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Abstract

We present a probabilistic, fully Bayesian
framework for multi-label learning. Our
framework is based on the idea of learning a
joint low-rank embedding of the label matrix
and the label co-occurrence matrix. The pro-
posed framework has the following appealing
aspects: (1) It leverages the sparsity in the
label matrix and the feature matrix, which
results in very efficient inference, especially
for sparse datasets, commonly encountered in
multi-label learning problems, and (2) By ef-
fectively utilizing the label co-occurrence in-
formation, the model yields improved predic-
tion accuracies, especially in the case where
the amount of training data is low and/or
the label matrix has a significant fraction of
missing labels. Our framework enjoys full
local conjugacy and admits a simple infer-
ence procedure via a scalable Gibbs sampler.
We report experimental results on a num-
ber of benchmark datasets, on which it out-
performs several state-of-the-art multi-label
learning models.1

1 Introduction

Multi-label learning [Gibaja and Ventura, 2015,
Prabhu and Varma, 2014, Jain et al., 2016, Babbar
and Schölkopf, 2017] refers to the problem of learning
to assign a subset of relevant labels to each object,
given a large set of candidate labels. Each object is
thus associated with a binary label vector, which de-
notes the presence/absence of each of the candidate la-
bels. Multi-label learning problems are ubiquitous in a
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wide variety of applications, such as image/document
tagging, recommender system, ad-placement.

In multi-label learning problems encountered in mod-
ern applications, it is common to have datasets
characterized by instances defined by sparse, high-
dimensional feature vectors, in addition to the cor-
responding label vectors themselves being sparse and
high-dimensional. Moreover, often the label vector
may be incomplete since it is usually not possible to
completely annotate an instance with all of the rele-
vant labels. Multi-label learning problems thus need to
routinely deal with missing labels in the label vector of
each training instance. Finally, scalability is another
challenge in multi-label learning problems. Given the
high degree of sparsity of features and labels, it is desir-
able to have multi-label learning algorithms that can
leverage this sparsity during training/test time, and
can consequently scale to large-scale problems.

Motivated by these issues and desiderata, we present a
probabilistic framework for multi-label learning, which
is capable of addressing these issues effectively, in a
principled manner. Our framework is based on a gen-
erative latent factor model for the binary label ma-
trix. This latent factor model is based on an effi-
cient Poisson-Dirichlet-gamma non-negative factoriza-
tion [Zhou et al., 2012] of the binary label matrix,
which scales in the number of nonzeros in the label
matrix. Moreover, we condition the latent factors on
the instance features in a way that effectively utilizes
the feature sparsity and further improves the scalabil-
ity. Leveraging both instance label vector as well as
instance feature vector sparsity leads to a very efficient
inference for our model.

We further augment our model with a latent factor
model for the label co-occurrences. Information about
label co-occurrences can be obtained from an external
source (e.g., a text corpus such as Wikipedia) and this
information can be helpful, especially in predicting la-
bels that are rare in the data (e.g., for which there
are very training examples) or in cases where the label
matrix could have a large fraction of labels as missing.

https://github.com/ethanhezhao/BMLS
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Our latent factor model for the label co-occurrence is
learned jointly with the latent factor model for the la-
bel matrix, and sharing the latent factors of the label
helps in effectively transferring information from the
label co-occurrences.

Our model enjoys local conjugacy, which leads to a
very simple and highly efficient Bayesian inference via
Gibbs sampling. Our model is considerably more scal-
able as compared to other state-of-the-art Bayesian
models for multi-label learning, while achieving com-
parable and better prediction accuracies.

2 Background and Notation

In the multi-label learning problem, we assume that
we are given an D×N instance feature matrix X and
an L×N instance label matrix Y ∈ {0, 1}L×N , where
N,D,L are the number of instances, the dimension of
features, the dimension of labels, respectively. Both
matrices are assumed to be highly sparse. In this
paper, we focus on binary features, which are quite
common, especially in large-scale multi-label learning
tasks. An example would be in document classifica-
tion: each instance is a text document which is as-
sociated with a binary feature vector indicating the
presence/absence of words. The goal of multi-label
learning is to use the feature matrix and the label ma-
trix to learn a model that can predict the label vector
y∗, given the feature vector x∗ of a new instance.

