem provides the theoretical guarantee
of Algorithm 2 regarding the initialization.

Theorem 4.8 (Initialization). Under the same con-
dition as in Theorem 4.6, suppose L1/µ1 ∈ (1, 6),
L2/µ2 ∈ (1, 4/3), µ1 ≥ 1/3 and K ≤ c · min{µ1, µ2},
where c is a small constant. For any ` ≥ 0, with step
size η′ = 1/(6µ1), τ ′ = 3/(4µ2) and λ, λ′ sufficient
large, the `-th iterate of Algorithm 2 satisfies

‖X` −X∗‖F + ‖S` − S∗‖F ≤ ρ′
`
(‖X∗‖F + ‖S∗‖F )

+ Γ1

√
rε1(n, δ) + Γ2

√
sε2(n, δ) + Γ3

c0αrκ
√
s√

d1d2

(4.2)

with probability at least 1 − δ, where ρ′ =
max{ρ′1, ρ′2} ∈ (0, 19/20) with ρ′1 =

(
1 + 2/

√
λ′ − 1

)
·(√

1− µ1η′ + τ ′K
)

and ρ′2 =
(
1 + 2/

√
λ− 1

)
·(√

1− µ2τ ′ + η′(1 +K)
)
. Here, Γ1,Γ2 and Γ3 are ab-

solute constants depending on µ1, µ2, λ, λ
′, r and s.

Combined both Theorem 4.6 and Theorem 4.8, we ar-
rive at the following main result regarding our method.

Theorem 4.9. Suppose the rank-r matrix X∗ satis-
fies (3.1) and the s-sparse matrix S∗ has at most β-
fraction nonzero entries per row/column. Assume the
sample loss function Ln satisfies Conditions 4.2 - 4.5.
There exist constants c1, c2, c3, c4, c5, provided that
β ≤ c1/(αrκ), s ≤ c2d1d2/(α

2r2κ2) and the sample
size n large enough, if perform L = O(1) iterations in
Algorithm 2 with step size η′ = 1/(6µ1), τ ′ = 3/(4µ2)
and parameters λ, λ′ large enough, the output of Al-
gorithm 1, with step size η = c3/σ1, τ = c4/L2 and
parameters γ, γ′ large enough, satisfies

D(ZT ,ST ) ≤ ρT · c5σr + Γ · rε
2
1(n, δ) + sε22(ε, δ)

(1− ρ)σ1

with probability at least 1−δ, where ZT = [UT ; VT ], ρ
denotes the contraction parameter defined in Theorem
4.6, and Γ is an absolute constant depending on µ1, µ2,
L1, L2, γ and γ′.

Remark 4.10. In Theorem 4.9, we require the tol-
erance of overall sparsity for S∗ is in the order of
O(d1d2/r

2), which is near optimal compared with ex-
isting work regarding robust PCA. This suboptimality
is due to the more general settings we considered in
this work. Specifically, we aim to derive the recovery
results for both low-rank and sparse structures, which
is applicable for more general loss function beyond ro-
bust PCA, such as robust matrix sensing.

4.2 Results For Specific Models

Our main result for the generic model can be readily
applied to specific models. In the following discussions,
we assume d1 = d2 = d for simplicity.
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Robust Matrix Sensing. The problem of robust
matrix sensing [51, 30] has a broad range of applica-
tions in video recovery [11] and hyperspectral imaging
[12]. Specifically, we observe y = A(X∗+S∗)+ε, where
X∗,S∗ are the unknown low-rank and sparse matri-
ces respectively, and ε denotes the noise vector. Let
A : Rd1×d2 → Rn be a linear measurement operator
such that A(X∗+S∗) = (〈A1,X

∗+S∗〉, . . . , 〈An,X
∗+

S∗〉)>, where each random matrix Ai ∈ Rd1×d2 is
called sensing matrix, whose entries follow i.i.d. stan-
dard normal distribution. In the following discussions,
we call A the standard normal linear operator for sim-
plicity. Thus the sample loss function derived from
robust matrix sensing is

Ln(UV> + S) := (2n)−1‖y −An(UV> + S)‖22.

Next, we present the theoretical guarantee of our pro-
posed algorithm for robust matrix sensing.