Our model is based on the idea of factorizing the la-
bel matrix Y, which is equivalent to learning a low-
dimensional embedding θi for the label vector yi (i.e.,
the ith column vector of Y) of each instance i [Yu
et al., 2014, Rai et al., 2015, Mineiro and Karampatzi-
akis, 2015]. The embedding θi is, in turn, conditioned
on the feature vector xi (i.e., the ith column vector
of X) associated with that instance. Given the fea-
ture vector of a new instance x∗, its embedding θ∗
can be computed and it label vector y∗ can be pre-
dicted/decoded from θ∗. Different label embedding
models vary in how the embeddings are conditioned
on the features and how the embeddings are decoded
to produce the label vector at test time.

Our model has the following distinguishing aspects as
compared to other existing label embedding methods
for multi-label learning: (1) Learning the embeddings
by our model scales in the number of nonzeros in the
label and feature matrices, and (2) The model can
effectively leverage the label co-occurrence matrix, if
available. The latter property is especially useful when
a significant fraction of the labels are missing in the
label matrix and/or if the number of training instances
are very small.

3 The Model

Our model assumes that each entry yl,i ∈ {0, 1} of
the label matrix Y is generated by first drawing a la-
tent count zl,i from the Poisson distribution with rate
parameter ψl,i and then thresholding the count at 1.

yl,i = 1zl,i>0 (1)

zl,i ∼ Poisson(ψl,i) (2)

where 1· is the indicator function. To assist clarity, we
further denote the latent count matrix as Z ∈ ZL×N
and the Poisson rate matrix as Ψ ∈ R+

L×N .

By integrating zl,i out, the above generative process
for yl,i can be shown to be equivalent to

yl,i ∼ Bernoulli[1− exp(−ψl,i)] (3)

which is the Bernoulli-Poisson (BP) link func-
tion [Zhou, 2015] for binary observations. A partic-
ularly appealing aspect of the BP link (as opposed
to other link function for binary observations, such
as logistic/probit) is that the inference cost only de-
pends on the number of nonzeros in the data [Zhou,
2015], making it an ideal choice for the problems in-
volving the large-scale multi-label learning problems
with sparsity. Specifically, if the yi,l = 0, zi,l = 0 with
probability one. Therefore we only need to infer the
latent count zi,l for those labels yi,l that are nonzero.
That is how the sparsity of the label matrix is lever-
aged in our model.

3.1 A Low-Rank Model for Label Matrix

Most real-world multi-label learning datasets consist
of high-dimensional labels vectors. However, the labels
tend to be related to each other. Therefore, a popular
assumption used in multi-label learning is to use a low-
rank approximation for the label matrix, as also used
in recent work [Yu et al., 2014, Rai et al., 2015, Mineiro
and Karampatziakis, 2015, Bhatia et al., 2015]. To this
end, we assume that the Poisson parameter matrix Ψ
admits a low-rank factorization as follows:

Ψ = Φ>Θ (4)

where Θ ∈ R+
K×N and Φ ∈ R+

K×L.

For one instance i, the model can be written as:

yi ∼ Bernoulli[1− exp(−ψi)] (5)

ψi = Φ>θi =

K∑
k=1

φkθi,k (6)

The model can be interpreted as follows: The label
vector yi is associated with an embedding θi and Φ
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can be considered as K “topics”, each a distribution
over the L labels. The label vector yi of instance i
can then be thought of as being generated via a linear
combination of these K topics through the BP link.
The combination weights given by the embedding vec-
tor θi, with θk,i representing the weight of topic k,
where φk,l represents the weight of label l in topic k.
Finally, we impose Dirichlet prior on φk:

φk ∼ DirichletL(β0, · · · , β0) (7)

3.2 Conditioning Embeddings on Features

To condition the label vector embeddings θi on the
feature vector xi, we model θk,i a log-linear combina-
tion of the instance’s features as follows:

θk,i = bk

D∏
d

h
xd,i
k,d (8)

where hk,d ∈ R+ is a latent variable controlling the
influence of feature d on topic k and bk ∈ R+ is a
feature-independent bias term. Both hk,d and bk are
drawn from a gamma distribution:

hk,d, bk ∼ Gamma(µ0, 1/µ0) (9)

Figure 1 shows the graphical model for the above con-
struction. Given our model construction, hk,d is ex-
pected to have mean 1. The intuition is that, in multi-
label learning problems, the number of features D is
usually very large but, for most of the instances, only a
small subset of these features is discriminative. There-
fore, if feature d does not contribute to topic k or is
not very informative, then hk,d should be dominated
by the prior and expected to be near 1, in order to
have little influence on θk,i. Note that the variance of
hk,d is 1

µ0
, which is a hyperparameter of our model.

One of the particularly appealing aspects of our pa-
rameterization in Eq. 8 is its computational efficiency
when the features are sparse (which is usually the case
with most multi-label learning datasets). In contrast,
the existing label embedding models [Yu et al., 2014,
Rai et al., 2015, Mineiro and Karampatziakis, 2015]
learn an explicit regression model from the D dimen-
sional feature vector xi to θi,k, which is computation-
ally very expensive for large D. At the same time,
the choice of parameterization in Eq. 8 also facilitates
in retaining the conjugacy of our model, leading to a
simple and efficient inference algorithm. We will study
the details of how the inference leverages the sparsity
of the feature matrix in Section 4.

3.3 Leveraging Label Co-occurrences

In addition to the labels of the instances, it is often
possible to get label co-occurrence statistics [Mensink

zl,i

yl,i

θi

xd,ihd

µ0
φ>

l β0

D

N L

Figure 1: The graphical model for factorizing the label
matrix. hd, θi, φl is the dth column of H, the ith

column of Θ, the lth row of Φ respectively. All of
them are K dimensional vectors.

et al., 2014] from an external source, such as a text cor-
pus (e.g., Wikipedia). Suppose the label co-occurrence
statistics are provided in form of an L×L count matrix
C ∈ ZL×L, where each entry of C denotes the number
of times a pair of labels co-occurs. Note that in the
absence of an external source of information, one pos-
sible way to construct the matrix C could be to use the
label matrix Y itself, i.e., as C = Y>Y. In this case,
even though C reuses the information already present
in Y, this “re-encoding” of information can still help
the model, as also corroborated by recent work [Liang
et al., 2016].

It is natural to model label co-occurrences by the Pois-
son distribution:

cl,m ∼ Poisson(ψ′l,m) (10)

where cl,m denotes the number of times a pair of labels
l and m co-occurs, ψ′l,m denotes the (l,m)th entry in

the Poisson rate matrix Ψ′ ∈ R+
L×L. We further

apply a low-rank factorization of Ψ′ as follows:

Ψ′ = Φ>ΛΦ (11)

Here Λ ∈ R+
K×K is a diagonal matrix, whose diagonal

elements are denoted by the vector λ ∈ R+
K . We

assume λk to have a gamma prior distribution:

λk ∼ Gamma(γ0/K, f0) (12)

where γ0, f0 are given uninformative gamma priors.

Figure 2 shows the graphical model of this part.
Note that Φ in Eq. (11) is the same “K topics” ma-
trix that we have used in the low-rank modeling of
the label matrix Y (Sec. 3.1). This is essentially a
co-factorization model, such as the collective matrix
factorization Singh and Gordon [2010], Klami et al.
[2013], for joint low-rank modeling of multiple matrices
with shared latent factors. In our case, these matrices
are the label matrix Y and the label co-occurrence ma-
trix C, with the topic matrix Φ shared by the latent
factor models of both Y and C. Note however that
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cl,m
φ>

l φ>
m

λγ0 f0

L L

Figure 2: The graphical model for leveraging co-
occurrences. φl is the lth row of Φ. φl and λ are
K dimensional vectors. Note: In the overall model,
this part is learned jointly with the factorization of
the label matrix.

unlike collective matrix factorization Singh and Gor-
don [2010], Klami et al. [2013], our gamma-Poisson
generative model can effectively leverage the sparsity
of these matrices and results in very efficient inference,
with complexity that scales in the number of nonzeros.

4 Inference

Exact inference in our Bayesian model is intractable.
However, one of the most appealing properties of our
model is that it admits very simple yet efficient approx-
imate inference via closed form Gibbs sampling up-
dates. Leveraging data augmentation techniques Zhou
et al. [2012], the proposed model enjoys full local con-
jugacy and facilitates deriving efficient Gibbs sampling
updates for all the latent variables of our model. More-
over, the inference in our model scales in the number
of nonzeros in both the label matrix as well as the fea-
ture matrix, which makes the model work efficiently
for multi-label learning problems that involve large but
highly sparse feature and label matrices.

4.1 Sampling Latent Counts zl,i,k

Given a binary label yl,i, according to our model con-
struction in Eq. (2), we first need to sample the corre-
sponding latent count zl,i, which can be drawn from a
truncated Poisson distribution:

(zl,i|yl,i, ψl,i) ∼ yl,i · Poisson+(ψl,i) (13)

The above equation indicates that we only need to
sample zl,i if yl,i > 0, i.e., the sparsity of the label
matrix.

Given Eq. (2) and the additivity of Poisson, the la-
tent count zl,i can be written as a sum of K smaller
latent counts, each of which is contributed by the cor-

responding topic:

zl,i =

K∑
k

zl,i,k (14)

zl,i,k ∼ Poisson(φk,lθk,i) (15)

where zl,i,k is the counts for each topic k.

Moreover, using the relationship of the Poisson and
multinomial distributions, we can express the decom-
position in Eq. (14) and Eq. (15) as a draw from a
multinomial:

[zl,i,1, · · · , zl,i,K ] ∼ Multi

{
zl,i;

[φ1,lθ1,i, · · · , φK,lθK,i]∑K
k φk,lθk,i

}
(16)

4.2 Sampling Latent Counts cl,m,k

To infer the latent factors defining the generative
model of the count-valued label co-occurrences cl,m
(Fig. 2), we leverage a similar latent variable augmen-
tation scheme to the one used for sampling the la-
tent counts associated with the label matrix (cf., Sec-
tion 4.1). In particular, we assume the observed label
co-occurrence cl,m for two labels l and m as a sum of K
smaller latent counts (each of which can be attributed
to one of these K topics) as follows

cl,m =

K∑
k

cl,m,k (17)

cl,m,k ∼ Poisson(φk,lλkφk,m) (18)

where cl,m,k is the latent counts for topic k.

Again, given cl,m, which is observed, cl,m,k can be sam-
pled from multinomial, similar to the sampling of zl,i,k
in Eq. (16).

4.3 Sampling hk,d and bk

As φk is normalized (sums to 1), summing over l of
Eq. (15) and using the additivity of Poisson, we get:

z·,i,k ∼ Poisson(θk,i) (19)

where z·,i,k =
∑L
l zl,i,k. Thus, the likelihood of θ is∏

k,i

e−θk,iθ
z·,i,k
k,i (20)

Given Eq. (8), recall that all the features are binary
and hk,d influences θk,i iff xd,i = 1. This gives us a
direct way of extracting hk,d from θk,i. We can derive
the likelihood of hk,d as:

e
−hk,d

∑N
i:xd,i=1

θk,i
hk,d (hk,d)

∑N
i xd,iz·,i,k (21)
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which is conjugate to its Gamma prior. Therefore,
it is straightforward to yield the following sampling
strategy for hk,d:

hk,d ∼ Gamma

µ0 +

N∑
i:xd,i=1

z·,i,k,
1

µ0 +
∑N
i:xd,i=1

gk,i
hk,d


(22)

bk can be sampled using the same formula by adding
an extra row of ones in the feature matrix X (which
serve as the default features).

We can compute and cache the value of θk,i first. After
hk,d is sampled, we can update θk,i for the instances
where feature d is on:

θk,i ←
θk,ih

′
k,d

hk,d
(23)

where h′k,d is the newly-sampled value of hk,d.