Corollary 4.11. Suppose X∗, S∗ and Ln satisfy the
same conditions as in Theorem 4.9. Consider robust
matrix sensing with standard normal linear operator
A and noise vector ε, whose entries follow i.i.d. sub-
Gaussian distribution with parameter ν. There ex-
ist constants {ci}10

i=1 such that under condition that
sample size n ≥ c1(rd+ s) log d, robustness guarantee
β ≤ 1/(c2rκ) and s ≤ c3d1d2/(α

2r2κ2), if we perform
L = O(1) iterations in Algorithm 2 with appropriate
step size η′, τ ′ and parameters λ, λ′ large enough, then
with probability at least 1− c4/d, the output of Algo-
rithm 1, with η = c5/σ1, τ = c6 and γ, γ′ large enough,
satisfies

D(ZT ,ST ) ≤ ρTD(Z0,S0) + c7ν
2 rd

n
+ c8ν

2 s log d

n
,

where ρ = max{1− c9ησr, 1− c10τ}.

Remark 4.12. According to Corollary 4.11, in the
noiseless setting, our algorithm can achieve exactly re-
covery for both low-rank and sparse matrices. In addi-
tion, to establish the structural Lipschitz gradient con-
dition, we require the sample size n = O

(
(rd+s) log d

)
.

If s ≤ rd, it achieves the optimal sample complex-
ity as that of standard matrix sensing [45, 46, 49]
up to a logarithmic term. In the noisy setting, after
O
(
κ log

(
n/(rd + s log d)

))
number of iterations, our

estimator achieves O
(
(rd + s log d)/n

)
statistical er-

ror. The term O(rd/n) corresponds to the statistical
error for the low-rank matrix recovery, which matches
the minimax lower bound of standard noisy matrix
sensing [37]. The other term O(s log d/n) corresponds
to the statistical error for the sparse matrix recovery,
which also matches the minimax lower bound of sparse
matrix regression [44]. We notice that [51] studied
the same problem using a greedy algorithm. However,
there is no theoretical guarantee of their algorithm.

Robust PCA We proceed to consider robust PCA.
More specifically, we observe a data matrix Y ∈
Rd1×d2 such that Y = X∗+S∗, where X∗,S∗ ∈ Rd1×d2
are the unknown low-rank and sparse matrices. We
consider the uniform observation model

Yjk :=

{
X∗jk + S∗jk + Ejk, for any(j, k) ∈ Ω

∗, otherwise,

where Ω ⊆ [d1] × [d2] denotes the observed index set
such that for any (j, k) ∈ Ω, j ∼ uniform([d1]) and k ∼
uniform([d2]). Here E ∈ Rd1×d2 is the noise matrix,
where each entry of E follows i.i.d. normal distribution
with variance ν2/(d1d2), resulting in a dimension-free
signal-to-noise ratio. In addition, we assume that S∗

is not restrictive to Ω. Therefore, for robust PCA, we
have the following objective loss function

LΩ(UV> + S) := (2p)−1∑
(j,k)∈Ω(Uj∗V

>
k∗ + Sjk − Yjk)2.

In the following discussions, we are going to consider
both full observation model (p = 1) and partial obser-
vation model (0 < p < 1) for robust PCA.

Corollary 4.13 (Fully Observed RPCA). Suppose
X∗, S∗ and Ln satisfy the same conditions as in The-
orem 4.9. There exist constants {ci}9i=1 such that
under the robustness guarantee β ≤ 1/(c1rκ) and
s ≤ c2d1d2/(α

2r2κ2), if we perform L = O(1) itera-
tions in Algorithm 2 with appropriate step size η′, τ ′

and λ, λ′ large enough, then with probability at least
1 − c3/d, the output of Algorithm 1, with step size
η = c4/σ1,τ = c5 and γ, γ′ large enough, satisfies

D(ZT ,ST ) ≤ ρTD(Z0,S0) + c6ν
2 rd

d1d2
+ c7ν

2 s log d

d1d2
,

where ρ = max{1− c8ησr, 1− c9τ}.

Remark 4.14. Corollary 4.13 suggests that in the
noiseless setting, the statistical error terms equal to
zero. Therefore, our algorithm can exactly recover
both low-rank and sparse matrices. Note that [2] also
analyzed this model using M-estimators. However,
their results include an additional standardized error
term α̃2s/(d1d2), where α̃ is the maximum magnitude
among entries of X∗.

For the partially observed robust PCA, we further
impose an infinity norm constraint for S∗ such that
‖S∗‖∞,∞ ≤ α1/

√
d1d2, to ensure the statistical guar-

antee for the sparse structure. Note that this condition
is essential for sparse recovery as illustrated in [29].