To sample h and compute θ, according to Eq. (8) and
Eq. (22), one only iterates over the instances where
feature d is on (i.e., xd,i = 1) instead of iterating over
all the instances. This demonstrates how the sparsity
in the feature matrix is leveraged. Note that the in-
ference simplicity only exists with binary features.

4.4 Sampling φk

If the co-occurrence matrix is not incorporated, using
Eq. (16) and the Dirichlet-multinomial conjugacy, φk

can be sampled as:

φk ∼ DirichletL(β0 + z1,·,k, · · · , β0 + zL,·,k) (24)

where zl,·,k =
∑N
i zl,i,k.

Otherwise, φ is also involved in the generative process
of C. According to Eq. (18), the likelihood of C is

e−
∑
l,m,k −φk,lλkφk,m

∏
l,m,k

(φk,lλkφk,m)
cl,m,k (25)

Given the fact that φk is normalized, the likelihood
term related to φk,l is: φ

cl,·,k
l,k where cl,·,k =

∑L
m cl,m,k+∑L

m cm,l,k. Therefore, we can sample φk as:

φk ∼ DirichletL(· · · , β0 + zl,·,k + cl,·,k, · · · ) (26)

4.5 Sampling λk

According to Eq. (25), λk has the Poisson likelihood,
which is conjugate to its Gamma prior. Therefore, we
can sample λk as:

λk ∼ Gamma[γ0/K + c·,·,k, 1/(f0 + 1)] (27)

where c·,·,k =
∑L
l cl,·,k.

Recall that γ0 and f0 have uninformative Gamma
prior. For γ0, we can apply the data augmentation
in Zhou et al. [2012], Buntine and Hutter [2012] to get
the Gamma likelihood. For f0, its posterior is directly
conjugate to the Gamma likelihood.

4.6 Time-Complexity Analysis

In addition to having a rich generative model for the
label and label co-occurrences, one of the key proper-
ties of the proposed model is the computational effi-
ciency resulting from taking advantage of the sparsity
in both feature and label matrices. This is impor-
tant because in many multi-label learning problems,
the feature and label matrices usually are massive but
highly sparse. Specifically, for the label matrix, with
the Bernoulli-Poisson link, the models scales in the
number of nonzeros in the label matrix. At the same
time, sampling h and computing θ scale in the num-
ber of nonzeros in the feature matrix. Therefore, in
the case where the label co-occurrences are not lever-
aged, the inference complexity of the proposed model
is O(KG+KDG′) where G is the number of nonzeros
in the label matrix Y and G′ is the average number of
instances where a feature is on (i.e., the column-wise
sparsity of X). Even when the label co-occurrences are
leveraged, it does not add much overhead since the la-
bel co-occurrence matrix is usually highly sparse as
well and its low-rank factorization scales in the num-
ber of nonzeros in this matrix. The efficiency of our
model will be empirically studied in Section 6.4.

5 Related Work

Multi-label learning problems in modern-day applica-
tions are usually characterized by a large number of
training instances, a large number of features, and a
large number of labels (i.e., label-space cardinality).
Owing to this, there is a considerable recent interest in
designing multi-label learning models that can grace-
fully scale to handle such large datasets.

Label embedding methods offer an appealing solution
to the large label-space cardinality problem. These
methods project the high-dimensional sparse label vec-
tors of each instance into a low-dimensional space.
This corresponds to learning a low-rank embedding
of the label matrix. However, learning the embedding
itself is a computationally challenging problem, espe-
cially when the label matrix is massive. This has led
to a lot of recent interest in embedding based mod-
els for multi-label learning that can learn label matrix
embeddings efficiently [Yu et al., 2014, Mineiro and
Karampatziakis, 2015]. However, most of these meth-
ods do not exploit the sparsity of the label matrix while
learning the embeddings. Recently, [Rai et al., 2015]
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proposed a Bayesian label matrix embedding method
that scales in the number of nonzeros in the label ma-
trix. Their approach is similar in spirit to our ap-
proach. However, the approach in [Rai et al., 2015]
conditions the embeddings on the feature vectors via
a regression model. Learning this regression model is
challenging due to non-conjugacy, and is computation-
ally expensive. In contrast, our approach of learning
the label matrix embedding also scales in the number
of nonzeros in the label matrix. However, the embed-
dings are conditioned on the feature vector not via a
regression model used in [Rai et al., 2015] but via a
log-linear combination of the features. If the features
are binary and sparse, such an approach of condition-
ing on the features leads to significant speed-ups. In
our experiments, we compare the per iteration compu-
tational cost of our approach with the approach of [Rai
et al., 2015] and observe significant speed-ups. More-
over, unlike our model, the model of [Rai et al., 2015]
cannot leverage label co-occurrences.