Corollary 4.15 (Partially Observed RPCA). Con-
sider partially observed robust PCA under uniform
sampling model. Suppose X∗, S∗ and Ln satisfy
the same conditions as in Theorem 4.9. There ex-
ist constants {ci}10

i=1 such that under the robustness
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Table 1: Complexity comparisons among different algorithms for robust PCA under partially observed model.

Algorithm Sample Complexity Computational Complexity

Fast RPCA [56] O
(
r2d log d

)
O
(
r4d log d log(1/ε)

)
PG-RMC [18] O

(
r2d log2 d log2(σ1/ε)

)
O
(
r3d log2 d log2(σ1/ε)

)
This paper O

(
r2d log d

)
O
(
r3d log d log(1/ε)

)

β ≤ 1/(c1rκ), s ≤ c2d1d2/(α
2r2κ2), and sample size

n ≥ c3(r2d+ s) log d, if we perform L = O(1) number
of iterations in Algorithm 2 with appropriate step size
η′, τ ′ and λ, λ′ large enough, then with probability at
least 1−c4d, the output of Algorithm 1, with step size
η = c5/σ1,τ = c6 and γ, γ′ large enough, satisfies

D(ZT ,ST ) ≤ρTD(Z0,S0) + c7 max{ν2, α2r}rd log d

n

+ c8 max{α2
1, ν

2}s log d

n
+

α2
1s

d1d2
, (4.3)

where ρ = max{1 − c9ησr, 1 − c10τ}, and α1 =√
d1d2‖S∗‖∞,∞.

Remark 4.16. Note that the extra fourth term
α2

1s/(d1d2), on the right hand side of (4.3), is due
to the unobserved corruption entries but is in fact
dominated by the third term. Corollary 4.15 sug-
gests that, after O

(
κ log

(
n/
(
(r2d + s) log d

)))
num-

ber of iterations, the output of our algorithm achieves
O
(
(r2d + s) log d/n

)
statistical error, and the term

O(r2d log d/n) denotes the statistical error for the
low-rank matrix. The term O(s log d/n) corresponds
to the statistical error for the sparse matrix, which
matches the minimax lower bound [44]. Moreover,
compared with existing nonconvex robust PCA algo-
rithms [56, 18], our algorithm achieves better com-
putational complexity while matching the best-known
sample complexity provided that s ≤ r2d. The de-
tailed comparisons are summarized in Table 1.

5 EXPERIMENTS

In this section, we illustrate our experimental results
to further demonstrate the performance of our pro-
posed algorithm. In particular, we investigate robust
matrix sensing and robust PCA on synthetic data. For
robust matrix sensing, we compare our algorithm with
SpaRCS [51]. For robust PCA, we compare our algo-
rithm with several state-of-the-art algorithms, includ-
ing NcRPCA [41], Fast RPCA [56], and PG-RMC [18].
Note that all the experimental results are based on the
optimal parameters, which are selected by cross valida-
tion, and averaged over 30 trials. In addition, we also

compare our algorithm with several existing robust
PCA algorithms, including GoDec [58], Alt RPCA
[20], and Fast RPCA [56], on real-world data.

Robust Matrix Sensing. Our data are generated
from the model y = A(X∗ + S∗) + ε. We generate
X∗ ∈ Rd1×d2 via X∗ = U∗V∗>, where each entry of
U∗ ∈ Rd1×r and V∗ ∈ Rd2×r is generated indepen-
dently from standard Gaussian distribution. Besides,
we generate the unknown sparse matrix S∗ with each
element sampled from Bernoulli distribution with pa-
rameter 1 − β, where β is the corruption parameter.
The value of each nonzero element of S∗ is drawn uni-
formly from [−α, α]. And each element of the sensing
matrix Ai is drawn from i.i.d. standard normal dis-
tribution. For the noisy setting, we consider εi follows
i.i.d. zero mean normal distribution with variance ν2.

For robust matrix sensing, we study the following ex-
perimental settings: (i) d1 = d2 = 100, r = 3; (ii)
d1 = d2 = 150, r = 4; (iii) d1 = d2 = 200, r = 5.
Furthermore, we consider the noiseless case, choose
α = r, β = 0.1, and set the the number of obser-
vation n = 0.2 ∗ d1d2. We report the relative er-
ror and its standard deviation of low-rank structure
(‖X̂−X∗‖F /‖X∗‖F ) as well as CPU time for different
algorithms in Table 2. Note that we didn’t show the
results of sparse structure since it has similar perfor-
mance to low-rank structure. The results show that
our proposed algorithm outperforms the baseline al-
gorithms in terms of relative error and CPU time.

Robust PCA. We generate the data according to
Y = X∗+S∗+E, where the matrices X∗,S∗ ∈ Rd1×d2
are generated by the same procedures as in robust ma-
trix sensing. In the noisy setting, each element of the
noisy matrix E ∈ Rd1×d2 is drawn from i.i.d. zero
mean Gaussian distribution with variance ν2.

For robust PCA, we study the following experimen-
tal settings: (i) d1 = d2 = 100, r = 3; (ii) d1 =
d2 = 1000, r = 20; (iii) d1 = d2 = 5000, r = 50. In
addition, we consider the noiseless case and choose
α = r, β = 0.1. Note that all the experimental re-
sults are based on the optimal parameters, which are
selected by cross validation, and averaged over 30 tri-
als. We report the averaged root mean square error
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Table 2: Experimental results for robust matrix sensing in terms of relative error (×10−3) and CPU time.

d1 = d2 = 100, r = 3 d1 = d2 = 150, r = 4 d1 = d2 = 200, r = 5
Methods Error Time (s) Error Time (s) Error Time (s)
SpaRCS 28.6 (1.24) 30.21 26.83 (1.18) 107.71 25.73 (1.47) 275.40

Ours 5.51 (0.60) 24.31 5.33 (0.57) 63.05 4.75 (0.62) 177.24

Table 3: Experimental results for robust PCA in terms of RMSE (×10−3) and CPU time.

d1 = d2 = 100, r = 5 d1 = d2 = 1000, r = 20 d1 = d2 = 5000, r = 50
Methods RMSE Time (s) RMSE Time (s) RMSE Time (s)
NcRPCA 5.12 (1.84) 0.164 4.39 (2.27) 2.12 5.48 (1.44) 61.78

Fast RPCA 4.67 (0.22) 0.179 4.25 (0.47) 1.86 4.78 (0.39) 43.16
PG-RMC 5.45 (2.15) 0.185 3.97 (1.27) 3.23 6.88 (1.06) 89.29

Ours 3.97 (0.16) 0.121 3.74 (0.15) 1.54 3.67 (0.17) 35.72

(a) Original (b) GoDec (c) Alt RPCA (d) Fast RPCA (e) Ours

Figure 1: Background reconstruction of Hall of a business building video. (a) The original frame. (b)-(e)
Background frames estimated by GoDec [58], Alt RPCA [20], Fast RPCA [56], and our algorithm respectively.

(RMSE) and its standard deviation of low-rank struc-

ture (‖X̂−X∗‖F /
√
d1d2) as well as CPU time for dif-

ferent algorithms in Table 3. Note that we didn’t show
the RMSE of sparse structure since it has similar re-
sults to low-rank structure. The results show that
all the algorithms perform well in terms of RMSE.
However, our algorithm outperforms the baseline al-
gorithms in terms of CPU time, especially when the
dimension is large, which aligns well with our theory.

Real-world Data. We evaluate our proposed method
through the problem of background modeling [34].
The goal of background modeling is to reveal the cor-
relation between video frames, reconstruct the static
background and detect moving objects in foreground.
More specifically, a video sequence has a low-rank plus
sparse structure, because backgrounds of all frames are
related, while the moving objects in foregrounds are
sparse and independent. Due to this superstructure
property, robust PCA has been widely used for back-
ground modeling [58, 20, 56]. We apply our proposed
method to one surveillance video [34], which includes
200 frames with the resolution 144 × 176. In partic-
ular, we convert each frame to a vector and form a
25344 × 200 data matrix Y. Figure 1 illustrates the
estimated background frames (i.e., low-rank structure)
by different methods. The background frames esti-
mated by our method are comparable to others. How-

ever, compared with GoDec (taking about 32 seconds),
Alt RPCA (taking about 22 seconds), and Fast RPCA
(taking about 26 seconds), our proposed method only
takes around 18 seconds to process the video sequence.
All of these experimental results demonstrate the su-
periority of our proposed method.

6 CONCLUSIONS

We proposed a nonconvex optimization framework for
low-rank plus sparse matrix recovery, which integrates
both optimization-theoretic and statistical analyses.
However, there still exist some open problems along
this line of research, e.g., (1) How to achieve O(1/r)
robustness guarantee for the initialization phase tar-
geted for general loss functions? (2) How to improve
the sample complexity from O(r2d log d) to O(rd log d)
for robust PCA based on nonconvex optimization?
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