Other prominent Bayesian approaches to multi-label
include the Bayesian compressed sensing (BCS) based
approach [Kapoor et al., 2012]. However, inference
in BCS is expensive. Moreover, it does not exploit the
sparsity of label matrix or feature matrix, and is there-
fore not suitable for large-scale multi-label datasets.

Leveraging label co-occurrences to improve multi-label
learning has not received much attention so far, except
for some recent works such as [Mensink et al., 2014,
Gaure et al., 2017]. One key difference of our model
as compared to these models is that the computa-
tional cost scales in the number of nonzeros in the label
and feature matrix. Moreover, the Poisson-Dirichlet-
gamma based latent factor model offers a nice inter-
pretability of our model, making it also suitable for
other tasks, such as topic discovery (e.g., group of re-
lated labels representing a topic). In our experiments,
we show such a qualitative analysis on a real dataset.

Our approach of constructing embeddings via condi-
tioning on features is related to the models that incor-
porate auxiliary information in Poisson factorization
or topic models such as the ones in Hu et al. [2016],
Zhao et al. [2017a,b,c]. Features in those models are
used to construct the prior of the embeddings. How-
ever, in our model, the embeddings are directly con-
structed using the features (Eq. 8), which allows effi-
ciently computing the embeddings of test instances.

6 Experiments

In our experiments, we compare the proposed
Bayesian Multi-label Learning with Sparse Features
and Labels (abbreviated BMLS) with various state-
of-the-art multi-label learning models, which include

both Bayesian and non-Bayesian models. We eval-
uate the proposed model on four benchmark multi-
label datasets with binary features: Bibtex, Delicious,
Movielens, and NIPS.

The statistics of the datasets are listed in Table 1. The
datasets cover a wide range of feature and label sizes.
Moreover, both the feature vectors as well as the label
vectors are highly sparse, reflecting real-world multi-
label learning problems. Our model can effectively ex-
ploit the sparsity in these vectors, which results in a
fast inference procedure.

We compare the following models: (1) BMLS: Our
proposed model. We experiment with two variants -
with and without the label co-occurrences. If the la-
bel co-occurrences are leveraged, we refer to the model
as BMLS-co. (2) LEML: Low rank Empirical risk
minimization for Multi-label Learning Yu et al. [2014].
Similar to our model, LEML factorizes the label ma-
trix Y with two matrices and one of them is further
factorized with the feature matrix X. LEML considers
various types of loss functions such as squared loss, lo-
gistic loss, hinge loss, etc. (3) BMLPL: Bayesian
Multi-label Learning via Positive Labels Rai et al.
[2015]. As one of the most related models to BMLS,
BMLPL applies the Bernoulli-Poisson factorization on
Y as well. However, unlike our model, BMLPL uses a
regression based approach to condition on the features.
(4) BCS: Bayesian Compressed Sensing for multi-
label learning Kapoor et al. [2012]. BCS is a Bayesian
method that uses the idea of doing compressed sens-
ing on the label vectors Hsu et al. [2009], and relies on
variational inference. (5) BNMC: Bayesian Nonpara-
metric model for Multi-label Classification Nguyen
et al. [2016]. BNMC is a Bayesian model that au-
tomatically learns and exploit the unknown number of
multi-label correlation.

We report the Area Under the ROC Curve (AUC) on
the test data to measure the prediction performance
on new instances for all the models being compared.
In particular, for our model, we can obtain H, b,Φ
from the training phase. Given a new instance i′, we
can compute θk,i′ by Eq. (8) using its feature vector
xi′ . The labels can be predicted as follows:

Pr(yl,i′ = 1) = 1− e−
∑K
k φk,lθk,i′

In the experiments, we set the hyperparameters for
our model as µ0 = 10, β0 = 0.01, K = 100 and γ0, f0
are given uninformative gamma priors. We use 5000
Gibbs sampling iterations to train the model and re-
port the average results over the last 2500 iterations.
For the baseline models, we use their default parame-
ter settings.
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Table 1: The statistics of the datasets used in the ex-
periments. Ntrain: number of training instances, Ntest:
number of test instances, D: number of features, L:
number of labels.

Dataset Ntrain Ntest D L
Bibtex 4880 2515 1836 159

Delicious 12920 3185 500 983
Movielens 4000 2040 29 3952

NIPS 2292 573 2484 14036

Table 2: Comparison of the various methods in terms
of AUC scores with all the instances in the training
sets. “-” denotes either these results were not available
or the method was infeasible to run on that data set.

Model Bibtex Delicious Movielens NIPS
LEML 0.9040 0.8894 0.8787 0.8777

BMLPL 0.9210 0.8950 0.8582 0.9002
BCS 0.8614 0.8000 - -

BNMC 0.8318 - - -
BMLS 0.9379 0.9062 0.8682 0.9009

6.1 Results using Complete Training Set

In the first experiment, we train all the models using
all the instances in the training set. The AUC scores
are reported in Table 2. The result shows that the pro-
posed model performs better than the other models in
three out of four datasets, which evidences the effec-
tiveness of our model. Note that BMLS-co performs
comparably to BMLS in this setting (possibly because
training data is plenty), so its results are not reported.

6.2 Results using Missing Labels and
Limited Training Instances

One common problem of multi-label learning is miss-
ing labels. As a Bayesian model, the proposed model
naturally handles this problem. Furthermore, it is rea-
sonable to assume that the label co-occurrences shall
play a more important role in the case of missing la-
bels. To examine this, we randomly remove 80% en-
tries from the label matrix in the training data of Bib-
tex, Delicious, and Movielens to mimic the situation
where a significantly large fraction of the labels are
missing. The AUC scores of this experiment are shown
in Table 3. From the results, it can be observed that
BMLS-co gains better results than BMLS, especially
on the Bibtex dataset, demonstrating that the label
co-occurrences do help in the case with missing labels.
Moreover, both of our proposed models outperform the
others significantly in this case. It is also noteworthy
that although LEML gets better AUC score on the
Movielens dataset with all the training instances, the

Table 3: AUC scores with only 20% labels.

Model Bibtex Delicious Movielens
LEML 0.8452 - 0.8406

BMLPL 0.7879 0.8082 0.8574
BMLS 0.8598 0.8933 0.8619

BMLS-co 0.8764 0.8978 0.8643

Table 4: AUC scores with only 20% instances of the
training set.

Model Bibtex Delicious Movielens
LEML 0.8649 0.7325 0.8429

BMLPL 0.8167 0.8484 0.8437
BNMC 0.7549 - -
BMLS 0.8651 0.8888 0.8629

BMLS-co 0.8723 0.8921 0.8562

proposed models have a clear advantage when there is
a high fraction of missing labels.

Another situation where the label co-occurrences may
benefit is the case where there are not sufficient train-
ing examples in the data. We mimic this situation by
reducing the size of training instances to 20% on Bib-
tex, Delicious, and Movielens. The AUC scores in this
case in shown in Table 4. Here we can observe a similar
trend as for the missing label case: BMLS has signifi-
cantly better performance as compared to the baseline
models and BMLS-co further improves the prediction
accuracies using the label co-occurrences.

6.3 Qualitative Analysis: Topic Modeling on
NIPS Dataset

Recall that in our model, φk represents a distribution
(i.e., a “topic”) over the labels. To assess our model’s
ability to discover meaningful topics, we run an exper-
iment on the NIPS dataset with K = 100 and exam-
ine each topic. The NIPS dataset consists of 14036
labels (each of which is a word; each author (i.e., in-
stance) has a subset of words), so φk is of that size.
In Table 5, we show five of the topics with their top
words (ranked by φk,l) and the top authors (ranked
by θk,i). As shown in the table, our model is able to
discover clear and meaningful topics of the authors,
which shows its usefulness as a topic model when each
document yi ∈ {0, 1}L has features in form of meta
data xi ∈ {0, 1}D associated with it.
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Table 5: The top words and authors with the largest weights in the topics.
Topic: 1 2 3 4 5

Top words:

input
neural

networks
network
training

set
learning
output
weights

information

problem
theorem
theory
bound
result
exists

positive
dimension

proof
assume

image
dimensional

system
vision
images
visual
object

computer
pattern
position

posterior
distributions

log
likelihood

monte
inference
bayesian

joint
carlo

variance

optimal
control
current
actions

dynamic
programming

learn
action
state

machine

Top authors:

Mozer M
Hinton G

Sejnowski T
Bengio Y
Giles C

Sontag E
Venkatesh S
Bartlett P
Jordan M

Meir R

Sejnowski T
Hinton G
Baluja S
Zemel R
Poggio T

Jordan M
DeFreitas J
Hinton G
Doucet A
Bishop C

Sejnowski T
Dayan P
Hinton G
Mozer M
Jordan M

6.4 Running Time

In this section, we empirically compare the running
time of our model with BMLPL2, with a similar low-
rank embedding approach. Note that BMLPL uses a
regression approach to condition the embeddings on
the features, while in our model, the embeddings are
conditioned on the features via a log-linear combina-
tion of the features. This makes our model much more
scalable, while also enjoying closed form, highly effi-
cient Gibbs sampling.

Both the models are implemented in MATLAB run-
ning on a desktop with 3.40 GHz CPU and 16GB
RAM. We report the running time per MCMC iter-
ation on the four datasets and we also vary the size
of training instances from 20% to 80% to fully exam
the efficiency. Shown in Table 6, the proposed model
runs much faster than BMLPL, supporting the time-
complexity analysis in Section 4.6.

7 Conclusion and Discussion

Despite the considerable amount of recent progress
on the problem of multi-label learning, Bayesian ap-
proaches to this problem have received relatively little
attention. This is primarily due to the lack of scal-
able approaches that can handle large datasets and
can be efficient at training and test time. With this
motivation, in this paper, we presented a framework
for multi-label learning that leverages some of the key
characteristics of multi-label learning datasets (in par-
ticular, the sparsity of label and feature matrix) to
design a scalable Bayesian multi-label learning model.
Unlike most existing multi-label learning models that
are based on learning a low-rank factorization of the

2We only compare the running time with BMLPL be-
cause (1) it is a Bayesian model with the similar base frame-
work like ours, (2) its inference is done by Gibbs sampling
and implemented in MATLAB as well.

Table 6: Running time per iteration (seconds) of
BMLS and BMLPL. K = 100 for both models.

Dataset % training BMLPL BMLS

Bibtex

20%
40%
60%
80%

18.14
22.54
26.75
29.80

0.04
0.06
0.09
0.11

Delicious

20%
40%
60%
80%

12.18
14.45
17.82
20.70

0.09
0.16
0.24
0.33

Movielens

20%
40%
60%
80%

19.19
21.86
24.08
26.27

0.16
0.27
0.37
0.49

NIPS

20%
40%
60%
80%

35.50
38.51
40.31
43.06

0.66
1.10
1.55
2.01

label matrix, our model performs a joint factorization
of the label matrix and the label co-occurrence matrix
and, by sharing latent factors between the two factor-
izations, it can address problems such as lack of train-
ing data and/or a high fraction of missing labels in the
label matrix. The topic-based interpretation of our la-
bel embedding approach is intuitive and we hope it
would motivate the application of similar topic model
based approaches for the problem of multi-label learn-
ing. Finally, making such models more scalable would
be an interesting direction of future work. Although
in this paper, we have presented Gibbs sampling for
doing inference in the model, developing variational
inference or stochastic variational inference would fur-
ther improve the scalability of our model.
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